
Telecommunications

Networking

Information

Architecture

Consortium Issue Status: Publicly Released

Version: 1.0 b

Service Component Specification

Date of Issue: January 19, 1998

TINA-C Deliverable

This document has been produced by the Telecommunications Information Networking
Architecture Consortium (TINA-C) and the copyright belongs to members of TINA-C.

 IT IS A DRAFT AND IS SUBJECT TO CHANGE.

The pages stated below contain confidential information of the named company who can
be contacted as stated concerning the confidential status of that information.

The document is being made available on the condition that the recipient will not make any
claim against any member of TINA-C alleging that member is liable for any result caused
by use of the information in the document, or caused by any change to the information in
the document, irrespective of whether such result is a claim of infringement of any intellec-
tual property right or is caused by errors in the information.

No license is granted, or is obliged to be granted, by any member of TINA-C under any of
their intellectual property rights for any use that may be made of the information in the doc-
ument.

Table 1:

Page Company
Company Contact

(Address, Telephone, Fax)

Telecommunications

Networking

Information

Architecture

Consortium

Service Component Specification

Computational Model and Dynamics

Main Authors: C. Abarca, P. Farley, J. C. Garcia, T. Hamada, P. F. Hansen,
P. Hellemans (Alcatel), C. A. Licciardi, K. Nakashiro, M. Yates

Editor: Per Fly Hansen, Carlo Alberto Licciardi

Stream: Service Stream
Workplan Task: Service Architecture
File Location: /u/tinac/97/services/docs/scs/compmod/final/comp.ps

Abstract: This document defines the computational model and dynamics for the TINA Service
Component Specifications. The document should be seen as partly a proposal for structuring the
internals of specific business administrative domains, and as such, complimentary to the inter-
domain reference points, and partly as an aid to understand the interactions occuring across inter
domain reference points. All component are described in plain language and specified in ODL and
IDL. Several scenarios are given in order to show the dynamic behaviour of the components.

Note: This version has been coreteam and externally reviewed, and it is issued as baseline
document.

Issue Status: Final

Date of Issue: January 19, 1998

Version: 1.0b Final

TINA-C Deliverable

Computational Model and Dynamics Service Component Specification
Table of Contents Version 1.0b , January 19, 1998

5

Table of Contents
1. Introduction .11

1.1 Purpose . 11
1.2 Audience. . 11
1.3 Relationship to other Documents . 11
1.4 How to Read This Document . 13
1.5 Current Status . 13
1.6 Expected Evolution . 13

2. Overall Description of SA Components 15
2.1 asUAP - Access Session User Application 15
2.2 PA - Provider Agent . 16
2.3 IA - Initial Agent . 16
2.4 namedUA - Named User Agent . 16
2.5 anonUA - Anonymous User Agent. . 16
2.6 UAF - User Agent Factory . 17
2.7 Sub - Subscription Management Component 17
2.8 ssUAP - Service Session User Application 17
2.9 SF - Service Factory . 17
2.10 SSM - Service Session Manager. . 18
2.11 USM - User Service Session Manager 18
2.12 PeerA - Peer Agent. . 18
2.13 CompUSM - Composer Usage Session Manager 19
2.14 PeerUSM - Peer Usage Session Manager 19
2.15 SLCM - Service Life Cycle Management. 19
2.16 MUSM - Member Usage Service Session 19
2.17 Overview of interactions . 20
2.18 Accounting Management in the Service Architecture 20

2.18.1 Overview of Accounting Management in SA 21
2.18.2 Visibility of Billing Context. . 23
2.18.3 Different Accounting Management Approaches 24
2.18.4 Accounting Management Ladder 25
2.18.5 Relevance to Resource/DPE Architectures 25

2.19 Management Context . 25
3. Detailed Descriptions . 27

3.1 asUAP . 27
3.1.1 i_Access interface . 28

3.2 PA . 28
3.2.1 i_Initial interface . 30
3.2.2 i_Access interface . 31
3.2.3 i_AccountingPull . 32

3.3 IA . 33
3.4 namedUA . 33

3.4.1 i_ProviderNamedAccess interface 35
3.4.2 i_Initial . 37
3.4.3 i_SessionInfo . 37
3.4.4 i_InvitationDelivery . 38
3.4.5 i_AccountingPull . 38
3.4.6 i_AccountingPush . 38
3.4.7 i_ServiceProfileCustomization . 38
3.4.8 i_UserProfileManagement . 39

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998. Table of Contents

6

3.4.9 i_SubscriptionNotify. . 39
3.5 anonUA. . 39

3.5.1 i_ProviderAnonAccess interface 40
3.5.2 i_AccountingPull . 40
3.5.3 i_Initial . 40

3.6 Sub - Subscription Management Component 40
3.6.1 Subscription Management Type Definitions 42
3.6.2 Subscriber Management Interfaces 46
3.6.3 Service Contract Management Interface 47
3.6.4 Subscription Initial Interfaces . 48
3.6.5 Subscription Management Service Interfaces 49

3.7 ssUAP . 51
3.7.1 TINAScsSSUAPIntra::i_AccessInitialise 52

3.8 SF . 52
3.8.1 i_SSCreate . 54
3.8.2 i_SSManage . 54
3.8.3 i_Resume . 55
3.8.4 i_Init . 55
3.8.5 i_SSEvents . 55

3.9 SSM . 55
3.9.1 i_Join . 57
3.9.2 i_Init . 57
3.9.3 i_Resume . 57
3.9.4 i_AccountingPushMgmt. . 58
3.9.5 i_AccountingPush. . 58
3.9.6 Feature set interfaces. . 58

