
1

Java in Network Management

Subodh Bapat
Sun Microsystems

(c) Copyright 1998 Subodh Bapat

2

Java in Network Management: Outline

• What Makes Java Especially Suitable for Network Management?
• Java in the Manager
• Java in the Agent
• Java in the Platform
• Network Management APIs in Java

1-1(c) Copyright 1998 Subodh Bapat

Java in Network Management:

What Makes Java Especially
Suitable for Network

Management?

1-2(c) Copyright 1998 Subodh Bapat

Java Features Useful to Management

• Remote Method Invocation
• Object Serialization

• Dynamic Class Loading
• Reflection

• Java Beans
• Introspection

1-3(c) Copyright 1998 Subodh Bapat

Java Features Useful to Management

• Remote Method Invocation
• Object Serialization

• Dynamic Class Loading
• Reflection
• Java Beans
• Introspection

1-4(c) Copyright 1998 Subodh Bapat

Remote Method Invocation

• Distributed object communication mechanism built into the language
• Functions as a Java-to-Java ORB

• Given a Java class, generates client-side stubs and server-side
skeletons

• Application makes method call on client-side stubs, which is
transparently invoked on server object implementation

1-5(c) Copyright 1998 Subodh Bapat

RMI Architecture

 Java class
source definition

rmic compiler

Client

Application

Stub Skeleton

Object Implementation

Server

Method invocation

Method results

1-6(c) Copyright 1998 Subodh Bapat

RMI Architecture

• RMI really has three layers:
– Stub/skeleton layer

– A Remote Reference Layer
– Transport Layer

• An application need only interact with the interface methods on the
stub

• The remote reference and the transport is automatically handled for
you by the JVM.

1-7(c) Copyright 1998 Subodh Bapat

RMI Internals

Client

Application

Stub Skeleton

Object
Implementation

Server

Transport Protocol

Remote Reference
 Layer

Transport Layer

Remote Reference
 Layer

Transport Layer

Object
Reference

Real
Object

1-8(c) Copyright 1998 Subodh Bapat

The RMI Remote Reference Layer

• This layer is responsible for:
– Carrying our semantics of the method invocation

– Managing the communication between the stubs/skeletons and
the lower-level transport layer interface

– Managing the reference to the remote object
– Managing automatic connection re-establishment strategy

– Has both client-side and server-side semantics

1-9(c) Copyright 1998 Subodh Bapat

The RMI Remote Reference Layer

• On the client side, the Remote Reference Layer:

– Maintains a table of known remote objects and their remote
references

• On the server side, the Remote Reference Layer:

– Hides the diffferences between objects in the server VM that are
• are always running in the server VM

• constructed on demand and garbage-collected when no one
is using them

– Delivers method invocation to the server objects

– Maintains reference counts to server objects

1-10(c) Copyright 1998 Subodh Bapat

The RMI Transport Layer

• This layer is responsible for:
– receiving a reference from the client-side remote reference

layer

– locating the RMI server for the requested remote object
– establishing a socket connection to the object server

– passing the connection information back up to the client-side
Remote Reference Layer

– adding this remote object to the list of known remote objects
that it is communicating with (so that connection
establishment is avoided for a second reference to the same
object)

– monitoring connection liveness

1-11(c) Copyright 1998 Subodh Bapat

The RMI Transport Layer

• Object name resolution and transport is executed using four
basic abstractions:
– Connection: The name given to the entire abstraction. Each

abstract connection consists of a channel, at least two
endpoints, and a transport.

– Endpoint: Used to denote either an address (if in the local
VM) or the address of a remote JVM. An endpoint can be
uniquely mapped to a transport.

– Channel: Used as a conduit between two address spaces.
Responsible for managing connections between the local
address space and the remote address space.

– Transport: Used as the conveyance mechanism for a
specific channel. For a method invocation, receives
downcalls from the remote reference layer on the client side,
and makes upcalls into the remote reference layer on the
server side.

1-12(c) Copyright 1998 Subodh Bapat

RMI Distributed Garbage Collection

• Handles by the transport layer
• Based on a reference-counting strategy for server objects

• A server object has two kinds of references:
– a live reference when there is a remote client reference to an

object
– a weak reference when there are no remote client references to

an object; the object may be discarded if there are no local
references to it either.

1-13(c) Copyright 1998 Subodh Bapat

RMI Distributed Garbage Collection

• At startup, the server implementation constructs an object that has a
weak reference

• When the client requests an object, the client’s JVM creates a live
reference to the stub object

• When the first method is invoked on the object, the client JVM sends
a “referenced” message to the server JVM

• When the object goes out of scope on the client, an “unreferenced”
method is sent to the server JVM

• When the remote reference count on the server object drops to zero
and there are no local references to it, the object may be garbage
collected by the server’s VM in due course.

1-14(c) Copyright 1998 Subodh Bapat

The RMI Stub/Skeleton Layer

• Is the interface between the application and the transparent
distributed object system built into Java

• Does not deal with any transport specifics; simply transmits data to
the Remote Reference Layer

• The stub acts as a proxy on the client machine for the real object
implementation on the server machine

• Client applications initiating a method invocation do so on the stub
object

• Server implementations servicing a method invocation do so on the
skeleton object

1-15(c) Copyright 1998 Subodh Bapat

The RMI Stub/Skeleton Layer

Client

Application

Stub Skeleton

Object
Implementation

Server

Marshal stream: Method invocation

Remote Reference
 Layer

Transport Layer

Remote Reference
 Layer

Transport Layer

Marshal stream: Method results

Method callResults

1-16(c) Copyright 1998 Subodh Bapat

The RMI Stub Layer

• The client stub fields a method invocation and initiates a server-side
call

• The client Remote Reference Layer returns a special I/O stream,
called a marshal stream

• The marshal stream is used by the stub to communicate with the
server’s Remote Reference Layer

• The stub makes a remote method invocation, passing any objects to
the stream

• When the client receives the results, the client RRL passes the
method’s return value to the stub

• The stub sends an acknowledgement to the RRL that the remote
method invocation is complete.

1-17(c) Copyright 1998 Subodh Bapat

The RMI Skeleton Layer

• The RMI skeleton on the server receives the remote method
invocation on the marshal stream

• The skeleton unmarshals (receives and decodes) the parameters to
the method call from the marshal stream

• The skeleton upcalls into the object implementation

• The skeleton receives the response from the method invocation, and
marshals (encodes and transmits) the return value on the I/O stream

1-18(c) Copyright 1998 Subodh Bapat

Creating an RMI Network Management Application

• RMI can be used to create Java applications that run on a “thin
client” system and talk to a network management platform

• Application classes specific to network management can be defined
and compiled through rmic

• Lightweight applications can then make RMI calls to object
implementations on heavyweight platforms

1-19(c) Copyright 1998 Subodh Bapat

Practical Tips for an RMI Management Application

• Define application-specific classes (e.g. Alarm , Device , etc.)

interface Device {
public DeviceName getName();
public Alarm[] getAlarms();

}

interface Alarm {
public AlarmType getAlarmType();
public TimeStamp getTime();
public Severity getSeverity();
public void acknowledge();
public boolean IsAcknowledged();
public void clear();
public boolean IsCleared();

}

1-20(c) Copyright 1998 Subodh Bapat

Creating an RMI Network Management Application

• Code the remote objects to be operated on as Java interfaces

• Code the implementation classes for these interfaces (AlarmImpl ,
DeviceImpl)

• Compile the interface and implementation classes

• Generate stub and skeleton classes using rmic on the
implementation classes

• Code a server application to link up the skeletons and the Impl
classes

• Code a client application to make invocations on the stub objects
• Compile both applications

• Start the rmiregistry and the server application
• Bring up the client and invoke methods on it

1-21(c) Copyright 1998 Subodh Bapat

RMI Network Management Applications: Trade-Offs

• Trade-off is between how thin you want to make the client and how
many network calls you want to make

• For example, is it worth it to make a network call for each of the
methods getTime() , getSeverity() etc. on Alarm objects, or
should we cache some of this information locally on the client? (If so,
we can optionally remove these methods from the remote interface).

• Trade-offs must be carefully decided based on performance
requirements and available memory in the thin client

• Any class that has methods that are real remote method invocations
must extend the Remote interface (in package java.rmi.Remote),
and must be declared public in order to be accessible remotely

• Any method that makes a real network call must be declared to throw
a RemoteException (in case there are any problems accessing the
server)

1-22(c) Copyright 1998 Subodh Bapat

RMI Network Management Applications: Trade-Offs

• Examples of classes where some methods are network calls and
some methods are simply local invocations:

import java.rmi.*;

public interface Device extends Remote {
 public DeviceName getName() throws RemoteException ;
 public Alarm[] getAlarms() throws RemoteException ;
}

public interface Alarm extends Remote {
 public boolean loadAlarmData() throws RemoteException ;
 public AlarmType getAlarmType();
 public TimeStamp getTime();
 public Severity getSeverity();
 public void acknowledge() throws RemoteException ;
 public bool IsAcknowledged() throws RemoteException ;
 public void clear() throws RemoteException ;
 public bool IsCleared() throws RemoteException ;
}

1-23(c) Copyright 1998 Subodh Bapat

RMI Network Management Applications: Server Side

• Server side Impl classes must be declared to implement the client-
side interface

• Must provide appropriate constructors
• Must either extend UnicastRemoteObject (this indicates the

implementation is a singleton server that uses RMI’s default socket-
based transport), or must explicitly export itself as remote by calling
java.rmi.server. UnicastRemoteObject.exportObject()

• May provide a finalize() method to perform cleanup for garbage
collection

1-24(c) Copyright 1998 Subodh Bapat

RMI Network Management Applications: Server Side

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class DeviceImpl
 extends UnicastRemoteObject
 implements Device {

private DeviceName name;
private boolean checkNameInUse();

// construct the Device object
public DeviceImpl (DeviceName deviceName)

throws RemoteException
{ if (checkNameInUse()) throw RemoteException

else name = deviceName; }
public DeviceName getName() { return name };
public Alarm[] getAlarms() {

// make JDBC call into device database to
// get device-specific alarms

}
}

1-25(c) Copyright 1998 Subodh Bapat

The RMI Registry

• The server “publishes” the instance of the DeviceImpl object by
binding the object, after it is instantiated, to a name that is stored in
the rmiregistry .

