A TINA-based solution for Dynamic VPN Provisioning on heterogeneous networks

Patricia Lago, Riccardo Scandariato

Politecnico di Torino

Dipartimento di Automatica e Informatica

Torino, Italy

Abstract*

The objective of this work is to support dynamic (i.e. on demand) VPN provisioning. To this aim, this paper presents an information model describing Virtual Private Networks (VPNs) at a high level of abstraction. The information model is based on COPS (Common Open Policy Service [1]) and TINA concepts.

The paper also proposes an architecture for dynamic VPN control based on the defined information model. The proposed model is meant for a large-scale, multi-provider environment

1. Introduction

The work described in this paper was inspired by the need for VPN provisioning as an added-value service, in a user-friendly and semi-automated way. We started with the following premises:

· Current technologies (network elements) must be configured manually, provide low-level interfaces, and support static VPN definition.

· New communication protocols are appearing (e.g. COPS but not necessarily COPS only), as well as a new generation of Network Nodes (NN) that are active and stateful elements: they store configuration information locally (e.g. Policy Information Base, PIB), and trigger notifications associated with the NN state and eventually with the state of the network.

· New-generation software architectures have been designed to support network management and control. Examples are

· The TINA Network Resource Architecture (NRA, [4]) supporting the general requirement of crossing different network technologies (e.g. IP and ATM) and different administrative domains. The NRA is based on the concept of connection that we adopt from the software (or logical) viewpoint to represent VPNs, without any assumption on the networking environment that could be both connection-oriented and connectionless.

Another useful concept is that of connection graph that we adapted to model both the network elements, and the VPNs activated on top of them. In particular we defined the concept of area to represent a homogeneous set of networking resources inside a business domain, and to abstract details of the network elements inside a 3rd party business domain. The area can be assimilated to the TINA network layers in which a sub-network in a foreign domain is viewed as an area exporting some kind of external, “public” image.

· The IETF RAP Policy Architecture (RPA), i.e. an architectural framework defined by the IETF RAP (RSVP Admission Protocol) Working Group [5]. It specifies a framework for providing policy-based control over admission decisions. It is based on the concept of policy defined as the combination of rules imposing the criteria for resource access and usage.

This architecture is composed of two main components for policy control: (1) the PEP (Policy Enforcement Point) component running on a network node, and (2) the PDP (Policy Decision Point) which typically resides at a Policy Server. COPS is used as the protocol between the PDP and the PEP for exchanging policy information.

COPS can be considered as a standard and interoperable mechanism for VPN provisioning, allowing for dynamic updating of the connectivity, e.g. between VPN sites.
In summary, based on current enabling technologies and protocols, we defined a high-level description of VPNs as a collection of objects and links among objects. This VPN description (called information model) is a conceptual model and must be then mapped on a new actual definition of the PIB. This step is subject to ongoing and future work.

Further, we designed a Provider architecture that operates dynamic VPN provisioning (from creation, to modification and deletion). This is based on the definition of a set of policies automating VPN provisioning, and a set of components that maintain the VPN description and on which to apply policies. The implementation of the Provider architecture is subject to ongoing work.
The following gives an overview of main ideas and current status of the work. Section 2 introduces the main concepts regarding a control architecture for VPN provisioning, and the underlying network information model for VPN representation. In particular, the example given in Section 2.1 gives a sampling of the advantages of this approach and the problems we are facing, and Section 2.2 details the proposed control architecture managing the example. Section 3 concludes with some considerations.

2. Information and Computational Models for VPN Provisioning

The RPA architecture we adopted as a starting model when we designed our Provider architecture, can be graphically represented as in Figure 1 by using a computational modeling notation: NNs are either COPS-aware (PEPs), or Policy Ignorant Nodes (PINs) encapsulated in a COPS proxy. Each NN is controlled by (and interacts with) a PDP: thus, COPS regards the interactions between PDP and PEP components. Further, we introduced a server component (that we called Policy Control Server, PCS) in charge of maintaining the status of the whole network inside a business domain, and of reacting according to both policies and current network situation.