3.10 USM. . 58
3.10.1 TINAScsUSMIntra::i_SessionCtrl 60
3.10.2 TINAScsUSMIntra::i_AccountingPushMgmt 61
3.10.3 TINAScsUSMIntra::i_AccountingPush 61
3.10.4 TINAScsUSMInit::i_Init . 61
3.10.5 TINAScsUSMIntra::i_Resume. 61
3.10.6 Ret Interfaces . 61
3.10.7 TINAScsUSMIntra::i_MgmtCtxt 62

3.11 SLCM . 62
3.11.1 i_ServiceQuery . 63
3.11.2 i_DeploymentMgmt . 64
3.11.3 i_InstanceMgmt . 64
3.11.4 i_TypeMgmt . 65

3.12 AmcLadder . 65
3.12.1 i_AmcLadderElement . 67
3.12.2 i_AccObjectManagement . 67

3.13 Federation and Composition related components 68
3.13.1 PeerA - Peer Agent . 68
3.13.2 PeerUSM - Peer Usage Session Manager 68

3.14 Yet-To-Be-Defined Service Components 68
3.14.1 Security Manager . 68

4. Dynamic Behavior . 71

Computational Model and Dynamics Service Component Specification
Table of Contents Version 1.0b , January 19, 1998

7

4.1 Scenario Groupings . 71
4.2 Scenario Descriptions . 72
4.3 Access related scenarios . 73

4.3.1 Contact a provider . 73
4.3.2 Login to a Provider as a Known User 74
4.3.3 Login to Provider as Anonymous User 77
4.3.4 Logout from a Provider . 80
4.3.5 Check Accounting Information . 81
4.3.6 List Subscribed Services . 82

4.4 Usage related Scenarios . 83
4.4.1 Start a Service Session and Selection Of session model 83
4.4.2 End a Service Session . 86
4.4.3 End Service Session via Access Session 87
4.4.4 End Participation in a Service Session. 88
4.4.5 Suspend a Service Session . 91
4.4.6 Suspend Participation in a Service Session 92
4.4.7 Resume a Service Session. . 95
4.4.8 Resume Participation in a Service Session 96
4.4.9 Invite a User to Join a Session . 97
4.4.10 Join a Service Session with invitation. 101
4.4.11 Add Participant Oriented Stream Binding to a Service Session . . 103
4.4.12 Add Participants to a Participant Oriented Stream Binding 104
4.4.13 Delete Participants from a Participant Oriented Stream Binding . . 106
4.4.14 Delete a Participant Oriented Stream Binding from the Service Session107
4.4.15 Example of Voting Procedure. 109
4.4.16 Example of Control FS usage. 110
4.4.17 Service Session Accounting . 111

4.5 Ancillary Usage Related Scenarios . 112
4.5.1 Subscribe a New Customer . 112
4.5.2 Modify Subscriber Information . 115
4.5.3 Contract a New Service . 118
4.5.4 Modify Service Contract . 120
4.5.5 Unsubscribe . 122
4.5.6 Register to receive invitations outside of an access session. 123
4.5.7 Register a new service . 124
4.5.8 Modify an existing service . 126
4.5.9 Withdraw a service . 127
4.5.10 Ancillary On-line Accounting Service 129

5. Acronyms . 131
6. References . 133
7. Acknowledgments . 135
Annex 1.ODL-specs . 137

1.1 TINAObjASUA . 137
1.2 TINAObjPA . 137
1.3 TINAObjIA . 138
1.4 TINAObjNamedUA . 139
1.5 TINAObjSub . 140
1.6 TINAObjSSMols . 141
1.7 TINAObjSLCM . 142
1.8 TINAObjSF . 143
1.9 TINAObjSSM . 143
1.10 TINAObjSSUAP . 145
1.11 TINAObjUSM . 146

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998. Table of Contents

8

1.12 TINAObjAmcLadder . 148
Annex 2.IDL-specs . 149

2.1 TINAScsMgmtCtxt . 149
2.2 TINAScsCommonTypes . 151
2.3 TINAScsAmcCommon. . 152
2.4 TINAScsAmcObject . 157
2.5 TINAScsAmc . 160
2.6 TINAScsAmcTariff . 163
2.7 TINAScsASUAPIntra . 165
2.8 TINAScsPAIntra . 166
2.9 TINAScsNamedUAIntra . 172
2.10 TINAScsServiceContractInfoAccess 176
2.11 TINAScsServiceContractMgmt . 179
2.12 TINASubCommonTypes . 180
2.13 TINAScsSubInitial . 185
2.14 TINAScsSubscriberInfoAccess. . 188
2.15 TINAScsSubscriberMgmt . 192
2.16 TINAScsSubscriptionService. . 193
2.17 TINAScsSSUAPIntra . 198
2.18 TINAScsSF . 199
2.19 TINAScsSSMInit . 204
2.20 TINAScsSSMIntra . 205
2.21 TINAScsSSMProviderBasicUsage . 206
2.22 TINAScsSSMProviderControlSRUsage 208
2.23 TINAScsSSMProviderMultipartyUsage 209
2.24 TINAScsSSMProviderPaSBUsage. 211
2.25 TINAScsSSMProviderVotingUsage 216
2.26 TINAScsUSMInit . 216
2.27 TINAScsUSMIntra . 218
2.28 TINAScsUSMPartyBasicExtUsage. 222
2.29 TINAScsUSMPartyControlSRUsage 222
2.30 TINAScsUSMPartyMultipartyIndUsage 223
2.31 TINAScsUSMPartyMultipartyUsage 226
2.32 TINAScsUSMPartyPaSBIndUsage. 229
2.33 TINAScsUSMPartyPaSBUsage . 232
2.34 TINAScsUSMPartyVotingUsage . 235
2.35 PLATyToolsFix . 236
2.36 Security. . 238