• The binding occurs in the main server application using the
Naming.rebind() call:

DeviceName myRouterName =
new DeviceName(“xyz”,“Cisco 7000”);

DeviceImpl myRouter = new DeviceImpl (myRouterName);
Naming.rebind

(“rmi://myDeviceServer:1099/RouterXYZ”,
myRouter);

1-26(c) Copyright 1998 Subodh Bapat

The RMI Registry

• Each registered object is named by a URL of the form

rmi://hostName:portNumber/objectName

• The methods Naming.bind() and Naming.rebind() add an
entry to the rmiregistry (the difference being that
Naming.bind() throws

java.rmi.AlreadyBoundException)

• Clients find the object by using the Naming.lookup() call
• RMI registry must be running before the server application binds a

name
• For security reasons, registry must run on same host as server

– prevents clients from changing a server’s remote registry

– permits clients to look it from any host

1-27(c) Copyright 1998 Subodh Bapat

What Makes RMI Especially Suitable for Network
Management?

• Built-in distributed object model

• Built-in generation of thin-client fat-server counterparts

• Invocations of network management operations on a Java object on
a client can be transparently referred to their implementations on a
management platform

• Choice of how much processing you want to do locally in the client
and which operations you want to refer to the platform

1-28(c) Copyright 1998 Subodh Bapat

Java Features Useful to Management

• Remote Method Invocation
• Object Serialization
• Dynamic Class Loading
• Reflection

• Java Beans
• Introspection

1-29(c) Copyright 1998 Subodh Bapat

Object Serialization

• RMI uses object serialization to pass objects that are arguments to
method invocations and objects that are returned results

• Serialization encodes an object’s data values according to certain
rules and puts them in a marshal stream

• Object structures are maintained when saved

• Serialization does a deep copy:
– traversing referenced objects

– copies data values from referenced objects
– smart enough to compute finite transitive closures even if objects

contain circular references

• Fields that are declared static or transient are not written
• Does not include class metadata in serialized objects

1-30(c) Copyright 1998 Subodh Bapat

Object Serialization

• Can be used for making individual objects persistent (similar to
OODBMS systems)

• Can be used to save the entire state of running programs in a file
(like a core file, except can restart the program from the saved file!)

• Excellent medium-weight solution for sending objects over a network

• Used by RMI and Java Beans APIs for storing objects, sending
objects over a network, and communicating with objects

1-31(c) Copyright 1998 Subodh Bapat

Object Serialization

• Any object that is to be serialized must implement either:

– the Serializable interface (which use the built-in encoding
rules)

– the Externalizable interface (which permits the use of your
own encoding rules)

• Most Java Beans use Serializable

• An Externalizable object can be written out in any needed data
format; but the programmer has to do all the work
– methods readExternal() and writeExternal() must be

given your own implementations

– new methods can be added

1-32(c) Copyright 1998 Subodh Bapat

Object Serialization and ASN.1 Encoding

• Java’s built-in serialization mechanism is, on the average, faster than
an ASN.1 encoder

• Java’s built-in serialization rules produce encodings which are, on
the average, more compact than ASN.1 BER

• Advantages of Java serialization:

– easier and more natural to program
– permits programmers to think in terms of distributed objects,

rather than worrying about exact format and content of PDUs
• Disadvantages of Java serialization:

– can be slower if the object being serialized is complex and has
many inter-object references

– less control over exact format and content of PDUs, compared to
ASN.1 definitions

1-33(c) Copyright 1998 Subodh Bapat

Using Externalization for ASN.1 Encoding

• An Externalizable class has object read/write methods
implemented in the class itself rather than in the FileInputStream
and FileOutputStream objects:

public interface ASN1Externalizable
extends Externalizable {

public void writeExternal(ObjectOutput out)
throws IOException, ASN1EncoderException;

public void readExternal(ObjectInput in)
throws IOException, ASN1DecoderException;

public void writeExternalAsPER(ObjectOutput out)
throws IOException, ASN1EncoderException;

public void readExternalAsPER(ObjectInput in)
throws IOException, ASN1DecoderException;

}

1-34(c) Copyright 1998 Subodh Bapat

Object Serialization and ASN.1 Encoding

• An object can use built-in Java serialization or implement its own
ASN.1 encoding/decoding capabilities for its own fields:

class AlarmData implements ASN1Externalizable {
 public AlarmType alarmType;
 public TimeStamp timestamp;
 public Severity severity;
 public boolean isAcknowledged;
 public boolean isCleared;
 public void writeExternal(ObjectOutput out) {

// put calls to ASN.1 encoder here
 }
 public void readExternal(ObjectInput in) {

// put calls to ASN.1 decoder here
 }
}

1-35(c) Copyright 1998 Subodh Bapat

What Makes Object Serialization Especially Suitable for
Network Management?

• Provides a built-in mechanism to transfer management operation
data (operation arguments and return types) over distributed objects
in a network

• If managers and agents both use Java RMI to communicate instead
of a standard network management protocol, object serialization
becomes an alternative to ASN.1 encoding and decoding

• Can be customized to do ASN.1 encoding and decoding (using
either BER, PER, DER, etc.) if necessary

1-36(c) Copyright 1998 Subodh Bapat

Java Features Useful to Management

• Remote Method Invocation
• Object Serialization
• Dynamic Class Loading
• Reflection

• Java Beans
• Introspection

1-37(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading: Local Loading

• The default class loader is used to load classes from the local
CLASSPATH (for example, the class that calls main() must be
loaded first before anything can happen).

• All classes referenced by the class that calls main() are loaded by
the default class loader from the local CLASSPATH

• Remote class loading using RMIClassLoader is used for those
classes needed for remote method invocation

1-38(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading: Remote Loading

• Java permits applications to dynamically remotely load new class
definitions

• Clients may download classes from a server-defined codebase
• Servers may download classes from client-supplied URLs

• On the server-side JVM, two properties decide where clients may
download classes from:
– java.rmi.server.codebase : This property is a URL that

indicates from where clients may download classes
– java.rmi.server.useCodebaseOnly : This property is a

boolean which, if set to true , will disable the loading of classes
by the server from client-supplied URLs.

1-39(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading

• If the client program is an applet (i.e. running in a browser), then it is
dependent on the browser’s VM, and must use the
SecurityManager and RMIClassLoader being used by the
browser

• If the client program is an application, classes related to all its RMI
activities will be automatically downloaded for it from the RMI server:
– remote interface definitions

– stub classes
– parameter classes (classes that are arguments to and return

values from remote methods)

– URL for the loadable classes is encoded in the marshal stream
(this is usually either the URL of any non-default class loader that
has been installed, or that of the defined codebase).

1-40(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading

• To load additional classes from the server, the client must use
RMIClassLoader.loadClass() , providing as an argument an
RMI Naming URL.

• Classes are loaded using Java’s architecture-neutral distribution
format (bytecodes)

• Classes are transmitted on the wire as ordinary data that is serialized
• No special configuration is required for the client to send RMI calls

through firewalls
• If a direct socket connection cannot be made to the server, the RRL

will retry the request via HTTP by sending the RMI call as an HTTP
POST request (this often gets it through firewalls)

• If classes cannot be loaded, the appropriate exception will be thrown

1-41(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading: Security Aspects

• A SecurityManager is a Java class that enforces restrictions on a
program’s capabilities, including

– local file access
– thread access

– access to system information
– dynamic class loading

• There can be at most one SecurityManager per VM, and can be
installed only once. Hence
– the SecurityManager cannot be disabled and is not garbage

collected

– the SecurityManager , once installed, cannot be reinstalled
(either by user code or by dynamic class loading)

1-42(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading: Security Aspects

• An application may install its own security manager by inheriting from
java.lang.SecurityManager

System.setSecurityManager (new mySecurityManager);

• The behavior of the default SecurityManager is that everything
fails

• If an application installs no security manager, almost everything is
allowed, except loading of classes (either local or remote)

• To permit network management applications (in either a manager or
an agent) to dynamically load classes, the SecurityManager must
be configured to permit dynamic class loading

1-43(c) Copyright 1998 Subodh Bapat

What Makes Dynamic Class Loading Especially Suitable
for Network Management?