As shown in Figure 1, policies are stored in a Directory Service (e.g. via LDAP [6]). We suppose that policies can be directly accessed and modified via an administration console with no interaction with the PCS (see in the Figure LDAP access from the Policy Administration console to the Directory Service). In this case, LTAP (Lightweight Trigger Access Protocol) would notify PCS of the change: before accepting the change, PCS triggers a verification of the new policy, by executing both a global conflict verification, and a local verification in the PDPs. If both verifications are successful, PCS approves the change in the Directory Service that notifies the console.

Further, IDL (Interface Definition Language) interactions from Policy Administration console to PCS would permit the administrator to monitor the status of the network.

[image: image1.wmf]PDP

LDAP / LTAP

COPS

COPS

IDL

IDL

PEP

PEP

Policy

Ignorant

Node

Proxy

PDP

Policy

Control

Server

Policy

Administration

Directory

Service

Figure 1. RPA Architecture
COPS and RPA consider two alternative models that we apply to VPN provisioning: the outsourcing model in which the network nodes (NNs) trigger COPS notifications upward (see the dashed arrow in Figure 1) to the PDP which (through the Policy Control Server) takes decisions according to the current status of the network, and configures NNs downward via COPS messages. The provisioning model is the other way around: the PDP executes configuration instructions downward to the NNs. We think of the second approach even if we do not take any particular assumption in this respect.

Concerning VPN models instead, we designed our solution according to the VPRN model (Virtual Private Routed Network [2]). As illustrated in Figure 2, in VPRNs the Internet Service Provider (ISP) network is treated as an opaque IP cloud where only the border nodes (elements on the cloud border) are part of the VPRN description: they represent the access points for VPN customers. The core nodes (elements inside the cloud) are transparent. Customers access the VPN via a customer edge device (CED), which originally is an enterprise router. Extending the IETF model, we defined a CED as both an enterprise router that interconnects a plurality of hosts (i.e. a site) with the ISP, or a single host that directly dials in the ISP border. In any case, each CED is connected to the ISP network by means of one or more links (stub links) terminating on an ISP border router.

[image: image2.wmf]Border

Nodes

CED

CED

Stub

Links

Core

Nodes

ISP Net

Tunnel

Figure 2. The VPRN Model
In the original VPRN model, only dedicated links are considered as stub link technology. To grant customers a flexible way of accessing the network, instead, we propose that the stub link be a dedicated link (e.g. a leased line or a Frame Relay circuit), a dial-up link (PPP connection), or a tunnel starting from the client desktop and terminating at the ISP border node. A stub link in the form of a tunnel is useful when either a client reaches his own VPN provider through an intermediary ISP, or the client participates in multiple VPNs.

The ISP supplies VPN connectivity between members of the same VPN, by establishing a mesh of tunnels between the border nodes that have at least one attached CED belonging to that VPN. Each border node is able to forward the traffic received from an attached VPN member to the appropriate destination, within the same VPN, by using the tunnel mesh. In this way, the ISP sustains the burden of installing the tunnels and of managing the routing mechanisms only. In this sense, the VPN service is said network-centric.

Generally speaking, a tunnel is a way to isolate different kinds of traffic. This can be implemented on two different levels:

· On IP networks, a tunnel is a point-to-point, encapsulated communication that acts as an overlay upon the IP backbone. In fact only the border nodes are acquainted with tunnels while the tunnel traffic is opaque for the IP network core. IP core nodes are unaware that a tunnel is traversing them: tunnel packets are forwarded just as any other IP packet (this fact explains why core nodes are not involved in the pure VPRN description, which considers only IP networks and IP tunnels).

· On a lower level, a way to isolate traffic flows is to physically split them. ATM/FR circuits, and MPLS (Multi-protocol Label Switching) paths do so.

Note that, in a VPRN context, the tunneling mechanism must support multiplexing, i.e. tunnels can carry tunnel-ID info. In fact, multiple VPN tunnels may be required between the same two IP endpoints. This is often needed in case where border nodes support multiple customers. Traffic for different customers travels over separate tunnels between the same two physical devices. A multiplexing field is needed to distinguish which packets belong to which tunnel. In case of IP networks, GRE/IPSec/L2TP
 tunnels can carry this kind of information; for the lower level tunneling, tunnel-ID info can be associated with the VCI/VPI couple and the MPLS label.