Annex 3.Subscription Information Model . 241
3.1 Subscription Business Model . 241
3.2 Subscription Management Information Model 242
3.3 Service Profile Definition. . 243
3.4 Service Dependencies. . 244

Annex 4.Suggested Decomposition for the Subscription Management Component 247
4.1 Subscriber Manager (SubM). . 247

4.1.1 i_SubscriberInfoQuery . 248
4.1.2 i_SubscriberInfoMgmt . 248
4.1.3 i_SubscriberLCMgmt . 248
4.1.4 i_ServiceContractInfoUpdate. . 249

4.2 Subscription Coordinator (SCoo) . 249
4.2.1 i_InitialAccess . 249
4.2.2 i_Subscribe. . 249
4.2.3 i_ServiceNotify . 250

Computational Model and Dynamics Service Component Specification
Table of Contents Version 1.0b , January 19, 1998

9

4.3 Service Contract Manager (SCM) . 250
4.3.1 i_ServiceContractInfoMgmt . 250
4.3.2 i_ServiceContractInfoQuery . 251
4.3.3 i_ServiceContractLCMgmt . 251

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998. Table of Contents

10

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

11

1. Introduction

1.1 Purpose
This document aims to

- Assist understanding of the components specified in the TINA Service Architecture [1]
by proposing specifications that show what interfaces those components support and
require from other components, and the operations present on each of those interfaces.

- Show how the overall component model integrates the Ret Reference Point
Specifications by associating Ret interfaces to service components.

- Assist understanding of protocols and event driven interactions amongst the service
components and their relationship with dynamic behaviour described in the Ret
Reference Point Specifications.

In other words, while the Service Architecture only identifies concepts and the service components
(multiple interface objects) this document aims to give low level engineering detail useful to designers
and implementors. To achieve this, the document must show how interfaces are grouped together to
make a component, what operations are present on each interface and an explanation of the
parameters and behaviors of those operations.

1.2 Audience
The document is intended for

- Readers with good knowledge of the TINA Service and Network Architectures and DPE,
their rationale, concepts and objectives.

- Readers with good knowledge of TINA Reference Points and in particular the Ret
Reference Point specification.

- Designers and implementors of TINA services and TINA service management
infrastructures. Such readers are expected from organizations intending to supply
service applications, service content, components of services, operate services, operate
service content provision, inter-operate with services or other service operators.

1.3 Relationship to other Documents
There are three important related documents:

• The Service Architecture [1] which gives the concepts, components, objectives and ratio-
nale for the service architecture.

• The Service Components Specification Part 1 - Information Model which gives structured
definitions and relationships amongst the information objects in the Service Architecture,
using OMT, quasi-GDMO and GRM.

• Ret Reference Point (Ret RP) which specifies a small proportion of the system interfaces
and event sequences that are found in the collection of service components in the sys-
tem.. The Ret RP is a point of conformance in the service architecture whereas this doc-
ument describes a possible specification of Service Archtecture.. Since they both define
IDL and events their relationship is described in greater detail below.

The relationship between the computational specifications (this document) and the Ret RP
Specification is shown in Figure 1-1. It should be understood that the current set of TINA Reference
Points are positions of conformity in the TINA architecture. This document is not a prescription for

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

12

conformance. It is a description of an overall service architecture expressed using ODL, IDL and
event traces. The component specifications that are here described are entirely conformant to TINA
Reference Points of which only Ret concerns this document. Note that

- Events occurring across Ret are extended to show their system wide propagation
amongst objects;

- Additional event traces unrelated to Ret are shown here;

Service Component Specification
Computational Part

(this document)

Ret Reference

Specification

Dynamic Behaviour

(expressed in event traces)

&

Interface Definitions

(expressed in IDL)

(only interfaces visible

across Ret and events

occurring across Ret)

Component Definitions

expressed in

ODL

Interface Definitions

expressed in

IDL

(All interfaces except

those specified in Ret)

Dynamic Behaviour

expressed in event traces

(All events at Ret
extended to show system

wide interactions.
Additional event traces

not related to Ret)

Ret event
traces form

part of object
system

events traces

ODL declares IDLs

ODL
declares

IDLs

Figure 1-1. Illustration of the relationship between this document and the Ret Specification

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

13

- Interfaces are defined here in IDL only if they are not visible across the Ret RP;

- ODL is used here to describe multiple interface objects and so ODL declares interfaces
which come from scoped IDL definitions. These IDL definitions are found either in the Ret
RP or in this document - but never both places. Some objects therefore declare
interfaces exclusively defined here, while the Ret RP related objects have interfaces
declared both here and in Ret RP.

- Without the use of ODL (or its equivalent) it is not possible to show the aggregation of
interfaces onto multiple interface objects (i.e. service components)

- This document is subject to all changes at Ret

1.4 How to Read This Document
This document is a first version of computational model specifications and dynamics for service
components. The readers are strongly recommended to read the Service Architecture [1] that gives
the concepts and principles for the computational model, the TINA Business Model [2] giving the
overall divisions of the various parts comprising the TINA Architecture, and the Ret specification [12].
In order to understand the contents and the notations of the specifications, the readers are referred
to the “Object-Oriented Modeling and Design” [15], the “Computational Modelling Concepts” [4], and
the ODL manual [5].

Section 2 gives an overview of all the components expected to be specified in the final version of this
document, it gives a short explanation of the purpose of each component and lists the main
interactions between components.

Section 3 provides detailed descriptions of a subset of the components. It defines interface and
operation names and links to available event traces and IDL.

Section 4 shows a number of event traces, giving some of the dynamic behavior of the components.

ODL for the defined components is given in Annex 1.

Annex 2. gives IDL for the interfaces not defined in the Ret-RP document.

Annex 3. gives background material for defining the subscription management related parts.