• Linkers are eliminated

• Only necessary code is loaded

• The latest version of the managed object behavior is loaded on
demand at run-time, not link time

• Network management applications can be distributed but still use
common services

• Not necessary to relink entire project when one module changes

• Flexibility to change metadata in managers and agents

1-44(c) Copyright 1998 Subodh Bapat

Java Features Useful to Management

• Remote Method Invocation
• Object Serialization

• Dynamic Class Loading
• Reflection
• Java Beans
• Introspection

1-45(c) Copyright 1998 Subodh Bapat

Reflection

• The Java language provides built-in metadata for each Java object

• Generalization of Run-Time Type Identification with a complete
metadata API

• Java Core Reflection API defines the reflection methods that can be
invoked on any Java object

• Reflection can be used to determine the structure and behavior of an
unknown Java object

• Reflection can be used to exercise the behavior of an unknown Java
object (invoke a method whose signature has been discovered
through reflection)

• Both the Java Beans and Object Serialization APIs use the Core
Reflection API to obtain information about an object

1-46(c) Copyright 1998 Subodh Bapat

Core Reflection API

• The following information can be obtained from any Java object:
– Class

– Interface

– Method

– Field

– Constructor

– Array

– Modifier

• All of the above implement the Member interface

1-47(c) Copyright 1998 Subodh Bapat

Reflection: The Member Interface

• The Member interface encapsulates the common metadata features
of any member of any class

public interface Member {
 // obtain enclosing class or interface

public Class getDeclaringClass();
// obtain member name
public String getMemberName();
// obtain Modifiers
public int getModifiers();

}

1-48(c) Copyright 1998 Subodh Bapat

Reflection: Using Class Information at Runtime

• Runtime extraction of class definition and constructor
• The method this.getClass() (or the data member

classname .class , if you don't have an instantiated object of that
class) or the returns the metadata Class object

Device myDevice = new Device("/systemId=\"HQ_NOC\"/\
 deviceId=\"CiscoRouter5\"");

Class deviceClass = myDevice.getClass();

• Obtain the constructor that constructs a Device from a String
argument

Class[] stringSignature = {String.class};
Constructor ctor =

deviceClass.getConstructor (stringSignature);

1-49(c) Copyright 1998 Subodh Bapat

Reflection: Using Class Information at Runtime

• Invoke the constructor that you just determined with an actual
argument to get a new instance of the same class:

String[] actualArgsForNewInstance =
{"/systemId=\"HQ_NOC\"/deviceId=\"CiscoRouter6\""};

Device newDevice = (Device) ctor.newInstance
(actualArgsForNewInstance);

• Since an object can be used to make other objects just like itself, an
object can be used as the factory for other objects

1-50(c) Copyright 1998 Subodh Bapat

Reflection: Methods

• An object's class can be asked for all the methods and constructors it
has

• Example: Use reflection to see if the mySwitch object has a
reboot() method

Method[] allMethods = mySwitch.getClass().getMethods();
for (i=0; i<allMethods.length; i++) {

if (allMethods[i].toString() == String("reboot"))
{ Method rebootMethod = allMethods[i]; }

}

• An application may invoke methods on the object that it has
discovered through reflection

 rebootMethod.invoke (mySwitch, null);

1-51(c) Copyright 1998 Subodh Bapat

Reflection: Other Features

• A Class object can be checked to see if it is an interface or a real
class

• An Interface object can be checked to see what other interfaces it
extends

• A Class can be checked to see if it implements a particular interface

• All features and capabilities available from the core reflection API
can be determined by simply reflecting on the java.lang.Class
class

1-52(c) Copyright 1998 Subodh Bapat

What Makes Java Reflection Especially Suitable for
Network Management?

• Dynamic access to metadata built into the language
• For managed objects which are represented by specific mapped

Java classes, reflection can be used to determine metadata at run-
time

• For managed objects which are represented by generic Java
classes, reflection can be customized to yield management-
information-model-specific metadata

1-53(c) Copyright 1998 Subodh Bapat

Java Features Useful to Management

• Remote Method Invocation

• Object Serialization

• Dynamic Class Loading
• Reflection
• Java Beans
• Introspection

1-54(c) Copyright 1998 Subodh Bapat

Java Beans

• JavaBeans is a portable, platform-independent component model for
Java applications

• Beans permit programmers to create software pieces called
components which can be combined together (with little or no
programming) to create applications

• A Java Bean can be defined as “a reusable software component that
can be combined with other components in a visual application
builder tool to create software applications”.

1-55(c) Copyright 1998 Subodh Bapat

Features of Java Beans

• Introspection: Using the core Java Reflection API, a Bean’s metadata
can be interrogated, permitting other Beans to discover its
capabilities

• Customization: Enables a developer to customize a Bean’s
appearance and behavior during the application development phase

• Events: Beans may notify other Beans about events that occur via a
standard Bean event distribution mechanism

• Properties: When established, enables application developers to
program the choices for the appearance and behavior of a Bean

• Persistence: Enables the storage and restoral of a Bean’s state in a
standard way

1-56(c) Copyright 1998 Subodh Bapat

Java Beans vs. Java Classes

• A Bean consists of one or more Java classes
• All Java classes are not Beans

• A Java Bean is a Java class that must follow the naming
conventions specified in the JavaBeans API specification for
properties, methods, events, etc.

• Visual application development environments (e.g. Java Studio)
depend on these naming conventions to be able to discover a Bean’s
properties, methods, events etc.

• If a Bean does not conform to naming conventions, these application
builders will not be able to learn about it, and hence will be unable to
hook it up to other Beans to create more complex behavior and
functionality

1-57(c) Copyright 1998 Subodh Bapat

Bean Interfaces

• Beans can be combined with other Beans to create applications via
the interface publish and discovery mechanism in visual application
development environments

• Example: The value of a property in one Bean (a target property) can
be set to automatically reflect the value of another property in
another Bean (the source property)

• Example: A Bean that generates events can be configured to
automatically send the event to another Bean

• All of the above can be accomplished using drag-and-drop in a visual
builder tool, without any programming

1-58(c) Copyright 1998 Subodh Bapat

The Java Bean Event Model

• Each Bean event has a source which originates or fires the event
• Each event may have multiple listeners which want to be notified of

events of a particular type
• The event listener indicate their interest in the event by registering

with the event source

1-59(c) Copyright 1998 Subodh Bapat

Bean Event Registration and Firing

• An event listener registers with an event source with with an
addEventName Listener(EventName Listener l) method

• An event listener deregisters with an event source with a
remove EventName Listener(EventName Listener l) method

• For each event type, the interface EventName Listener must be
defined, and implemented by all registered listener objects

• If the event source is a unicasting source, it permits only one listener
to be registered at any time

• The source Bean notifies its listeners of an event by constructing an
event object, iterating through its registered listeners, invoking the
methods on their EventName Listener interfaces, passing in the
event object as an argument.

1-60(c) Copyright 1998 Subodh Bapat

Bean Properties

• A Bean property is a named attribute of a Bean that can affect its
behavior.

• Properties may be:
– Simple: changes in this property don’t affect anything else
– Bound: changes in this property result in a notification being sent

to another Bean
– Constrained: changes in this property need to be validated by

another Bean, and may be vetoed

1-61(c) Copyright 1998 Subodh Bapat

Bean Property Naming Conventions

• A visual application builder tool recognizes a Bean property if its
methods follow certain naming conventions

• If the Bean has the method getAbc() , it is considered to have the
property Abc as a readable property

public PropertyType get PropertyName ();

• If the Bean has the method setAbc() , it is considered to have the
property Abc as a writable property

public void set PropertyName (PropertyType a);

• The Bean introspector depends on these naming conventions in
order to recognize Bean properties

1-62(c) Copyright 1998 Subodh Bapat

Bound Properties

• Bound properties must have:
– registration methods for PropertyChangeListeners

– the ability to fire PropertyChangeEvents

public void addPropertyChangeListener
(PropertyChangeListener l) {...}

public void removePropertyChangeListener
(PropertyChangeListener l) {...}

• Within the setPropertyName method, the method
firePropertyChange() must be called to let all registered
listeners know of a change in the object’s value:

support.firePropertyChange (String PropertyName,
Object oldValue, Object newValue);

1-63(c) Copyright 1998 Subodh Bapat

Constrained Properties

• Changes to a constrained property result in notifications being fired
to registered VetoableChangeListener objects

• If a listener objects to this change, it throws a
PropertyVetoException

• The source Bean is responsible for catching this exception and
reverting back to the old value of the property

• The naming convention for a constrained property is the same as
that of other properties, except the setXXX method must be
declared to throw a PropertyVetoException :

public void set PropertyName (PropertyType a)
throws PropertyVetoException;

• If the source Bean reverts the property back to its old value, it must
still fire a new notification to all its listeners

1-64(c) Copyright 1998 Subodh Bapat

Java Features Useful to Management

• Remote Method Invocation
• Object Serialization

• Dynamic Class Loading
• Reflection

• Java Beans
• Introspection

1-65(c) Copyright 1998 Subodh Bapat

Bean Introspection

• Introspection is similar to Java reflection, except it applies to Bean
properties and events in a Java Bean

• Uses a class called Introspector (in package java.beans)
• Fills out Descriptor classes

• Primary method of Introspector class is getBeanInfo() , which
returns BeanInfo objects

• Beans must follow a naming convention in which the information
about itself is provided in a separate beanNameBeanInfo class

• Naming convention for properties are specified as a set of design
patterns

• The Introspector uses the Core Reflection API

1-66(c) Copyright 1998 Subodh Bapat

Bean Naming Conventions: Properties

• Simple Properties

public PropType get PropName();
public void set PropName (PropType a);

• Boolean Properties

public boolean is PropName();
public void set PropName (boolean a);

• Indexed Properties

public PropElement get PropName(int index);
public void set PropName (int index, PropElement e);
public PropElement [] get PropName();
public void set PropName (PropElement [] eArray);

1-67(c) Copyright 1998 Subodh Bapat

Bean Naming Conventions: Events

• Event listener registration for multicast events

public void add EventName Listener(EventName Listener l);

• Event listener registration for unicast events

public void add EventName Listener(EventName Listener l)
throws java.util.TooManyListenersException;

• Event listener deregistration

public void remove EventName Listener (
EventName Listener l);

1-68(c) Copyright 1998 Subodh Bapat

Bean Introspection

• Introspector can be called after the Bean is instantiated

beanName = "myDevicesPackage.\
remoteAccessServers.Xylogics";

myXylogicsBean = (Component) Beans.instantiate
(classLoader, beanName);

Class beanClass = myXylogicsBean.getClass();
BeanInfo xylogicsInfo =

Introspector.getBeanInfo(beanClass);

• Or, on the class itself, before anything is instantiated:

beanName = "myDevicesPackage.\
remoteAccessServers.Xylogics";

Class beanClass = Class.forName(beanName);
BeanInfo xylogicsInfo =

Introspector.getBeanInfo(beanClass);

1-69(c) Copyright 1998 Subodh Bapat

Bean Analysis Using BeanInfo

• A BeanInfo object can be analyzed in a visual application
development environment

• A Bean developer can annotate the BeanInfo to do many useful
things, such as:

– limit it to display only a few relevant properties, instead of
everything that has a get and set method

– provide a visual representation for the Bean (GIF images, icons,
etc.)

