Session IV_b: Work-in-Progress 1

Chair: Hendrik Berndt, TINA Consortium

R.A. Achterberg, H.E. Hanrahan and F.J. Scholtz University of the Witwatersrand, Johannesburg.

Problem Statement

- TINA offers separation between services and underlying network
- Services programmer is freed from concerns of object location and of underlying network
- The traffic on the underlying network must be understood if network is to be dimensioned and managed to perform well
- Experience in Intelligent Networks confirms need to understand signalling traffic

Service Definition & Dynamic View

- What are the actual or hypothetical services to be simulated?
- What components are involved in the service?
- What is the sequence of operations? MSCs are available for sample services to give dynamic view

Network and Links

- What is the kTN topology?
- How many bytes need to be transferred for each message?
- What overhead must be added for stubs, skeletons etc
- What are the maximum data rates on each link in the kTN?

Model 1: Traffic

Each service is represented by:

- Objects allocated to processors
- Sequence of object interaction messages
- Messages have defined length: content is not modelled
- Messages pass over kTN links with defined queue length and transfer rate

<section-header> Simulator The simulator implements: • The traffic model, giving the sequences and amounts of data • The DPE component model reflecting the processing power • A User Domain • Time base, logging, ...

	ry of processors		
Processing Capability	Supporting the Service Architecture	Supporting the Network Resource Architecture	
Specialized	DBP - Data Base Processor	-	
Central - High connectivity	HSPP - High Speed Powerful Processor	NWHSPP - Network Contro HSPP	
Local	LEP - Local Exchange Processor	Network Control Processor	
External	User Domain	Telecom Connectivity Provision	

Background

• TINA as a next-generation networking architecture based on the DPE:

- for constructing open and global environment

- cooperation between providers
- universal access to telecommunication services
- for coping with various users' requirements

<u>for realizing personal mobility service</u>

• it enables users to use services that are personalized with their preferences and identities ubiquitously, independently of both physical location and specific equipment

1999/04/14

TINA'99

3

ALCATEL	What is 'Mu3	3S'?	jîS		
Middleware Platform for integrating					
– Heterogeneous Networks					
– Heterogeneous S	ervices				
 Based on TINA specifications 					
Component Ware					
– Service Common Components					
 Service Access (authentication, announcements, invitations and more) 					
 Feature Sets: basic, multi-party, stream-binding, voting, session control 					
Service Live Cycle Management					
Service Federation					
 Network Components (supporting QoS propagation) 					
 Communication (Codec & Session negotiation and selection) 					
 Connectivity (Network and Network Provider Transparency) 					
 Layer Network (ATM, IP, ADSL,) 					
TINA99 Conference April 12th-15th1999, Hawaii	Mu3S	Frank Steegmans	Page 2		

Sprint ION Connection Manager Project

Steve Bannerman Applied Reasoning bannerman @AppliedReasoning.com

Background

- Sprint needed an integrated platform for provisioning connections across multiple technologies
- TINA-C NRA recognized and accepted as a viable baseline
- Advanced development effort executed to prove its concepts
- Deployed Connection Manager in 1998 in support of Sprint ION

• Current

- NRA based kernel being used to support production network
- ATM, FR/ATM, IP over ATM, and Voice/Video over ATM
- Release 1.5 in PRODUCTION, Release 2.5 finished development

• Some Extensions (today's presentation)

- definition of mapping from business stimuli to resource lifecycles
- extending generic network resources to accommodate business
- management rules (bandwidth, address, element management)

Extending Network Resources to include Business Specific Rules

• Extending Objects (increased information or behavior)

- Black-box extension (composition);
- White-box extension (inheritance);
- Reference comparing black-box extension and white box extension [Huni, Johnson, Engel]

Business rules in the network resources extensions,

- Bandwidth management
- Address management
- Element layer management

• Conclusion

• This presentation represents only a small portion of the lessons learned and extensions made to the TINA NRA (due to time)

• Connection Manager is in PRODUCTION with several releases complete and several releases planned

• TINA NRA has been very helpful in providing a software blueprint for Connection Manager

• We have defined and implemented a set of business stimuli that result in the creation, management, and deletion of network resources

• We have defined and implemented a set of extensions needed in order to support the business specific rules for consumption of network resources