This work overcomes the traditional VPRN model described above, in two main aspects:

1. The provider network is depicted not so “opaquely”, being it structured in areas (introduced in Section 1).

2. The provider network is described on two layers of abstraction: the Topology layer providing the fine-grained description of the network, and the Connectivity layer providing a corresponding abstraction on which VPNs are mapped.

Both aspects will be explained in the following Section. A description of the complete information model is given in [3].

2.1. Provider Network Modeling

There are three real-world cases that require a provider network be structured in sub-networks: first, different technologies other than IP may coexist within the same provider network; second, it can be divided into sub-networks for administrative purposes (for instance, to accomplish to regional or country frontiers); finally, partitioning a large network into smaller domains leads to a more scalable paradigm from the management perspective.

To satisfy the former cases (respectively integration of technologies, administrative partitioning, and scalability) our work describes networks in terms of Provider Domains and Areas.

 A provider domain is made of all heterogeneous network resources (lines and networking equipment) owned by (or subject to) the same administrative authority (the ISP). These resources are partitioned into sub-networks called areas. An area is a homogeneous subset of ISP network nodes with the same forwarding technology (irrespective of the ISO-layer at which the forwarding takes place, be it the layer 2 or the layer 3). Each area network, however, provides an IP access level at its boundaries.

The following figure presents (a) a pictorial description of a provider network and (b) its formalization as a UML
 object diagram.

[image: image3.wmf](a) Graphical representation

IP

Area

ATM

Area

Provider

ConnView

PC1

Provider

Topology

PT1

Area

ConnView

AC1

Area

Topology

AT1

CED1

G2

NN2

NN1

CED2

Tunnel

Switch

TS1

TL1

E2

G1

[image: image4.wmf]G2: ii_Gateway

L1: Link

TEP1: Tunnel End Point

NN1: Network Node

NN2: Network Node

T1: Tunnel

G1: ii_Gateway

E2: ii_Edge

A1: Area

CED1: CED

TS1: Tunnel Switch

virtualizes

virtualizes

AC1: Area ConnView

PD1: Provider Domain

PC1: Provider ConnView

PT1: Provider Topology

AT1: Area Topology

I2: Interface

I1: Interface

TEP2: Tunnel End Point

TL1: Topological Link

NI1: Network Interface

NI2: Network Interface

(b) Information model

Figure 3. A provider network example

First, let us have a look to the graphical representation, which shows the relationships among a provider domain, its organization in areas, and the customers. Starting from the upper layer, the example shows that Customers access the VPN service through a Customer Edge Device (CED), which can be both a host (CED2) that directly dials in the provider domain, or an enterprise router (CED1) that interconnects a site. The provider domain is split in two Areas (the white clouds in the lowest plane), supposing that the left side area is built on ATM core nodes (inner elements in the cloud) with the border nodes (elements on the cloud border) enabled for the IP protocol. The right side area is supposed to be an IP native network.

Figure 3.(b) shows the instantiated information model for a fragment of our example, namely the part exploding the Provider Domain PD1 into Area A1 (on the right side of the Figure).

In particular, the elements making up the information model are the following. Core nodes are formalized as Network Node (NN - white) class instances, while border devices are formalized as either Edges (E – dark gray) or Gateways (G – light gray). More precisely, a border node is a particular kind of Network Node exporting one of the following interfaces: the ii_Gateway interface, when the border node is the connect point between two areas, or the ii_Edge interface, when the border node is the access point for a CED.

Further, different areas are interconnected through Tunnel Switch class instances (see the middle plane of the pictorial representation and the related light-gray elements in the object diagram). As shown in the Figure 3.(b), in general a Tunnel Switch is composed of two gateways and a Link (L) – also called trunk – connecting the corresponding network interfaces. In particular, the tunnel switch of our example (TS1) is implemented by a unique border node providing two gateway interfaces (G1 and G2) toward the two associated areas. Therefore, the link is a fictitious connector that associates two interfaces (I1 and I2) of the same border node.