– add descriptive names to properties

– specify additional "smart" customizer classes

1-70(c) Copyright 1998 Subodh Bapat

The BeanInfo Interface

• The SimpleBeanInfo interface permits application development
environments to inspect the Bean, using the following methods:
– getBeanDescriptor()

– getAdditionalBeanInfo()

– getPropertyDescriptors()

– getDefaultPropertyIndex()

– getEventSetDescriptors()

– getDefaultEventIndex()

– getMethodDescriptors()

– getIcon()

1-71(c) Copyright 1998 Subodh Bapat

Customizing BeanInfo

• All methods in the SimpleBeanInfo interface can be overridden to
provide customization

• For example, Bean properties can be annotated by overriding the
default getPropertyDescriptor() method in the corresponding
BeanInfo class

• This affects how properties appear when they are visually displayed

1-72(c) Copyright 1998 Subodh Bapat

Annotating Properties with BeanInfo

 import java.beans.*;

public class XylogicsBeanInfo extends SimpleBeanInfo {
 public PropertyDescriptor[] getPropertyDescriptors() {

PropertyDescriptor pd = null;
try {
 pd = new PropertyDescriptor("possibleSpeeds",

 XylogicsBean.class);
} catch (IntrospectionException e) {
 System.err.println("Introspection exception\

 caught: " + e);
}
pd.setDisplayName("Possible Speeds:\

 9.6K, 14.4K, 28.8K, 33.6K, 56K");
PropertyDescriptor result[] = { pd };
return result;

 }
}

1-73(c) Copyright 1998 Subodh Bapat

Other Uses of BeanInfo

• The method getAdditionalBeanInfo() can be customized to
provide only incremental changes to BeanInfo , leaving the rest of
the properties to be returned as per their default values

• In the previous example, we overrode
getPropertyDescriptors() , thereby destroying all other
properties of the XylogicsBean and leaving only the
possibleSpeeds property visible

• If we had overridden getAdditionalBeanInfo() instead, all the
other default properties would have still been visible, and
possibleSpeeds would have been returned as an additional
property

• Similarly, getMethodDescriptors() can be overridden to hide
any trivial housekeeping methods you don't want displayed in a
visual app builder tool, showing only the really meaningful methods

1-74(c) Copyright 1998 Subodh Bapat

Other Java Bean Customization

• Customized property editors and property sheets can be added for
any Bean component

• Customized event adapters can be added to any Bean:
– multiplexing adapters

– demultiplexing adapters
• Beans can be used with RMI to obtain a distributed component

environment

• Coming soon: InfoBus technology from Lotus/IBM, which permits
Java Beans to be hooked up with each other using dynamically
defined information (e.g. bound properties need no longer be
statically defined in a class).

1-75(c) Copyright 1998 Subodh Bapat

What Makes Java Beans Especially Suitable for
Network Management?

• Component object model can be used to develop network
management components

• Managed objects can be easily mapped as Java Beans
• Management platform services can be easily mapped as Java Beans

• Management applications can be rapidly developed by connecting
managed object beans and service beans together in a visual
application development environment

• Leads to development of management applications with minimal or
no programming

2-1(c) Copyright 1998 Subodh Bapat

Java in Network Management:

Java in the A gent

2-2(c) Copyright 1998 Subodh Bapat

Benefits of Java-Based Agents

• Enable rapid agent application development, using productivity
benefits of Java

• Agent features and functions can be represented as Java Beans,
allowing visual Bean development environments to create agent
applications with minimal programming

• Dynamic downloads of agent behavior using Java distribution
technology

• Agent software upgrade problem is minimized, hence configuration
management of large networks becomes easier.

• Software can be upgraded using either “manager push” technology or
“agent pull” technology

2-3(c) Copyright 1998 Subodh Bapat

Java-Based Agents

• Smart agents can be developed with sophisticated functionality and
behavior

• Depending on the implementation of Java classes, much of the
processing can be done within agent services

• If the agent has sophisticated local processing capabilities, the
manager can be offloaded and the network traffic reduced

• The ability to dynamically download capabilities into an agent means
the local intelligence in an agent can be changed over time
– dumb agents can be made smarter

– smart agents can be made dumber

2-4(c) Copyright 1998 Subodh Bapat

Architecture of a Java-Based Agent

• Java Virtual Machine
• The following Java Bean objects in a virtual machine:

– A Java-based Agent Framework
– Java managed objects
– An Agent Naming Service to look up instances of Java managed

objects

– Java-based SMI metadata
• generic managed objects for non-Java SMI need a metadata

database

• metadata for managed objects defined in Java SMI, or specific-
mapped managed objects from a non-Java SMI, is available
via class reflection or Bean introspection

2-5(c) Copyright 1998 Subodh Bapat

Architecture of a Java-Based Agent

– Manager-Facing Protocol Adapter services (optional, for
multilingual agents): SNMP, CMIP, RPC, RMI, HTTP/XML, IIOP,
SSL, etc.

– Agent services (optional):

• event filtering/discrimination

• logging
• metadata

• access control
• event generation

• persistence

• relationship management
• dynamic class loading

• dynamic native library loading

2-6(c) Copyright 1998 Subodh Bapat

Architecture of a Java-Based Agent Framework

Agent FrameworkManager-Facing Protocol Adapter Beans

SNMPCMIP RMIIIOP XML/
HTTP

Java Managed Object Beans

Agent Service Beans

Managed Object
Factory Service

Manager Registry
Service

Managed Object
Naming Service

Event Filtering
Service

Event Logging
Service

Metadata Access
Service

Dynamic Class
Loading Service

Service Registry
Service

Native Library
Loading Service

2-7(c) Copyright 1998 Subodh Bapat

The Java Agent Framework

• Is a singleton class per Java Agent
• Provides a place to hook in agent services

• Provides a starting point to to interrogate the Agent Naming
Service to look up Java Managed Objects

• Provides a starting point for accessing SMI metadata
• Provides a service registry service to dynamically add new

services in the agent

• Provides an inter-service communication framework for agent
services

2-8(c) Copyright 1998 Subodh Bapat

Java Managed Object Beans

• A Java managed object bean is a software abstraction of a resource
that is controlled and monitored by an agent

• If implemented as a Java Bean, the Java managed object can be
visually manipulated in a Bean development environment

• The Java managed object has methods to

– manipulate managed object attribute values
– emit notifications

– perform actions (arbitrary methods to execute behavior)
– assign a name for the managed object and register it with the

agent's Managed Object Naming Service

2-9(c) Copyright 1998 Subodh Bapat

Java Managed Object Beans

• Any of the following cases may occur:

– The Java managed object bean may execute operations invoked
on it (get/set attributes, run actions) by communicating with some
real resource in an implementation-specific manner.

– The Java managed object bean may locally implement some
attributes for which the real resource has no notion or
representation (e.g. an administrativeState attribute or equivalent).

– The Java managed object bean may locally cache values for
attributes already available in the real resource, for faster access.

– The Java managed object bean may locally implement algorithms
to compute attribute values from other information available in the
real resource.

– The Java managed object bean may itself be the real resource and
implement all its attributes, actions, and behaviour as Bean
properties and methods.

2-10(c) Copyright 1998 Subodh Bapat

Protocol Operations on Java Managed Object Beans

• Network management protocol operations can easily be mapped onto
Bean operations:
– Object creation: Beans.instantiate()

– Object deletion: Nothing (drop reference, Bean goes out of scope,
is garbage collected)

– Get attribute: getXXX() method on Bean properties (specific) or
getAttribute ("XXX") method (generic)

– Set attribute: setXXX(value) method on Bean properties
(specific) or setAttribute("XXX", value) method (generic)

– Actions: call appropriate methods on Bean
– Notification emission: Fire events to listeners using Bean Event

Model (Protocol adapter Beans can be Bean event listeners, and
translate Bean events to management protocol events that leave
the VM)

2-11(c) Copyright 1998 Subodh Bapat

Java Behavior in Java Managed Objects

• Java behavior can be implemented for Java Managed Objects in a
Java agent

• This can be done using the Dynamic Class Loading Service
• If the invocation of a method (e.g. to get or set an attribute or to

perform an action) references a class that is not currently loaded, the
Dynamic Class Loading service can load the appropriate class

• This essentially happens for free (since it is a characteristic of the
programming language)

2-12(c) Copyright 1998 Subodh Bapat

Service Beans in a Java Agent

• An Agent Service is a Java Bean that implements a particular service
in an agent

• An agent service is similar to a Platform Service, except that the
scope of the service is limited to a single Java agent

• It may support the same interface(s) as a platform service

2-13(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading Service

• Loads new classes into the Java Agent Framework

• Can be used to augment the capabilities of a running Java Agent

• Is invoked when a manager request on a Managed Object Bean, or a
locally initiated agent request (e.g. by another agent service) requests
the creation of a new instance whose class is not loaded in the Agent
Framework

• New class definition can be loaded from a remote class server
• Can be used to load new Managed Object Bean classes, or new

Agent Service classes

• Example: A Java agent can be started without a logging service, and
later, a logging service can be dynamically added when required

• To make this service work, the active security manager in the JVM
hosting the Java agent must be configured to accept incoming
libraries

2-14(c) Copyright 1998 Subodh Bapat

Dynamic Class Loading Service

• The class loading service is itself an Agent Service, and so is an
object that is created in the Java agent at start-up or at run-time

• The built-in Java class java.lang.ClassLoader can be used as the
Java Agent’s class loading service

• The class java.lang.ClassLoader defines the API for dynamic
class loading: it is a standard Java class available in JDK

• Each Java agent may implement this API with its own customizations

• It is possible to have several instantiated class loader objects in the
same Java agent, provided they are all registered with the service
registration service