Finally, Annex 4. proposes a decomposition of the Subscription management component into several
components.

1.5 Current Status
The contents of this document should not be considered final in any sense, it reflects an attempt to
stabilize the overall picture of how the service level of TINA based systems can be decomposed into
components. It is compliant with the current Ret specifications and reflects the TINA Service Stream’s
current view of the responsibilities assigned to individual components within business administrative
domains. This decomposition is, however, subject to change and comments and suggestions for
improvements are welcome. The ODL/IDL has been compiled, but not validated yet.

1.6 Expected Evolution
The current release of SCS is still incomplete. The following list contains issues that will be
addressed/covered in a future release:

• specification of an interface for user-customisation on the UA,

• complete Service Life Cycle Management (SLCM) specification (IDLs);

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

14

• introduce specifications, detailed descriptions and scenarios for service composition and
federation; to provide complete specification of PeerA, PeerUSM and CompUSM. This
part depends on the first results in the process of defining the Retailer-to-Retailer and
Third-Party reference points.

• specification of on-line accounting management feature set or specific interface to face
the approach of accounting management as an ancillary service (opposite/complemen-
tary to the integrated facility approach),

The decomposition into components and the ODL is expected to be validated for the next release,
both internally in the core-team and externally in Auxiliary Projects and/or TINA Work Groups.

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

15

2. Overall Description of SA Components

This chapter gives the overall view of the components stating the purpose of each component and a
table showing which components interact.

The following figure shows all the components specified and shows where interactions occur:

Each of the components are described briefly below.

2.1 asUAP - Access Session User Application
The User APplication (UAP) Service Component (SC) is defined to model a variety of applications in
the User domain. A UAP SC represents one or more of these applications. A UAP can be used by
human users, and/or other applications in the user domain and can be either or both an access
session related and service session related SC. The access session related UAP is defined below.
The service session related UAP is defined in Section 2.8.

Figure 2-1. Service Components and Interactions

PA: Provider Agent IA: Initial Agent
asUAP: Access Session User Application UA: User Agent (named/anon)
Sub: Subscription Management Component UAF: User Agents Factory
SLCM: Service LifeCycle Management SF: Service Factory
ssUAP: Service Session User Application SSM: Service Session Manager
USM: User Service Session Manager PeerA: Peer Agent
CompUSM: Composer Usage Session Manager PeerUSM: Peer Usage Session Manager

UA

SSMUSM

PA

Provider domainUser
domain

IA

SF

asUAP

ssUAP

SLCM

PeerA

CompUSM

Operational interface TINA service component

PeerUSM

Service component creation

Other

PeerA
domain’s

Other

PeerUSM
domain’s

Other

USM
session’s

UAF

Sub

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

16

As an access session related SC, the UAP enables a human user, or another application, to make
use of the capabilities of a PA or PeerA, through an appropriate (user) interface. An access session
related UAP supports part of the domain access session. A UAP instance may support only access
session related capabilities or only service session related capabilities; or it may support both. Access
session related UAPs may be specialized by a domain to interact with a specialized PA or PeerA.

2.2 PA - Provider Agent
The Provider Agent (PA) is a service independent SC, defined as the user’s end-point of an access
session. The PA is supported in a domain, acting in an access user role. The PA supports a user
accessing their UA and making use of services, through an access session. The PA supports the user
domain access session, in conjunction with access session related UAPs, and other user domain
infrastructure.

For each concurrent access session a user has with a provider, there is one PA instance in the user’s
domain. Each PA may be associated (through an access session) with the same UA, or separate UA
instances. A single PA is only ever associated with one UA through an access session. (When no
access sessions exist, a user domain can still support a PA. It can be used to initiate an access
session, and may receive invitations if registered.)

2.3 IA - Initial Agent
An Initial Agent (IA) is a user and service independent SC that is the initial access point to a domain.
An IA is supported by domains taking both the provider and peer roles. An IA reference is returned
to a PA or PeerA when it wishes to contact the domain. The IA supports capabilities to authenticate
the requesting domain and establishing access sessions.

2.4 namedUA - Named User Agent
A Named User Agent (namedUA) is a service independent SC that represents a user in the provider’s
domain. The namedUA is a specialization of the UA for a user that is an end-user or subscriber of the
provider. It is the provider domain’s end-point of an access session with a user. It is accessible from
the user’s domain, regardless of the domain’s location.

The namedUA acts as a single contact point to control and manage the life cycle of service sessions
and user service sessions. It negotiates the session models and feature sets supported by a service
session. It also manages the user’s preferences on service access and service execution, and allows
the user to use services from different types of terminals including support of user registration at
different terminals to receive invitations.

Operations supported by a namedUA are service independent.

A namedUA may support one or more access sessions concurrently. Each access session is with a
single, distinct PA.

2.5 anonUA - Anonymous User Agent
An Anonymous User Agent (anonUA) is a service independent SC that represents a user in the
provider’s domain. The anonUA is a specialization of UA for users that do not wish to disclose their
identity to the provider. It is the provider domain’s end-point of an access session with an anonymous
user.

The anonUA acts as a single contact point to control and manage the life cycle of service sessions
for the anonymous user. This management is possible during the anonymous user’s current access
session only. The anonUA provides no support for personal or session mobility.

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

17

2.6 UAF - User Agent Factory
A User Agent Factory (UAF) is a service independent SC that creates and initializes namedUA and
anonUA upon request of Sub (Subscription Management Component) and IA. The UAF is created
and managed by SLCM component.

2.7 Sub - Subscription Management Component
The Subscription Management Component (Sub) is a service independent SC, considered as the
provider domain’s control point of subscriber, user and subscription lifecycle. The Sub is unique in
every provider domain. It allows the management of subscribers, subscriptions and users1 for the
whole set of services provided by the provider.