Figure 3.(b) also shows the virtualization relationship between the connectivity and the topology view. The Provider ConnView (PC1) is the most abstract representation of the Provider Domain, by presenting it as a single macro-area (to the foreign federated providers too). PC1 virtualizes the Provider Topology PT1 (the light gray middle plane and the light gray objects in Figure 3), which maintains the fine-grained view of the provider domain: it is composed of Tunnel Switch objects that interconnect the areas, CED objects, and Area ConnView objects. In our example, the Area ConnView AC1 (the dark gray cloud in the middle plane and the related dark gray objects in the diagram) presents the IP area as an opaque cloud of border nodes only (gateways and edges) connected by a mesh of Tunnels. Each tunnel is marked with the identifier of the VPN it belongs to, and connects two Tunnel End Points (TEPs). The latter represent the virtual interfaces, in a border device, that terminate a tunnel. At last, AC1 virtualizes the Area Topology AT1 (white in Figure 3), which maintains the finest-grained view of the IP area. It schematizes the area nodes as a set of NN objects (irrespective of their core or border position). Each NN is made of Network Interface (NI) objects representing those network cards that are connected to the area. The TL1 Topological Link object represents the physical interconnection between two network nodes.

2.2. The VPN Control Architecture

In Section 2 we sketched out the RPA architecture we just adopted as a pattern. Inspired by that architecture, we mapped our information model on an original computational model that together make up an RPA-like architectural solution. Here we describe the main components of our control architecture we propose to manage VPN provisioning. Also, we give a brief description of the exported interfaces that are to be considered only indicative.

Figure 4 shows the architectural components needed to manage the example given in the previous Section. In detail, Figure 4.(a) reports the graphical representation of the example, whereas Figure 4.(b) shows the associated components. Starting from the highest layer, the architecture is made of the following components:

· Component Provider ConnView manages the Provider Connectivity View (in our example corresponding to PC1). It provides two external interfaces (all indicated with prefix ii_):

· ii_pFederation should permit external VPN Providers to establish 3rd Party relationships, and customers to join existing VPNs. We are considering two dual cases: external customers joining a Provider VPN, and a customer joining an external VPN.

· ii_netMonitoring should permit an administrator to monitor the status of the network, e.g. the network workload, current VPNs, etc.

· Component Provider Topology manages the Provider Topology View (in our example corresponding to PT1). It provides two interfaces:
· ii_vpnFactory should manage VPNs by creating a VPN controller unit for each VPN. Controllers permit to manipulate the characteristics of a VPN, like VPN parties, topology or QoS details.

· ii_pManagement should manipulate the network in terms of both the resources owned by the provider, and the view offered by 3rd party providers. This means that this interface’ operations can create and connect areas, and connect customer devices to the network (e.g. the CEDs in the Figure).

· Component Area ConnView manages the refinement of the provider topology into areas represented at the connectivity level: there will be one component instance for each network area (e.g. in our example two components manage AC1 and AC2 respectively). This component provides two interfaces:

· ii_aConfiguration should permit the configuration of single area elements to establish tunnels (e.g. configure a gateway to cross-connect two areas).

· ii_aConnection should permit the configuration of edges and gateways to attach CEDs or activate trunks.

· Component Area Topology manages the network resources that are part of an area, organized according to the topology representation of the area itself. It offers the following interface:

· ii_aManagement should implement topology construction, i.e. to add, remove and interconnect network nodes.

[image: image5.wmf](a) Graphical representation

IP

Area

ATM

Area

Provider

ConnView

PC1

Provider

Topology

PT1

Area ConnView

AC1

Area Topology

AT1

Area ConnView

AC2

Area

Topology

AT2

CED1

CED2

[image: image6.wmf]AT2

AT1

…

…

ii_

netMonitoring

Area

ConnView

AC1

Area

ConnView

AC2

ii_

vpnFactory

Provider

Topology

PT1

Provider

ConnView

PC1

ii_

pManagement

ii_

pFederation

ii_

aConnection

ii_

aConfiguration

ii_

aManagement

…

PCS

PDPs

(b) Control architecture

Figure 4. The control architecture
Further, components Provider ConnView and Provider Topology together make up the Policy Control Server (shown in Figure 4) that can be implemented as a unique component. Similarly, area-related components make up the PDP component, one for each area.