• Each class loader could use a different protocol for loading classes,
and/or different class servers

2-15(c) Copyright 1998 Subodh Bapat

Dynamic Native Library Loading Service

• Loads native (non-Java) libraries into a Java Agent Framework

• Is invoked when a new class that includes native code is loaded

• Purpose is to ease the development of Java Managed Object Beans
and Native Libraries

• Can be used to augment the capabilities of a running Java Agent
• Can be loaded from a remote entity

• Can be loaded using the same mechanism as the Java Bean that calls
the native library

• Smart agents can load libraries that are appropriate to the hardware
platform and operating system on which they are running

– the same Java Agent Framework can be smart enough to load
different libraries depending on whether its operating environment
is Solaris/Sparc, Solaris/Intel, Windows NT/Intel or Windows
NT/Alpha

2-16(c) Copyright 1998 Subodh Bapat

Dynamic Native Library Loading Service

• When the native library loading service is called, the Agent Framework
implementation determines which class loader must be used (usually
the same as the loader that was used to load the Java class that calls
the native functions)

• If the class loader can also act as a native library loader, it can be
used to load the native library

• If the class loader cannot act as a native library loader, then
java.lang.System can be used to make a system call to load the
native library

• Native library functions are called by Java code via the various Java
Native Interface mechanisms

• The security manager in the JVM hosting the Java agent must be
configured to accept incoming libraries

• Once a native library is loaded, the Java Agent is no longer 100%
Pure Java, and is no longer portable

2-17(c) Copyright 1998 Subodh Bapat

Example: Java Managed Object Bean

• This example shows a Java Managed Object Bean that represents the
Ethernet interface le0 of a Solaris system

• Assume that this Bean is a specific-mapped Bean from an SNMP MIB
for the Ethernet interface

• For the sake of this example, this managed object has two attributes:
ifInPkts and ifOutPkts ; both are read-only

• Hence the Bean has two methods, getIfInPkts() and
getIfOutPkts() , to obtain the values of these attributes

• There are no methods called setIfInPkts() and
setIfOutPkts() since these attributes are read-only

• In this example, the Bean implements these functions by calling the
native kstat (kernel statistics) UNIX system function from within the
Java program

2-18(c) Copyright 1998 Subodh Bapat

Example: Java Managed Object Bean

• Assume that kstat lives in the library
exampleLibraryPath/kstat

• Define a Java class KernelStat that represents kstat

• Construct a KernelStat object by loading a native library in its
constructor:

KernelStat (String modName, String instName) {
moduleName = mod;
instanceName = inst;
AgentFramework.loadLibrary (this.getClass(),

“exampleLibraryPath”, “kstat”);
}

2-19(c) Copyright 1998 Subodh Bapat

Example: Java Managed Object Bean

• Define the Java Managed Object Bean that calls KernelStat as part
of its instrumentation to obtain attribute values:

packagekstat;
public class le0 implements java.io.Serializable {
 public le0() {

ks = new KernelStat (“le”, “le0”);
 }
 public Integer getIfInPkts() {

return (ks.getInteger (“ipackets”));
 }
 public Integer getIfOutPkts() {

return (ks.getInteger (“opackets”));
 }
}

2-20(c) Copyright 1998 Subodh Bapat

Java-based Agent Application Development

• Rapid development of agent applications can be achieved in a visual
Bean development environment if all components of an agent are
represented as Java Beans:
– The AgentFramework Bean

– The Service Beans (naming service, metadata service, event
filtering/discrimination service, access control, event generation,
persistence, relationship management, dynamic class loading,
dynamic native library loading)

– Managed Object Beans
• By connecting these Beans together in a visual Bean development

environment, agent applications could be developed with minimal
programming

2-21(c) Copyright 1998 Subodh Bapat

Benefits of Java-Based Agents

• Software distribution and upgrade problem for agents in devices is
drastically minimized

• Software distribution can be achieved with "agent pull" or "manager
push" technologies

• New managed object class definitions can be dynamically added to
the agent on the fly

• New intelligence and capabilities (services) can be dynamically added
to the agent on the fly

• Configuration management and administration costs are lower

2-22(c) Copyright 1998 Subodh Bapat

Products for Java Agent-Based Development

• Java Dynamic Management Kit (Sun Microsystems): for building
network management agents
– M-Beans represent Java managed objects
– Service Beans represent Java agent services

– Common Management Framework is a Java Agent Framework
• Aglets Workbench (IBM Tokyo Research Labs): general agents, not

network management specific, but can be customized for network
management

• Voyager Agents (ObjectSpace): general agents, not network
management specific, but can be used for network management

3-1(c) Copyright 1998 Subodh Bapat

Java in Network Management:

Java in the Mana ger

3-2(c) Copyright 1998 Subodh Bapat

Benefits of Java-Based Manager Applications

• Enable rapid manager application development, using productivity
benefits of Java

• Bring to the NOC the flexibility, portability and universality of Java
• Enable "lightweight management consoles"

• Add a universal user interface to high-end management platforms
• Enable new paradigms for configuration management

3-3(c) Copyright 1998 Subodh Bapat

"Write Once, Manage Anywhere"

• Browser-based management: management applications can be
written once, then executed on any JVM in any Web browser

• Lightweight management console: Any computer (e.g. a laptop) that
runs a Web browser can become a management console

• Empower field operations: Operators and technicians can use their
portable systems to dial in from anywhere, and have management
console functionality

• Integrated Operations, Support, and Testing: All NMSs, NOCs and
OMCs become accessible via a single browser-based interface, which
can hyperlink between them

3-4(c) Copyright 1998 Subodh Bapat

Legacy Web-based Management Approaches

• No Java used
• All management is dependent on CGI or Server APIs

Web
Browser

CGI or NSAPI,
ISAPI or ICAPI

HTTP
Server

Network
Management
Platform

CMIP Agent

SNMP Agent

Other Agent

1. URL

8. HTML

2. URL

7. HTML

3. Prop. API

6. Data

4. SNMP

5. SNMP

3-5(c) Copyright 1998 Subodh Bapat

Java Approaches to Web-based Management

• More portable, platform-independent and HTTP-server independent

Web
Browser

Native Appli-
cation Adapter

HTTP
Server

Network
Management
Platform

CMIP Agent

SNMP Agent

Other Agent

0. URL

0'. Java applet

2. Native API

5. Data

3. SNMP

4. SNMP

1. RMI Call

6. RMI Results

3-6(c) Copyright 1998 Subodh Bapat

Java Management with Platform Service Beans

• Uses Java Service Beans in the Platform

Web
Browser

HTTP
Server

Network
Management
Platform

CMIP Agent

SNMP Agent

Other Agent

0. URL

0'. Java applet

2. SNMP

3. SNMP

1. RMI Call

4. RMI Results

Java
Platform
Service
Beans

3-7(c) Copyright 1998 Subodh Bapat

Architecture of a Java-Based Manager Application

• Java Virtual Machine

• The following Java Bean objects in a virtual machine:

– A Java-based Manager Framework
– Java Managed Object Handles
– Access to a Naming Service to determine which agent hosts

particular managed objects

– Java-based SMI metadata
• generic managed objects for non-Java SMI need a metadata

database

• metadata for managed objects defined in Java SMI, or specific-
mapped managed objects from a non-Java SMI, is available
via class reflection or Bean introspection

3-8(c) Copyright 1998 Subodh Bapat

Architecture of a Java-Based Manager Framework

Manager Framework

Java Managed Object Handle Beans (proxies to agent's managed object beans)

Manager Service Beans (stubs for platform service beans)

MOHandle
Factory Service

Agent Registry
Service

Managed Object
Naming Service

Alarm Mgmt
Service

Topology Mgmt
Service

Metadata Access
Service

Log Management
Service

Query Service Access Control
Service

Agent-Facing Protocol Adapter Beans

SNMPCMIP RMIIIOP XML/
HTTP

3-9(c) Copyright 1998 Subodh Bapat

The Java Manager Framework

• Is a singleton class per Java Manager
• Provides a place to hook in manager services

• Provides a place to set application-wide defaults (e.g.
application-wide default callbacks and other parameters)

• Provides a starting point to to interrogate the Agent Naming
Service to resolve names of Java Managed Objects

• Provides a starting point for accessing SMI metadata
• Provides stubs to access Service Beans in the platform

3-10(c) Copyright 1998 Subodh Bapat

Java Managed Object Handle Beans

• A Java MOHandle is a Java Bean in the space of a manager
application, that represents a Java Managed Object Bean that lives in
the agent

• A Java MOHandle proxies for the agent's managed object, i.e. a
manager application executes operations on the real managed object
by invoking methods on a MOHandle object that represents it

• A Java MOHandle is not necessarily the "stub" side of a managed
object "skeleton"

– the communication between a MOHandle Bean and the
ManagedObject Bean need not necessarily be RMI

– A MOHandle and a ManagedObject can communicate via any
standard network management protocol

3-11(c) Copyright 1998 Subodh Bapat

Java Managed Object Handle Beans

• If implemented as a Java Bean, the Java MOHandle can be visually
manipulated in a Bean development environment

• The Java MOHandle Bean has methods to
– determine its state

– issue network management protocol requests to the agent
(get/set/create/delete/action, etc.)

– register to listen for events/traps emitted by the managed object

– interrogate the metadata of the MOHandle's object class

3-12(c) Copyright 1998 Subodh Bapat

Java Managed Object Handle Beans

• Can have a cache (locally stored managed object attribute values)
– eliminates the need to visit the agent to read an attribute value

each time
– caching selectable on a per-attribute basis

– values cannot be manipulated by application
• Can have a track list (attribute values to be automatically updated by

the Bean implementation, based on events/traps received):

– tracking selectable on a per-attribute basis
• Can have a stage (proposed attribute values):

– values being prepared to be set on the managed object

– will be used an arguments to a set request (or a create request)

3-13(c) Copyright 1998 Subodh Bapat

Collections of Java Managed Object Handles

• A manager application can organize multiple MOHandle Beans in a
collection

• The collection can be a standard Java container (Set , List , Vector ,
etc.)