It is accessed by the access session components to retrieve the list of services the user/peer is
associated to and the corresponding service profiles. Some specific management components (off-
line applications or on-line service session components) also access this component to retrieve and
modify the subscription data.

The Sub creates and initializes the access components (Named UAs and PeerAs) and updates them
with changes in the corresponding user’s subscription data.

It is aware of deployed and active service instances through its interaction with the SLCM.

2.8 ssUAP - Service Session User Application
The User APplication (UAP) represents a variety of applications in the User domain that interact with
TINA services and support the service session. It may interact with other applications or humans by
supporting appropriate, (undefined in TINA) programmatic or human-computer interfaces.

The ssUAP participates in a service session by supporting the User Domain Usage Service Session
(UD_USS). The UAP is service specific and logically supports a combination of session controls;
starting/ending the session, inviting other participants to join, joining an existing service session,
adding/modifying stream bindings, modification of control session relationships, suspending
participation or the whole session, and resuming the participation the whole session. The ssUAP may
support and use the TINA Ret session model and feature sets.

The ssUAP may have zero or more stream interfaces attached which may be bound to those in other
participants’ or providers’ domains. One ssUAP can be involved in one or more service sessions. For
each service session the UAP is involved in, it interacts with a user session manager USM, or directly
with a service session manager, SSM2.

The ssUAP interacts with the PA to start, resume or join a service session and is initialized by the PA
prior to initiating involvement with a service session. When actively involved in a service session it
interacts with the USM to perform all service specific and general session control.

2.9 SF - Service Factory
A Service Factory (SF) is a service-specific object, which creates and manages the service session
COs (i.e. USM, SSM, CompUSM and PeerUSM) for a service instance3.

1. Relationship between subscriber, subscription and user are defined in Section 3.6.1. For definition of these
concepts see Annex A-3.

2. It depends on the service. For example, in case of one party services the ssUAP interacts directly with the SSM
(one example is on line subscription service).

3. The term service instance is used to refer to a particular provider’s implementation of a service type. A service type
is an abstraction of a service, that could be provided by more than one implementation (instance).

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

18

A request to create a service session of a particular service type results in the creation of one or more
object instances. The SF creates and initializes the instances according to rules imposed by their
implementation. The SF supports capabilities to manage the created objects (delete, suspend and
resume them). The SF returns to the client one or more interface references to these components.

The SF assembles the resources necessary for the existence of a component it creates. Therefore,
the SF represents a scope of resource allocation, which is the set of resources available to the SF.

2.10 SSM - Service Session Manager
The Service Session Manager (SSM) is a service component which comprises the service-specific
and generic session control segments of the Provider Service Session (PSS). An SSM supports
service capabilities that are shared among members (parties, resources, etc.) in a service session.
Information related to a particular member of the service session are encapsulated in Member Usage
Service Session Managers (MUSMs). An SSM is created by an SF, one per request for the
corresponding service type. The deletion of an SSM is service specific, for a number of services it is
deleted when all users have left the session, but for others (like chat services) it should be explicitly
deleted. The life-span of an SSM is the same as the corresponding provider service session.

2.11 USM - User Service Session Manager
The USM comprises the service-specific and generic session control of the Provider Domain User
Service Session (PD_USS). It is a specialization of the MUSM which represents and holds the
context of a party, or resource in a service session. It has the same characteristics as the MUSM (with
member replaced by party or resource as applicable). A USM is created by the SF, one per request
for the corresponding service type (per PD_USS). It is deleted when the party leaves the service
session. The life-span of a USM is the same as the corresponding PD_USS.

Within the service session the USM interacts with participants ssUAP or CompUSM. Interactions with
the ssUAP are the subject of Ret-RP specification and defined there. The USM also interacts with the
service core-logic held in the SSM to convey, where necessary, changes to the participant’s
involvement in the session and relevant service specific actions.

The USM supports interactions between the access session and service session through interactions
with the UA. This is to support access session originated commands on the service session, for
example to end or suspend. Additionally since the USM is responsible for one participant’s share of
accumulated session related charges it interacts with the participant’s UA to advise and respond to
accounting information.

2.12 PeerA - Peer Agent
The Peer Agent (PeerA) is a service independent SC that represents a peer in another peer’s
domain. It is supported by a domain acting in the access peer role. It is this domain’s end-point of an
access session with the peer domain. It supports a peer domain access session. It also represents
another domain, or a member of another domain, to this domain, and holds the agreed contract
between the domains. It is accessible from the peer’s domain, regardless of that domain’s location.

The PeerA should support the combined external capabilities of a UA and a PA. It may provide other
functionality to ensure the initiator of the access session and responder both receive appropriate
references to each other. Also, it ensures the coordination of these external capabilities and
maintains consistency of requests and responses.

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

19

2.13 CompUSM - Composer Usage Session Manager
The Composer Usage Session Manager (CompUSM) is a service component, which supports
composition of service sessions. The composition type supported is asymmetric with one domain
taking the usage party role, and the other domain taking the usage provider role. CompUSM is a
specialization of the MUSM and supports the Composer Domain Usage Service Session
(CompD_USS) (see [1]).

The CompUSM allows a service or resource to act as a usage party in a service session in another
domain. It supports usage party interfaces to the service session in the other domain (i.e., to the other
service session, the CompUSM appears as if it were a UAP). The other session provides a USM (with
usage provider interfaces) to interact with.

2.14 PeerUSM - Peer Usage Session Manager
The Peer Usage Session Manager (PeerUSM) is a service component which supports peer to peer
relationships between service sessions in different domains. Federation is symmetric with both
domains taking usage peer roles. It is a specialization of the MUSM and supports the Peer Domain
Usage Service Session (PeerD_USS).