3. Conclusions and further work

In this paper we propose an innovative architecture for VPN provisioning based on a software representation of a Provider network. The latter is rather stable, whereas the control architecture is still in its initial specification.

In particular, we rely on the RPA architecture specification, and on TINA concepts, like the separation between access session and service/communication sessions, thanks to which in our case, VPN resource allocation is carried out only after both VPN negotiation and conflict detection are completed. Nonetheless, we did not yet design either the exact interfaces we need, or the number of components that best operate resource allocation. E.g., performance analysis could possibly influence architecture design.

In summary, it is important to note how a hierarchical description for VPNs, together with a flexible and modern control architecture, permits the development of new value-added services with slight effort. Facilities such as QoS-based VPNs, and pay-per-use VPNs, jointly with the ease of deployment, can grant a competitive benefit from the Provider perspective.

4. References

[[1]
Boyle J., et al., “The COPS (Common Open Policy Service) Protocol”, IETF RFC 2748, Proposed Standard, Jan. 2000, at http://www.ietf.org.

[2]
Gai S., et al., “QoS Policy Framework Architecture”, IETF Internet Draft, Feb. 1999., draft-sgai-policy-framework-00.txt.

[3]
Scandariato R., Lago P., “Dynamic VPRN Provisioning: an Information Model and Architecture”, Politecnico Technical Report DAI-SE-2000-06-14, Jun. 2000, at http://www.polito.it/~patricia/MyPages/pubs.htm#vpn-draft.

[4]
Steegmans F., et al., “Network Resource Architecture 3.0”, TINA-C Baseline, NRA_v3.0_97_02_10, Feb. 1997, at http://www.tinac.com/specifications/specifications.htm.

[5]
Yavatkar R., et al., “A Framework for Policy-based Admission Control”, IETF RFC 2753, Informational, Jan. 2000.

[6]
Yeong W., et al., “Lightweight Directory Access Protocol”, RFC 1777 - Internet Engineering Task Force, Mar. 1995.

* This work has been partially supported by European Project IRISI Piemonte (Inter–Regional Information Society Initiative).

� Acronyms stand for:

GRE - Generic Routing Encapsulation

IPSec - Internet Protocol Security

L2TP - Layer Two Tunneling Protocol

� Based on OMG Unified Modeling Language.

_1022863271.ppt

Border Nodes

CED

CED

Stub Links

Core Nodes

ISP Net

Tunnel

Border

Nodes

CED

CED

Stub

Links

Core

Nodes

ISP Net

Tunnel

_1025884032.ppt

(b) Information model

G2: ii_Gateway

L1: Link

TEP1: Tunnel End Point

NN1: Network Node

NN2: Network Node

T1: Tunnel

G1: ii_Gateway

E2: ii_Edge

A1: Area

CED1: CED

TS1: Tunnel Switch

virtualizes

virtualizes

AC1: Area ConnView

PD1: Provider Domain

PC1: Provider ConnView

PT1: Provider Topology

AT1: Area Topology

I2: Interface

I1: Interface

TEP2: Tunnel End Point

TL1: Topological Link

NI1: Network Interface

NI2: Network Interface

_1026022783.ppt

(a) Graphical representation

IP Area

ATM Area

Provider ConnView PC1

Provider Topology PT1

Area ConnView AC1

Area Topology AT1

Area ConnView AC2

Area Topology AT2

CED1

CED2

_1026022610.ppt

(b) Control architecture

AT1

Provider

ConnView

PC1

AT2

…

…

ii_netMonitoring

Area

ConnView

AC1

Area

ConnView

AC2

ii_vpnFactory

Provider

Topology

PT1

ii_pManagement

ii_pFederation

ii_aConnection

ii_aConfiguration

ii_aManagement

…

PCS

PDPs

_1025883826.ppt

(a) Graphical representation

IP Area

ATM Area

Provider ConnView PC1

Provider Topology PT1

Area ConnView AC1

Area Topology AT1

CED1

G2

NN2

NN1

CED2

Tunnel Switch TS1

TL1

E2

G1

_1022664550.ppt

LDAP / LTAP

COPS

COPS

IDL

IDL

PEP

PEP

Policy

Administration

Directory

Service

PDP

Policy

Ignorant

Node

Proxy

PDP

Policy Control Server