• Operations on multiple managed object handles can be conveniently
invoked by invoking a method on the whole collection

• Depending on the information model of the underlying managed
object, this may translate into:
– iterating over the individual MOHandles in the collection to issue a

request on each one

– issuing a single request to an agent hosting the Managed Object
Beans, if the agent understands the concept of collections

3-14(c) Copyright 1998 Subodh Bapat

Enumerated Collections of MOHandle Beans

• In an enumerated collection, the membership of the collection is fully
controlled by the application

• An application may add or remove individual MOHandles at will
• Requests issued on the collections always translate into individual

requests issued on individual MOHandle Beans in the collection

3-15(c) Copyright 1998 Subodh Bapat

Rule-Based Collections of MOHandle Beans

• The membership of a rule-based collection is defined using a rule

• A snapshot of all ManagedObject Beans in all agents is taken to
determine the membership of a rule-based collection

• The rule is defined using a Query Bean that is understood by a
platform's Query service

• Information-model-independent Queries are:
– a logical conjunction of attribute value predicates

• Information-model dependent Query Beans include, for example:
– SNMP: a subnet mask

– GDMO: scope and filter

– CIM: transitive closure of an association

3-16(c) Copyright 1998 Subodh Bapat

Java-based Manager Application Development

• Rapid development of manager applications can be achieved in a
visual Bean development environment if all components of a manager
are represented as Java Beans:
– The ManagerFramework Bean

– The stubs of Platform Service Beans that will be used by a
manager application (naming service, metadata service, event
filtering/discrimination service, access control, event generation,
persistence, etc.)

– MOHandle Beans and MOHandle Factory Beans
• By connecting these Beans together in a visual Bean development

environment, manager applications could be developed with minimal
programming

3-17(c) Copyright 1998 Subodh Bapat

Benefits of Java Manager Application Development

• Manager applications run in a universal console using a familiar
paradigm

• Easy, consistent extensibility and integration
• Builds upon existing management platforms, products, and protocols

• Based on open, industry standards
• Adds flexibility and scalability to create a true distributed management

solution

3-18(c) Copyright 1998 Subodh Bapat

Products for Java-Based Manager Development

• Sun Microsystems' Solstice Enterprise Manager Java Supplement has
several APIs for writing Java applications to a platform

• Hitachi Telecom's Java implementation of the NMF TMN API
• Java API in WBEM SDK

4-1(c) Copyright 1998 Subodh Bapat

Java in Network Management:

Java in the Platform

4-2(c) Copyright 1998 Subodh Bapat

Benefits of Java-Based Management Platforms

• Implementations of network management platform services can be
portable

• Service implementations can be upgraded easily
• Platform services can be interrogated for their metadata

• A standard mechanism for inter-service communication is available
• Java clients can orchestrate the co-ordination of multiple services

across in a platform in a location independent-manner

• Services can be implemented as Enterprise JavaBeans

4-3(c) Copyright 1998 Subodh Bapat

Network Management Platform Services

• A network management platform typically offers many services to its
applications:

– Message routing
– Directory/Name resolution

– Event distribution
– Event logging and log management
– Alarm management

– Topology management
– Queries and Reporting

– Metadata access
– Access Control

• All these services can be implemented as Beans in the platform

• Platform-based Beans ("server Beans") are called Enterprise
JavaBeans

4-4(c) Copyright 1998 Subodh Bapat

Enterprise JavaBeans

• Server-side component model for Java
• Enterprise JavaBeans typically have no visual representation at run-

time (they may still have an icon to represent them visually at design
time, so they can be manipulated in a visual application builder tool)

• Enterprise JavaBeans follow the same naming conventions as the
JavaBeans specification for Bean properties, events, etc.

• Can be used to connect up with Manager Beans or Agent Beans to
create network management applications with little or no programming

4-5(c) Copyright 1998 Subodh Bapat

Enterprise JavaBeans

• Implementing platform services as Enterprise JavaBeans permits thin
clients to take advantage of sophisticated server capabilities:

– multithreading
– multiprocessing

– security and access control
– pooling of resources

– shared database access

– concurrency control on database access
– transactional support

– replication and distribution of service components
• Componentizing platform services will permit the development of

scalable, multi-tier management platforms

4-6(c) Copyright 1998 Subodh Bapat

Enterprise JavaBeans

• Patterened after CORBA services and facilities
• May be considered the standardized Java API to CORBA services

– for example, the JTS (Java Transactional Service) can be used as
the Java API to CORBA OTS

• Can be used in a network management platform the same way
distributed CORBA components can be used in a network
management platform

• However, with Java, there is an added benefit of portability and
dynamic class loading

4-7(c) Copyright 1998 Subodh Bapat

Architecture of a Java-Based Platform

Management PlatformManager-Facing Protocol Adapter Beans

SNMPCMIP RMIIIOP XML/
HTTP

Platform Service Beans: Enterprise JavaBeans

Message Routing
Service

Directory / Name
Resolution

Event Registration
and Distribution

Event Logging
Service

Alarm Mgmt
Service

Topology Mgmt
Service

Metadata Access
Service

Access Control
Service

Query and
Reporting Service

Agent-Facing Protocol Adapter Beans

SNMPCMIP RMIIIOP XML/
HTTP

4-8(c) Copyright 1998 Subodh Bapat

Platform Services as Enterprise JavaBeans

• Every service developer does not necessarily want to implement
multithreading, concurrency control, resource-pooling, security,
and transaction management separately in each component

• By using a component model, a service developer avails of the
standardized and automated implementations of these features

• This enables the service developer to concentrate on
developing the service logic

• Enables easy and rapid development of platform services

• For example, to customize transaction services, a service
developer can define transaction policies while deploying the
service Enterprise JavaBean by manipulating its properties

• Integrates with CORBA components via RMI/IIOP interworking

4-9(c) Copyright 1998 Subodh Bapat

Enterprise JavaBeans to CORBA Mapping

• EJB/CORBA mappings are defined for 4 different areas:

– Distribution Mapping: defines relationship between an EJB and a
CORBA object (including mapping EJB Remote Interfaces to OMG
IDL)

– Naming Mapping: defines how COS Naming is used to locate EJB
Container objects

– Transaction Mapping: defines the mapping of EJB Transaction
Support (JTS) to CORBA Object Transaction Service (OTS)

– Security Mapping: defines the mapping of EJB Security to CORBA
Security

4-10(c) Copyright 1998 Subodh Bapat

EJB-CORBA Interoperability

• Current EJB specifications permit the following:
– A CORBA client (in any language binding) can access an EJB

deployed in a CORBA server
– A client can mix calls to CORBA and EJB objects in a single

transaction

– A transaction can span multiple EJB objects that are located on
multiple CORBA-based EJB servers, including servers from
different vendors

4-11(c) Copyright 1998 Subodh Bapat

EJB-CORBA Interoperability

• Two kinds of clients are supported:
– Regular EJB Java client:

• Client uses Java APIs only (remote EJB interfaces)

• Uses JNDI naming to locate the EJB
• Is unaware of underlying use of IIOP

• Makes regular RMI calls that go over RMI/IIOP
• Client developer need define or generate no IDL (is done by

tools)

– Regular CORBA client:
• Programmer must explicitly define IDL interfaces
• Client written in any language that uses a language-specific

binding to any stub generated by an IDL compiler

• Uses COS Naming to locate the EJB

• EJB server implemented as Java language bindings to IDL
skeletons

4-12(c) Copyright 1998 Subodh Bapat

Enterprise JavaBeans and CORBA

Management Platform
Platform Service Beans: Enterprise JavaBeans

Message Routing
Service

Directory / Name
Resolution

Event Registration
and Distribution

Event Logging
Service

Alarm Mgmt
Service

Topology Mgmt
Service

Internal Platform Inter-Service RMI Bus

Regular Java
client

Java IDL
client

CORBA C++
client

COM client via
COM/CORBA
gateway

RMI IIOP IIOP IIOP

4-13(c) Copyright 1998 Subodh Bapat

Alarm Management Service Bean

• Alarm Management Service can be implemented as an Enterprise
JavaBean in a network management platform

• Alarm Management Service provides access to a client application to
alarms that have accumulated in the platform

• Service may permit the creation of separate Alarm Log objects for
different kinds of alarms, and log alarms to different AlarmLog objects
depending on type

• Offers an API for client applications to acknowledge, clear, and delete
alarms

• Offers no API for client applications to create or insert new alarms

4-14(c) Copyright 1998 Subodh Bapat

Alarm Management Service Bean

• All methods below throw AlarmLogException and are public (not
documented for succinctness):

public class AlarmLog implements EnterpriseBean {
 AlarmLog (String name);
 AlarmRecord[] getAlarms();
 AlarmRecord[] getAlarms
 (AlarmRecordId[] alarmRecordIds);
 AlarmRecord[] getAlarms (Query alarmQuery);
 AlarmRecord[] getAlarms (DeviceName deviceName);
 AlarmRecord[] getAlarms (TopologyNode topologyNode,
 boolean getPropagated);

4-15(c) Copyright 1998 Subodh Bapat

Alarm Management Service Bean (continued)

 AlarmRecord[] getAlarms(int batchSize);
 AlarmRecord[] getAlarms
 (AlarmRecordId[] alarmRecordIds,
 int batchSize);
 AlarmRecord[] getAlarms (Query alarmQuery,
 int batchSize);
 AlarmRecord[] getAlarms (DeviceName deviceName,
 int batchSize);
 AlarmRecord[] getAlarms (TopologyNode topologyNode,
 int batchSize,
 boolean getPropagated);