The PeerUSM allows a service session to interact with another service session in another domain.
Both service sessions are peers, and both support a PeerUSM to interact through.

2.15 SLCM - Service Life Cycle Management
The Service Life Cycle Management component (SLCM) is a service-independent SC, which
manages the life cycle of TINA services. It provides functionality for (1) deployment, configuration and
withdrawal of a service network, (2) management of service types and (3) deployment, configuration,
activation, deactivation and withdrawal of service instances. It has a strong interaction with
underlaying DPE repositories and services and other facilities, like node management facilities, that
allow the management of the service nodes composing the service network.

It interacts with the Sub component to update its information about available (subscribable and
usable) services.

2.16 MUSM - Member Usage Service Session
The Member Usage Service Session Manager (MUSM) is an abstract service component, which
comprises the service-specific and generic session control segments of the Domain Usage Service
Session (D_USS) that interact with the PSS. The generic segments of the MUSM correspond to the
TINA session model feature sets. It is specialized according to the role of session member supported
by the D_USS:

• User Service Session Manager (USM) represents the UD_USS;

• Composer Usage Session Manager (CompUSM) represents the CompD_USS;

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

20

• Peer Usage Session Manager (PeerUSM) represents the PeerD_USS.

Figure 2-2. Inheritance hierarchy for Member Usage Service Session Manager4.

The MUSM represents and holds the context of a member (party, resource, provider or peer) in a
service session. As the MUSM is an abstract service component, no instances are created. Instances
of the appropriate specialized service component are created to represent specific session members.

2.17 Overview of interactions
The following table shows which components interact5:

2.18 Accounting Management in the Service Architecture
This section deals with the following two issues;

• Accounting/billing management in TINA communication services

• Accounting management architecture

4. {} MUSM means an abstract class without any instance.

5. PeerA, CompUSM, and PeerUSM are not specified yet; entries in the table reflect expected interactions.

Table 2-1. Overview of interactions

Client \ Server asUAP PA IA anonUA namedUA Sub ssUAP SF SSM USM PeerA CompUSM PeerUSM SLCM

asUAP X

PA X X X X X

IA X X X

anonUA X X X X X

namedUA X X X X X X

Sub X X X

ssUAP X X

SF X X X X

SSM X X X X X X X

USM X X X X X

PeerA X X X X X X X

CompUSM X X

PeerUSM X X X

SLCM X X

{}MUSM

CompUSMUSM PeerUSM

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

21

Although the first issue can be seen as an example of the second one, i. e. accounting/billing
management of TINA communication service can be performed by giving generic accounting
management interfaces to network resource components, we prioritize our focus on the first one, as
it has primary importance in TINA service realizations. As such, we give our presentation in the order
of practical importance in this section.

2.18.1 Overview of Accounting Management in SA

Before we proceed to present accounting management components, we illustrate the usage of
accounting management in a typical TINA service scenario and its relationship to service/network
components.

Figure 2-3. Overview of Accounting Management in TINA Service

Figure 2-3 shows an overview of accounting and billing management in a TINA service. Event traces
for this scenario are described in Section 4.3.5 and Section 4.4.17. In this scenario, two UAPs in user
domains communicate with each other through a bidirectional stream binding.

In the above scenario we make the following assumptions:

• Service session creation: service components such as UA, USM, SSM, etc. are already
created and are in place.

• Network resource components set-up: network resource components such as CC, LNC,
TCM, etc. are already created and are in place. For the sake of simplicity, the figure does
not show all the network resource components.

• Stream binding set-up: necessary Network Flow End Point (NFEPs) and Stream Flow
End Point (SFEPs) are already provisioned and bound to the stream bindings.

Although all of these above steps are part of the accounting management, we do not delve into their
details, as they do not directly correlate with usage accounting; they should rather be considered as
provisions for usage accounting. For the same reason, accounting information after usage, e.g.

ConS

R
et

T
C

on

T
C

on

R
et

PAPA UA UA

CSM

CC

SSMUSM USM

Flow of Accounting Events
Alternative Flow of Accounting Events

ssUAPssUAP

asUAP

or

ssUAP

asUAP

or

ssUAP

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

22

deletions of components, are also out of the scope of this section. Those accounting information from
pre- and post-usage provisions may be useful for fault management and system maintenance
purposes, however.

Figure 2-4. An Example of Third-Party Service Provider Accounting

Figure 2-4 illustrates an example 3Pty service provider accounting example. It is to be seen that basic
structure of accounting management is exactly the same as Figure 2-3, except that flow of accounting
events (and thus billing) are reversed at 3Pty reference point.6 The accounting concepts introduced
in this document, such as management context, service transaction, accounting management ladder,
are applicable as they are in this revised figure.

We also assume that service transaction concept is in effect, i. e. billing information may be correlated
with performance monitoring during the transaction. In the current example, we assume the
followings:

• The two users are on two separate service transactions with the retailer, whose contexts
are passed through Ret.

• The retailer is on a service transaction with the connectivity provider, whose context is
passed through ConS. This service transaction corresponds to client-server relation be-
tween stream flow connections (SFCs) and network flow connections (NFCs) on the
stream binding.

• The retailer is acting as a billing agent for the communication service provider. Although
it is possible that the retailer does not act as an agent, this is probably the most ‘typical’
usage of TINA services, implicitly assumed in the current TINA reference points specifi-

6. At this point, very little has been defined on 3Pty reference point, and federation/composition concept in Service
Architecture is in general still under developed. The figure is given only as an example, none of the component
names should be taken definite.

