Session V_a: **Service Management**

Chair: Rachid Guerraoui, EPFL/HP

A Distributed Near Real-Time Billing Environment

TINA'99 April 14, 1999

Joel J. Fleck, II
Senior Strategic Architect
Communications Industry Business Unit
Hewlett-Packard
Phone: +1 732.562.6109
Email: joel_fleck@hp.com

Outline of Talk

- Description of Problem
- Solution Overview
- Solution Architecture
- Simulation of Architecture and Results
- Conclusions and Futures

PACKARD

Statement of Problem

- Existing billing environments are:
 - -20 or 30 years old,
 - monolithic,
 - expensive to modify and maintain,
 - batch oriented,
 - typically use a monthly billing cycle

PACKARD

JJF 4/14/99

Solution Objectives

- Solution Architecture should provide:
 - Near real-time billing (to support credit card, credit verification, pre-paid plans, interactive customer query, customer profiling, ...),
 - Flexible, modular software design (to facilitate deployment of new service without impact on existing ones),
 - High availability (downtimes similar to network infrastructure components),
 - Scalable platform (deployment to service providers from small (< 100 CDRs/sec) to very large (>10,000 CDRS/sec) ,
 - Interfaces to existing provisioning and bill data storage systems.

PACKARD

JJF 4/14/99

Outline of Talk

- Description of Problem
- Solution Overview
- Solution Architecture
- Simulation of Architecture and Results
- Conclusions and Futures

PACKARD

JJE 4/14/99

Basic Solution Components

- Definitions:
 - Complex: A scaleable building block implemented by a coherent set of processes that provide and utilize common functionality (processing, data and communications)
 - Trader: Facility that provides "best-fit" location and naming transparencies; the "glue" that provides communication path between and within complexes

PACKARD

JJF 4/14/99

Benefits of Using an Architecture built from Complexes and Traders

- Availability: Provide multiple levels of support by:
 - -Transparently providing multiple processors in each complex,
 - -Transparently providing multiple complexes in the system,
 - -Transparently reconfiguring processors between/within complexes.
- Scalability: Performance can be increased in two ways:
 - Adding additional processors to a complex, and
 - Adding additional complexes to the system.
- *Flexibility*: New or upgraded functionality can be added without affecting existing functionality and system operations.

PACKARD

Proposed Complexes Were Derived from Assumptions and Objectives

- Near Real Time Billing
 - Rating Complex
- Additional Feeds in Future
 - -Entry/Exit Complex
- Support for In-memory DB and interface to Cust. Prov.
 - Infrastructure Complex

- Maintainability
 - -OA&M Complex
- No Lost Records
 - -Entry/Exit Complex
- 100% Billable Records
 - -Edit/Val Complex
- Scalability/Flexibility
 - -Infrastructure Complex

PACKARD

HE 4/14/99

Outline of Talk

- Description of Problem
- Solution Overview
- Solution Architecture
- Simulation of Architecture and Results
- Conclusions and Futures

PACKARD

Overview of Trading Flow

• Purpose:

 Provides location and naming transparencies to shield the application and application developers from knowledge of specific system configuration

• Implementation:

- Master trader that maintains all routing/brokering information needed to optimize data flow through the system
- Trader-Lites at each processor that maintain inmemory routing/brokering information specific to the tasks performed on that processor

PACKARD

Overview of Data Distribution Flow

• Observation:

- High speed data (low-latency) access must be able to function during low-speed data updates,
- Customer provisioning systems typically provide high-latency data access updates

• Solution:

- Infrastructure Complex:
 - Provides in-memory staging of customer provisioning data
 - ▼ Provides local storage of customer data in case of processor re-assignment or new processor addition

HE 4/14/99

Overview of Transaction Mechanism

• Problem:

- Need to ensure "No Lost Records"

• Solution:

- Specify an Entry/Exit complex that:
 - ▼ Groups incoming records into blocks
 - ▼ Queues these blocks upon entry to the bill processing system
 - ▼ Dispatches blocks to next appropriate processing complex
 - ▼ Maintains status of blocks within bill processing system
 - ▼ Dispatches billed information upon reception of billed records
 - ▼ Removes dispatched blocks from queue

PACKARD

JJF 4/14/99

Outline of Talk

- Description of Problem
- Solution Overview
- Solution Architecture
- Simulation of Architecture and Results
- Conclusions and Futures