4-16(c) Copyright 1998 Subodh Bapat

Alarm Management Service Bean

 void performClearAlarms
 (AlarmRecordId[] alarmRecordIds);
 void performClearAlarms ();
 void performDeleteAlarms
 (AlarmRecordId[] alarmRecordIds);
 void performDeleteAlarms ();
 void performAcknowledgeAlarms
 (AlarmRecordId[] alarmRecordIds);
 void performAcknowledgeAlarms ();

4-17(c) Copyright 1998 Subodh Bapat

Alarm Management Service Bean (continued)

 void addAcknowledgeListener (AcknowledgeListener l);
 void removeAcknowledgeListener
 (AcknowledgeListener l);
 void addClearListener (ClearListener l);
 void removeClearListener (ClearListener l);

 void addDeleteListener (DeleteListener l);
 void removeDeleteListener (DeleteListener l);
} // end class AlarmLog

4-18(c) Copyright 1998 Subodh Bapat

Alarm Bean

• All methods below throw AlarmAttributeNotSetException and
are public (not documented for succinctness):

public class AlarmRecord implements EJBObject {

 AlarmRecordId getAlarmRecordId();
 String toString();
 Date getEventTime();
 Date getLoggedTime();
 Date getDisplayedTime();
 Date getAcknowledgedTime();
 Date getClearedTime();
 EventType getEventType();
 MOName getEmittingManagedObjectName();
 Severity getSeverity();
 String getProbableCause();

4-19(c) Copyright 1998 Subodh Bapat

Alarm Bean (continued)

 boolean isAcknowledged();
 void performAcknowledge();
 String getAcknowledgingOperator();
 String getAcknowledgementText();

 boolean isCleared();
 void performClear();
 String getClearingOperator();
 String getClearingText();

 void performDelete();

4-20(c) Copyright 1998 Subodh Bapat

Alarm Bean (continued)

 void addAcknowledgeListener (AcknowledgeListener l);
 void removeAcknowledgeListener
 (AcknowledgeListener l);
 void addClearListener (ClearListener l);
 void removeClearListener (ClearListener l);

 void addDeleteListener (DeleteListener l);
 void removeDeleteListener (DeleteListener l);

} // end class AlarmRecord

• Still need to define interfaces for clients to implement:

public interface ClearListener {...};
public interface AcknowledgeListener {...};
public interface DeleteListener {...};

4-21(c) Copyright 1998 Subodh Bapat

Topology Management Service Bean

• A topology service in a management platform provides an abstract
notion of the topology of the network

• The topology service maintains information about the state of the
physical devices and their connections as abstract topological graphs
(nodes and relationships)

• Nodes in a topology service need not necessarily correspond to
physical devices; could be logical entities (such as a site, building,
campus, or city)

• Topology Management Service Bean could be implemented as the
Enterprise JavaBean API to the CORBA Topology Service

4-22(c) Copyright 1998 Subodh Bapat

Topology Management Service Bean

• Basic topology service bean could export the following interfaces:
– node creation and deletion

– relationship management (graph maintenance)
– node containment

• Advanced topology service bean interfaces may include:
– integration with maps, GIS, and urban facilities layouts
– layout optimization

– propagation of state among topology nodes
• "sideways" propagation of alarm conditions

• "upward" propagation of alarm counts
• "upward" propagation of alarm severities

4-23(c) Copyright 1998 Subodh Bapat

Polling Service Bean

• A polling service in the platform permits the polling of managed
objects that cannot issue traps/notifications

• For scalability, polling should not be driven by a manager application,
but should occur via a service Bean that executes "near the bottom
end" of the platform

• The Polling Service Bean can accept poll requests from managers,
commence polling on the "agent-facing" side via a standard
management protocol, and fire Bean events on the "manager-facing"
side when specified thresholds are exceeded

4-24(c) Copyright 1998 Subodh Bapat

Polling Service Bean

• The Polling Service Bean can be an Enterprise JavaBean that exports
remote Bean interfaces for:
– manager applications to create a PollRequest EJB object with a

particular id

– define the agents and/or managed objects to be polled

– specify the polled attributes and polling frequency
– specify the threshold values which will trigger the firing of Bean

events
– register listener objects on which methods can be invoked when

the threshold conditions are met

4-25(c) Copyright 1998 Subodh Bapat

Enterprise JavaBeans for Other Platform Services

• Similar EJB interfaces can be defined for other platform services:

– Access Control

– Metadata Access
– Log Management
– Event Registration and Filtering
– Event Correlation

– Queries

– Discovery

5-1(c) Copyright 1998 Subodh Bapat

Java in Network Management:

Network Mana gement APIs
in Java

5-2(c) Copyright 1998 Subodh Bapat

Network Management APIs in Java

• Protocol-level APIs (low-level APIs)
• Managed Object-level APIs (high-level APIs)

5-3(c) Copyright 1998 Subodh Bapat

Protocol-level APIs (low-level APIs)

• Direct APIs to a management protocol stack

• Application needs to be aware of details of protocol PDUs

• API classes represent structures of particular PDUs in the protocol:
– SnmpSetRequestPdu

– SnmpGetResponsePdu

– CmipMCreateRequestPdu

– CmipMDeleteConfirmationPdu

• Management applications load up an instance of such a class with
data, and then give it to the appropriate Protocol Service Bean to
issue out of the VM

5-4(c) Copyright 1998 Subodh Bapat

Protocol-level APIs (low-level APIs)

• APIs exist for many common protocol stacks:
– SNMP

– CMIP
– TL-1

– proprietary
– other general protocols that can be used to carry management

messages e.g. RMI, XML/HTTP, IIOP
• Depending on how and where the protocol-level API will be used, it

may have different profiles:

– agent-facing

– manager-facing

5-5(c) Copyright 1998 Subodh Bapat

Examples of Protocol-level APIs in Java: SNMP

• Advent SNMP Stack

public class SnmpPDU {
public SnmpPDU (SnmpAPI api);
public void addNull (SnmpOID oid);
public void fix();
public long round_trip_delay ();
public String printVarBinds();
public int get_encoded_length();
public boolean decode() throws SnmpException;
public SnmpPDU copy();

}

5-6(c) Copyright 1998 Subodh Bapat

Examples of Protocol-level APIs in Java: CMIP

• Can be used to rapidly prototype browser-based managers and
agents against a CMIP stack

• Very handy for writing quick testing applications
• Examples: Any Javatized version of the CMIS/C++ component of the

NMF's TMN/C++ API standard:

– Presents a protocol-level API in Java to CMISE service primitives
(M-GET, M-SET, etc.)

– Different Java classes for each PDU variation (request, indication,
response, confirmation)

– Java classes for CMISE parameters (Attribute, AttributeId, Scope,
Filter, etc.)

• Products implementing this include:
– Sun's TMNscript Java Client/Server Gateway

– UH Communications Q3ADE CMIS API for Java

5-7(c) Copyright 1998 Subodh Bapat

Management Protocol Adapter Beans

• Protocol Adapter Beans use the Protocol Service Beans to adapt a
standard network management protocol to methods on Java Managed
Object Beans

• Management Protocol Adapter Beans convert management protocol
requests (from particular management protocols) to native Java calls
on Java Managed Object Beans

• They also convert notifications emitted by Java Managed Object
Beans into the appropriate event formats of the management
protocols

5-8(c) Copyright 1998 Subodh Bapat

Management Protocol Adapter Beans

• Just like there are two kinds of Protocol Service Beans, there are two
kinds of Management Protocol Adapter Beans, depending on their
capabilities:
– Manager-facing Protocol Adapter Beans, and
– Agent-facing Protocol Adapter Beans

• A Management Protocol Adapter Bean can support both an agent-
facing interface and a manager-facing interface, if it is used (for
example) in a mid-level manager

5-9(c) Copyright 1998 Subodh Bapat

Agent-Facing Protocol Adapter Beans

• Agent-facing Protocol Adapters live in a Java Manager Framework,
and have the ability to

– send requests to agents
– receive responses from agents

– receive notifications from agents
– send responses to notifications from agents (if the management

protocol so allows)

5-10(c) Copyright 1998 Subodh Bapat

Agent-Facing Protocol Adapter Beans

MSet/MGet/MCreate/MDelete/MAction Confirmation

Manager Framework

SNMP
Protocol
Adapter
Bean

CMIP
Protocol
Adapter
Bean

Set/Get Request

Set/Get Response

Traps

MSet/MGet/MCreate/MDelete/MAction Request

MEventReport Indication

MEventReport Response

RMI
Calls
from Java
MOHandles

RMI
Calls
from Java
MOHandles

5-11(c) Copyright 1998 Subodh Bapat

Manager-Facing Protocol Adapter Beans

• Manager-facing Protocol Adapters live in a Java Agent Framework,
and have the ability to

– receive manager requests
– send responses to manager requests

– send notifications to managers
– receive responses from managers to notifications (if the

management protocol so allows)

5-12(c) Copyright 1998 Subodh Bapat

Manager-Facing Protocol Adapter Beans

Agent Framework

SNMP
Protocol
Adapter
Bean

CMIP
Protocol
Adapter
Bean

Set/Get Request

Set/Get Response

Traps

MSet/MGet/MCreate/MDelete/MAction Indication

MSet/MGet/MCreate/MDelete/MAction Response

MEventReport Request

MEventReport Confirmation

RMI
Calls
to Java
Managed
Objects

RMI
Calls
to Java
Managed
Objects

5-13(c) Copyright 1998 Subodh Bapat

Network Management APIs in Java

• Protocol-level APIs (low-level APIs)
• Managed Object-level APIs (high-level APIs)

5-14(c) Copyright 1998 Subodh Bapat

Managed Object APIs

• In recent years the emphasis has shifted away from protocol battles
• Application developers no longer like to write applications to low-level

protocol-level APIs; don't want to know PDU content and format
• Application developers would like to think of the world as distributed

objects

• Network management is nothing but an example of communication
between distributed objects

• In network management, future applications will be written to
manipulate managed objects by invoking local and remote methods
on them; actual protocols used to convey those operations will be
unimportant

• Therefore, object-oriented information models (Java, CORBA, GDMO,
CIM) become very important

• APIs to information models become very important.