ConS

3P
ty

T
C

on

T
C

on

R
et

PAPA UA UA

CSM

CC

SSMUSM USM

Flow of Accounting Events
Alternative Flow of Accounting Events

ssUAPssUAP

asUAP

or

ssUAP

asUAP

or

ssUAP

VOD Service

(VOD)

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

23

cations. A billing agent does not necessary imply, however, that the connectivity provider
(CP) be made invisible from the users. It can be made visible, i. e. a separate bill from the
CP, or it can be made invisible, i. e. a combined, integrated bill from the retailer only, de-
pending on the scope of the binding contexts.

The above assumptions imply the followings to the maintenance of service quality in TINA. In the
visible billing context, both business entities, i. e. the retailer and the communication service provider,
are visible from the users. Since visibility in the billing should be translated into responsibility on
service quality maintenance, performance monitoring results should be correlated with billing
information separately in case of the visible billing context at the conclusion of service transactions.

2.18.2 Visibility of Billing Context

Before we proceed to explain the scenario depicted in Figure 2-3, it is necessary to illustrate the
accounting relationship established by billing (accounting management) context, which essentially
dictates who bills who in TINA services. In the current service architecture, we distinguish two
different cases.

• Visible Billing Context: in the visible billing context, the retailer and the connectivity pro-
vider (CP) look as two independent separate entities to the eyes of the consumer. As
such, two separate billing items are generated from the two entities.

• Invisible Billing Context: in the invisible billing context, the retailer appears as the integra-
tor of all the necessary sub-services, which include communication service supported by
the CP. The consumer does not directly deal with the CP, as such no contexts may be
passed to the CP from the consumer. The bill from the CP may appear as one of billing
items of the retailer, however.

We do not intend to make comparison of two billing models, nor do we assume that either of the
models is to be used or more likely used in TINA services; our purpose is to explain that the TINA
accounting management architecture supports both.

Figure 2-5. Visible Billing Context Example

Figure 2-5 illustrates a visible billing example, where the consumer sets up two separate billing
contexts (accounting management contexts) to the retailer and to the CP. The results from
performance monitoring (PM) are fed back to the respective providers separately, those on network
QoS to the CP whereas those on service quality to the retailer, which are to be taken into account in

Consumer

Retailer

CP

Context

Bill

Context
Bill

PM

correlation

correlation

(Network QoS)

(Service Quality)

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

24

the respective bills. In other words, in terms of the stream binding, the retailer is responsible for and
is billing from SFEP to SFEP, whereas the CP is responsible for and is billing from NFEP to NFEP.
This visible billing context case, however, does not exclude the retailer to act as a billing agent for the
CP, in which the consumer is still able to set-up a separate context with the CP, but he/she receives
the bill indirectly via the retailer.

Service quality issues in TINA are discussed in more details in [13], and service transaction is
explained in TINA service architecture [1].

Figure 2-6. Invisible Billing Context Example

Figure 2-6 illustrates an invisible billing context example. The consumer does not see the CP directly,
and its bill is included in the one from the retailer. The CP is responsible for network QoS of the stream
binding, i. e. from NFEP to NFEP, which are billed to the retailer. The retailer is responsible for service
quality of the stream binding, i. e. from SFEP to SFEP, which are billed to the consumer.

2.18.3 Different Accounting Management Approaches

The on-line accounting management problem can be addressed in several ways, as any other
management service or facility:

• On-line accounting as an integrated facility: it is provided through the access session (ser-
vice independent) components. This is the case currently considered in this document.
This facility definition is optional, not prescriptive, as a retailer could choose to follow the
approach below.

• On-line accounting as an ancillary service: it is supported by service sessions. This case
will be considered in Section 4.5.10. Two complementary solutions may be provided:

- Per session on-line accounting could be supported by an accounting FS (to be defined)
to be provided by the USM of those services that wish to provide session on-line account-
ing.

- Overall user accounting could be also provided as a separate service (a specific USM/
SSM) to control the user billing information in a retailer domain. In this case, an account-
ing management specific interface should be defined for this service (Section 4.5.10).

Consumer

Retailer
CP

Context

Bill

Context

BillPM

correlation

correlation (Service Quality)

(Network QoS)

Computational Model and Dynamics Service Component Specification
Version 1.0b, January 19, 1998

25

2.18.4 Accounting Management Ladder

As it can be easily seen from Figure 2-3, accounting events in on-line accounting are passed from
providers (service or connectivity) to the users through service components in the retailer domain,
being transformed successively from raw measurement accounting event to billing events. The same
is true for Figure 2-4, where a third-party provider charges for its content-based service (in this
example VOD), which will be ascribed to the user by adding the connectivity provider’s usage charge
and the retailer’s commission.

2.18.5 Relevance to Resource/DPE Architectures

It would be of benefit to the reader to explain relevance of service level accounting to TINA resource/
DPE architectures.

• DPE event management (optional): availability of the DPE event management mecha-
nism, which is to be compliant with CORBA COS event management service and CORBA
notification service, is assumed. The current SCS specification, however, uses only push
and pull interfaces attached to respective accountable objects (AmcLadderElement).

• NCS accounting (required): NCS accounting gives definitions and IDL specs. of basic ac-
counting concepts, which are essential/non-essential accounting event, accounting ob-
ject, usage metering log manager, etc. Though SCS accounting management section
does not necessarily assume TINA resource architecture, i. e. it can be tapped onto a leg-
acy connection management system, generic accounting management components de-
fined in NCS accounting are also used in SCS.

• NRA accounting management architecture (required): NRA accounting management ar-
chitecture explains basic concepts such as accounting management domain, and its us-
age in NRA. The same concepts are used in this SCS accounting.

We’d like to mention in particular that service components in the retailer domain (SSM, USM, etc.)
can be made accountable objects such that their accounting activities can be independently
controlled. When this is the case, the accounting management architecture in the retailer domain
(SCS accounting) gives a superior example of accounting management ladder, a partially ordered set
of accountable objects, which is capable of transforming accounting information into billing
information.