PACKARD

Billing Simulator Design

- Simulator modeled following:
 - Entry/Exit Complex
 - Editing/Validation Complex
 - Trader portion of Infrastructure Complex
 - Trader-lite
 - Management Complex
- Goal of simulator:
 - "Proof of Concept" for architecture
 - Provide confidence that performance objectives could be met
 - Evaluate impact of blocking size on performance
 - Demonstrate distributed trading

JJF 4/14/99

Billing Simulator Results:

No Character Editing

Packet Size	CDRs Per Sec	Mbytes Per Sec
256	514	131,522
512	1,006	257,545
1,024	1,917	490,656
8,192	6,339	1,622,821
16,384	7,802	1,997,318
24,576	8,319	2,129,636
32,768	8,419	2,155,222

PACKARD

Billing Simulator Results: Editing Every Other Character

Packet Size	CDRs Per Sec	Mbytes Per Sec
256	530	135,665
512	1,006	257,545
1,024	1,855	474,954
8,192	5,523	1,413,876
16,384	6,408	1,640,368
24,576	6,848	1,753,049
32,768	7,644	1,956,833

PACKARD

Outline of Talk

- Description of Problem
- Solution Overview
- Solution Architecture
- Simulation of Architecture and Results
- Conclusions and Futures

PACKARD

Conclusions

- Trader/trader-lite and trading time from ~ 1 sec to 50 millisecs
- Blocking size of between 28Kbytes and 32Kbytes yielded optimal results
- Throughput between 7.25 and 9 K CDRs per sec
- A system designed with the Complex/Trader/Trader-lite Mechanisms results in designs that are:
 - -Scalable from small system implemented on a single host through very large systems.
 - -Flexible to support the addition of new or upgraded features with no impact on existing system operations.
 - -*Highly available* through the capability of supporting rapid re-configuration to work around failed components/functionality.

JJF 4/14/99

Thoughts for the Future/Modifications

- Flag on each node to force read from Trader-Lite (i.e., flush cache)
- "Still-Alive" ping from management node
- Report from Trader-Lite to management node if a new trade is requested without cache flush command (i.e., local node detected a communication failure)
- Ability for Trader-Lites to mark destination "bad"; (maybe a "don't select" constraint field always available)
- Investigate usage of Software Fault Tolerant Technology for Software Fault Tolerance within Complex Modules
- Integrate framework with billing store, customer care access, and customer interactive access

PACKARD

Implementation and Interoperability experiences with TINA Service Management Specification

Sohail Rana BT Labs.

Martlesham Heath, Ipswich, UK. sohail.rana@bt.com

M.A. Fisher BT Labs, Martlesham Heath Ipswich, UK mike.fisher@bt.com C. Egelhaaf GMD-FOKUS Kaiserin-Augusta-Allee 31, D -10589 Berlin, Germany egelhaaf@fokus.gmd

1

Sohail Rana, BT Labs, TINA 99, 12/4/99

Talk Summary

- Project Overview
- Service Management Platform Build
 - TINA Retailer-Consumer Reference point Implementation
 - Implementation agreements
 - Different components
 - Test procedures
 - Results
 - TINA Retailer-Provider Reference point Implementation
 - ...

Sohail Rana, BT Labs, TINA 99, 12/4/99

Project Overview

- Assessment of distributed object technologies based on experiments with commercially available products
- Experiments using CORBA middleware technologies based on architectural principles of TINA
- Conduct joint experiments at 6 locations in Europe
- Feedback to standardisation organisations
- The final Demonstration.

Sohail Rana, BT Labs, TINA 99, 12/4/99

Platform Build

- Build a set of service management platforms based on TINA Consumer/Retailer relationship
 - heterogeneous,
 - Independently developed,
 - Connected by ISDN
- Investigate interoperability
- Implement Third party Reference point

Sohail Rana, BT Labs, TINA 99, 12/4/99

Distributed Processing Environment

- ORBs Used
 - Iona's Orbix and OrbixWeb
 - Inprise's Visibroker for C++ and Java
 - Sun's NEO
 - HP's Distributed Smalltalk
 - Chorus COOL
 - Olivetti Oracle Research's OmniORB
- CORBA Services
 - Naming Services (Federated)

Sohail Rana, BT Labs, TINA 99, 12/4/99

Interfaces between PA and ss_UAp

Sequence of Operations

- 1. Pass the initial Reference
- 2. Pass Reference to PA
- 3. Notify whether to Start or Join
- 4. Initiate Start or Join

Sohail Rana, BT Labs, TINA 99, 12/4/99

11

TINA Ret Implementation

- Implementation Agreements
 - A set of scenarios and operation semantics
 - A defined subset of the TINA Ret (Access) specification (v.1.0)
 - A modification to Ret1.0 defined in this Task (i.e. listRequiredServiceComponents)
 - A set of interfaces between PA and ssUAp in the consumer domain defined.
 - The use of Java (1.1) byte code for download (ssUAP)
 - End user service can be applet or Java Application.