5-15(c) Copyright 1998 Subodh Bapat

Managed Object APIs

• Managed Object APIs are high-level APIs in Java that permit an
application to deal with managed object abstractions, without worrying
about the details of the network management protocol being used

• Multiple dimensions for consideration, depending on how and where
the high-level API will be used:

– information model-aware/information model-independent
– manager-side/agent-side
– generic/specific

5-16(c) Copyright 1998 Subodh Bapat

Management Information Models

• Many different ways to model the information that is of interest to
management (Structures of Management Information):
– IETF SMI (managed objects defined in SNMP MIBs)
– ITU MIM/SMI (managed objects defined in GDMO documents)

– DMTF SMI (managed objects defined in CIM schemas)
– Java Notation itself (managed objects defined in source Java)

• Aimed at different markets:
– SNMP SMI: Intranet and ISP equipment management
– GDMO: Telecommunications equipment and service provider

management

– CIM: Systems and Applications management
– Java Notation: low-end devices, embedded systems

5-17(c) Copyright 1998 Subodh Bapat

Management Information Models

• History of evolution of information models has many lessons to offer

• Each information modeling technique starts off with the goal of being
the unifying paradigm

• Unifying paradigms have never worked!
• Over time, each information model becomes associated with a

particular protocol that manipulates the constructs of that information
model

• Over time, mappings are developed to translate models from one SMI
syntax to another; these sometimes work, sort of, kind of

5-18(c) Copyright 1998 Subodh Bapat

Information Model APIs: Conflicting Requirements

• Versatility, Sophistication, and Semantic Richness: Developers who
develop applications to a particular information model would like a
Java API that fully expresses the semantics of that information model,
and gives them full control over its capabilities

• Ease of Application Development: Developers find learning
information models hard, want to be able to write management
applications without learning any modeling syntax

• How do we satisfy both kinds of developers?

5-19(c) Copyright 1998 Subodh Bapat

Information Model Independent APIs

• A class of applications can be developed which are insensitive to the
information model of the underlying managed object

• Any application that interacts with the platform using only service-
specific Enterprise JavaBean APIs need not use the Managed Object
APIs at all

• Examples:
– Some alarm display applications may not care whether the device

that generated the alarm is managed using an SNMP agent or a
CMIP agent

– A provider's equipment asset display application may not care
whether the topology nodes are managed using an SNMP agent or
a CMIP agent

• Such applications may need to interact directly with the managed
object only minimally, and simple generic get and set methods will
suffice

5-20(c) Copyright 1998 Subodh Bapat

Manager Application Beans: MOHandle

• A Java MOHandle is a Java Bean in the space of a manager
application, that represents a Java Managed Object Bean that lives in
the agent

• A Java MOHandle proxies for the agent's managed object, i.e. a
manager application executes operations on the real managed object
by invoking methods on a MOHandle object that represents it

• A Java MOHandle is not necessarily the "stub" side of a managed
object "skeleton"

– the communication between a MOHandle Bean and the
ManagedObject Bean need not necessarily be RMI

– A MOHandle and a ManagedObject can communicate via any
standard network management protocol

5-21(c) Copyright 1998 Subodh Bapat

Manager Application Beans: MOHandle

• A MOHandle does not implement or execute any managed object
behavior

• All managed object behavior executes only in a real managed object,
which must always live in an agent

• Behavior may be informally defined or may be formally defined in Java
code

• A manager application can cause the real managed object to execute
its behavior by invoking methods on the MOHandle, which will
transparently send it network management protocol messages

5-22(c) Copyright 1998 Subodh Bapat

Information Model Independent MOHandle

• An information model independent MOHandle can represent a
managed object defined in any information model
– Can represent an instance of a GDMO managed object class
– Can represent an instance of a CIM managed object class

– Can represent an instance of an SNMP "managed object class"
(where object groups are mapped into classes using any standard
mechanism that makes SNMP MIBs object-oriented, e.g. one
similar to the IIMC mapping rules)

– Can represent an instance of a managed object defined directly in
Java notation

• Abstracts the common features of all information models into an
information model independent MOHandle

• Is useful for a class of applications that only want to do basic things
with a managed object

5-23(c) Copyright 1998 Subodh Bapat

Information Model Independent MOHandle

• The implementation of the MOHandle object in any system knows
what information model its managed object is specified in (since it
must send it the right kind of protocol message)

• The MOHandle interface, however, need not expose this knowledge

• The MOHandle interface need only include:

– generic get and set methods:
• getAttribute(String attributeLabel)

• setAttribute(String attributeLabel, AnyValue anyValue)
– event registration methods for listening to changes in the managed

object

5-24(c) Copyright 1998 Subodh Bapat

Information Model Independent MOHandles

• Useful things can be done with information model independent
MOHandles:
– Attribute caching: provide a list of attributes to cache locally in the

MOHandle so every frequently used values can be retrieved with a
"local get", saving network traffic

– Attribute tracking: provide a list of attributes whose cached values
can be tracked dynamically by the MOHandle implementation
based on notifications/traps received from the network

– Attribute staging: provide a place to prepare proposed attribute
values before sending them down the real managed object in the
agent

5-25(c) Copyright 1998 Subodh Bapat

Collections of Java Managed Object Handles

• A manager application can organize multiple MOHandle Beans in a
collection

• The collection can be a standard Java container (Set , List , Vector ,
etc.)

• Operations on multiple managed object handles can be conveniently
invoked by invoking a method on the whole collection

• Depending on the information model of the underlying managed
object, this may translate into:
– iterating over the individual MOHandles in the collection to issue a

request on each one

– issuing a single request to an agent hosting the Managed Object
Beans, if the agent understands the concept of collections

5-26(c) Copyright 1998 Subodh Bapat

Enumerated Collections of MOHandle Beans

• In an enumerated collection, the membership of the collection is fully
controlled by the application

• An application may add or remove individual MOHandles at will
• Requests issued on the collections always translate into individual

requests issued on individual MOHandle Beans in the collection

5-27(c) Copyright 1998 Subodh Bapat

Rule-Based Collections of MOHandle Beans

• The membership of a rule-based collection is defined using a rule

• A snapshot of all ManagedObject Beans in all agents is taken to
determine the membership of a rule-based collection

• The rule is defined using a Query Bean that is understood by a
platform's Query service

• Information-model-independent Queries are:
– a logical conjunction of attribute value predicates

• Information-model dependent Query Beans include, for example:
– SNMP: a subnet mask

– GDMO: scope and filter

– CIM: transitive closure of an association

5-28(c) Copyright 1998 Subodh Bapat

 Information Model Aware Subclasses

• For management application developers who need the full power of an
information model, information model aware subclasses of MOHandle
can be defined:
– CIM MOHandle: is aware of CIM constructs (e.g. associations) and

protocol operations

– GDMO MOHandle: is aware of GDMO constructs (e.g. name
bindings) and protocol operations

– SNMP MOHandle: consists of a "managed object mapping" of
SNMP MIBs (e.g. turning object groups into object classes using
some standard mapping

• These are still generic, i.e. even though information model aware,
these Beans can represent any managed object of the appropriate
information model

• Useful for writing information-model-aware applications

5-29(c) Copyright 1998 Subodh Bapat

Specific MOHandle Beans

• Specific MOHandle Beans are generated by a compiler. e.g.

CIM printer.mof file --> compiler --> printer.java class
SNMP hub.mib file --> compiler --> hub.java class
GDMO switch.gdmo file --> compiler --> switch.java class

• These provide type-safe access to particular attributes, methods, etc.
of managed objects

• Are always information model aware
• Can be subclassed from generic Beans so that all the interfaces of

generic Beans are available (e.g. ability to cache and stage attributes,
ability to be put in containers, etc.)

• Each generated .java file can then be further compiled through
rmic to generate stubs and skeletons for distribution

• Useful for writing type-safe information-model-aware applications

5-30(c) Copyright 1998 Subodh Bapat

Metadata Bean APIs

• Each MOHandle Bean can be queried for its metadata object
• Metadata Beans returned are always information-model aware:

– GDMO Managed Object Class Template
– CIM Class Schema

– SNMP MIB Object Types and Groups
• Metadata Beans can then be queried in a structured manner for

detailed metadata constructs

5-31(c) Copyright 1998 Subodh Bapat

Metadata Bean APIs

• For specific MOHandles, which have type-safe methods generated by
a compiler from a source information model definition, much metadata
information may be simply available from Bean introspection

• Thus, metadata can be visually inspected in a Bean-based application
development environment

• For generic MOHandles, no information-model metadata is available
via Bean introspection

• Metadata access must be done via a metadata database:
– metadata database must be accessible at run time to do validation

of method invocations on the MOHandle Bean against metadata

– metadata database must be accessible at design time to be able to
build applications visually by querying against Bean metadata

5-32(c) Copyright 1998 Subodh Bapat

Metadata Bean APIs

• How can metadata information for generic MOHandles be made
available via Bean introspection?

• Options are:
– Replace the class class which is returned by the getClass()

method in Java reflection. Provide your own implementation of the
class class which actually reads metadata off a metadata
database, rather than from the Java .class file.

– Replace the Bean Introspector . Provide your own
implementation of Introspector which reads metadata off a
metadata database.

– Provide your own implementation of BeanInfo which reads
metadata off a metadata database.

5-33(c) Copyright 1998 Subodh Bapat

Products: Network Management APIs in Java

• Sun Microsystems' Solstice Enterprise Manager Java Supplement has
several APIs for writing Java applications to a platform

• Hitachi Telecom's Java implementation of the NMF TMN API
• Java API in WBEM SDK