Sohail Rana, BT Labs, TINA 99, 12/4/99

TINA Ret Component

Sohail Rana, BT Labs, TINA 99, 12/4/99

13

End user Applications

- Services
 - Single user :- Counter, Media on demand, Value added web, Distributed Scheduler
 - Multiusers :- Connect4 game, Shared White board.
 - Stream based:- Video conferencing.
 - Legacy:- Audio conferencing, Virtual world, Surveillance camera.

Sohail Rana, BT Labs, TINA 99, 12/4/99

Test Results

- Platform Interoperability
 - 5 Partners implemented and tested successfully (25 combinations)
 - Invitation implemented by two partners (BT and DT)
- ORB Interoperability
 - Retailer ORBs :- Orbix, OrbixWeb, Neo, DST and Visibroker for Java and C++
 - Consumer ORBs :- OrbixWeb, Visibroker for Java

They all interworked. But ...!

Sohail Rana, BT Labs, TINA 99, 12/4/99

Problems

- ORB Interoperability mostly OK but:
 - structures in CORBA::Any
 - derived interfaces passed as base
 - rebind following closing of IIOP connection
 - LOCATION_FORWARD
- Consistency Problems :- Java versions, Java ORBs
- Browser Problems:- Inconsistency with browser Security.

Sohail Rana, BT Labs, TINA 99, 12/4/99

Results

- Third Party Implementation
 - Implemented by two partners (BT and DT)
 - Successfully tested by five partners

- Identifier problems, e.g. Service ID, Session ID, Invitation ID.
 - Suggestions :- Use of structured strings, i.e. URL, UUID (Universal Unique Identifiers)

Sohail Rana, BT Labs, TINA 99, 12/4/99

21

Conclusion

- TINA Ret Specification can be put into practice for a heterogeneous multivendor environment.
- OMG's CORBA and TINA forms a basis to create an open distributed environment for telecom services
- TINA Ret specification reuse shown.
- Feedback to the SARP working Group and ORB Vendors.
- But... problems with client side ORBs and Browsers but they are evolving.

Sohail Rana, BT Labs, TINA 99, 12/4/99

Web-based access to the IN Service Management - a TOCTIS implementation -

Oki Electric Industry Co.,Ltd.
Naoko Nakagawa

Copyright © OKI Electric Industry Co.,Ltd.

Contents

- What is TOCTIS?
- TOCTIS CNM Service Overview
- TOCTIS Component Objects
- Brief GUI Images
- Conclusions

1. What is TOCTIS?

TOCTIS:

OKI's software solution for Intelligent Network.

- Supports SCF,SDF,SMF and SMAF,
- Implements TINA based session models,
- Applies Web and JAVA technologies,
- Integrates with existing systems by wrapping technology.

2

2. Service management in IN architecture

- Customer specific service definition by SMP and customer control terminal.
- Service verification
- SLP creation
- Service simulation

SSP: Service Switching Point
SCP: Service Control Point
SMP: Service Management Point
INAP: IN Application Protocol

SLP: Service Logic processing Program

4. Service of TOCTIS customer network management

Service	Outline
Monitor and Modify Contractual Data	Customize IN service by referring and modifying contractual data and create new contract.
Monitor Usage Info.	Collect statistical information of IN service calls.
Monitor User Access History	Monitor usage information of customer control service.
Monitor and Modify User Profile	Management of Customer Operator: create or delete a customer operator and change password.

9. Conclusions

• TINA Retailer Reference Point

Retailer reference point of TINA business model is adopted to our TOCTIS CNM boundary.

• Web-based technology

Web-based technology together with Java applet is applied on user interface of TOCTIS CNM.

• Object Wrapping technology

Object wrapping technology is applied for integration with existing SMF software.

10


```
/* Copyright 1999 Oki Electric Industry Co., Ltd. */
#ifndef TINASessionModel_ih
#define TINASessionModel_ih
#include "TINASessionModel.hh"
class TINASessionModel_i { public: class i_SessionModel_i {
  public: i_SessionModel_i (char = 1 Ok) { };
  i_SessionModel_i (): CORBA::Object (1) { } };

DEF_TIE_TINASessionModel_i_SessionModel(i_SessionModel_i)};
#endif
```