Though it is also possible that event communication between service components is done using
generic DPE event service, we assumed events are directly pushed from producers to consumers
(e.g. from SSM to namedUA), for the purpose of simple engineering realization.

2.19 Management Context
At Ret reference point, a set of management contexts may be agreed and possibly exchanged
between User and Retailer at the start of a service transaction, such that a consistent service
management is performed throughout the user’s session participation. These contexts must be
consistent with the ToM (Terms of Management), which is part of the service contract agreed at
subscription time [1].

To be more precise, ToM and management context relates in the following manner:

• ToM: at subscription time, a set of service profiles are defined as a part of subscription
process, which may contain options for management services such as billing or perfor-
mance management, adding to generic information describing the service itself, e.g. the
name of the service, interface names, associated roles, etc. In other words, ToM, a part
of the service contract, is represented as a part of the service profiles in that contract.

Service Component Specification Computational Model and Dynamics
Version 1.0b, January 19, 1998.

26

• Management context: management context is usually set-up within an access session,
therefore it reflects more of per user or per session management needs of the user. Man-
agement context may or may not override ToM represented by a corresponding service
profile, depending on the nature of the agreed terms, and the policy enforced by ToM. If
management context is not specifically set up between the user and the retailer, however,
the service profile will provide a default context, which will be applied to the user and his/
her sessions.

Figure 2-7 illustrates structural relationship between ToMs and management contexts.

Figure 2-7. Hierarchical Subscriber Management

Subscriber and subscriber assignment groups (SAGs) define a set of service profiles specific to their
classes, thus defining their ToMs. They can be seen similar to domains, whose constituencies are
subscribers and users, and ToMs and management contexts are a sort of management rules
(policies) for those domains. For example, SAG 1 can inherit its ToM (ToM 1) from Subscriber ToM,
its parent domain. User A can inherit default context from ToM 1, adding its own requirements, which
can be different from other user’s.

Service subscriber and SAGs can be indeed made domains, by associating policy rules with them.
For example, the top-level subscriber domain can control whether it allows or prohibits its sub-
domains (SAG 1, SAG 2, etc. and the associated users) to override its top-level ToM, by asserting it
using a policy rule.

Subscriber

SAG 1

(ToM)

(ToM)

Subscription
 Profile

SAG
Service

User
ServiceUser A

(Mgt Ctxts)

Session 1
(Mgt Ctxts

SessionSession Session 2
(Mgt Ctxts

Subscription

Management

User Profile

Management

Service
Session

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

27

3. Detailed Descriptions

This chapter gives detailed descriptions and for each component a table showing which clients are
accessing which interfaces and operations and a table giving the description of each operation.

The following components are not fully specified for this version, but some components will be given
supplementary explanation at the end of this section (Section 3.14, Yet-To-Be-Defined Components).

• Off-line components:

- UAF - User Agent Factory

- SLCM - Service Life Cycle Management

• Access related components

- PeerA - Peer Agent

- AnonUA - Anonymous User Agent

- SecMgr - Security Manager (Please see Section 3.14.1)

• Usage related components

- MUSM - ‘abstract’ Member Usage Session Manager

- CompUSM - Composer Usage Session Manager

- PeerUSM - Peer Usage Session Manager

3.1 asUAP

The User APplication (UAP) SC is defined to model a variety of applications in the User domain. A
UAP SC represents one or more of these applications and programs. A UAP can be used by human
users, and/or other applications in the user domain. A UAP can be either or both an access session
related and service session related SC. The access session related UAP is defined below. The
service session related UAP is defined in Section 3.7, "ssUAP".

As an access session related SC, the UAP enables a human user, or another application, to make
use of the capabilities of a PA or PeerA, through an appropriate (user) interface. An access session
related UAP supports part of the domain access session. The UAP provides capabilities for:

• request authentication information from the user, required by the PA (or PeerA) to set-up
an access session with a UA (PeerA),

• the user to request the creation of new service sessions,

• the user to request to join an existing service session,

• alerting the user to invitations, which arrive at the PA or PeerA.

An access session related UAP may also support the following optional capabilities, when they are
also supported by the PA or PeerA:

• allow the user to search for a provider, and register as a user of the provider’s services;

• allow the user to search for services and identify providers providing those services.

Zero or more stream interfaces [4] can be attached to a UAP. The stream interfaces can be bound to
those in user systems and/or those in providers’ domains.

A user or peer domain contains one or more access session related UAPs. Any access session
related UAP can request a PA or PeerA to establish an access session. One or more UAPs interact
with a PA or PeerA to use its access session related capabilities within an access session.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

28

A UAP instance may support only access session related capabilities or only service session related
capabilities; or it may support both. Access session related UAPs may be specialized by a domain to
interact with a specialized PA or PeerA.

3.1.1 i_Access interface

i_Access interface allows the PA to inform the consumer of events associated with their access
sessions, such as invitations, new sessions, etc.

The operations are not detailed here, but some operations can be found in the IDL section.

3.2 PA
The Provider Agent (PA) is a service independent SC, defined as the user’s end-point of an access
session. The PA is supported in a domain, acting in an access user role. The PA supports a (single)
user accessing its UA and making use of services, through an access session. The PA supports the
user domain access session, in conjunction with access session related UAPs, and other user
domain infrastructure.

Capabilities supported by a PA:

• set-up a trusted relationship between1 the user and the provider (an access session), by
interacting with an Initial Agent2, and gaining a reference to a UA3;

• within an access session:

- convey requests (from a user to a UA) for creating new service sessions,

1. Practically speaking, the user and the provider is in a trusted relationship when they mutually authenticated each
other in a cryptographically strong manner, and both parties are ready to engage in a service session which may
be associated with financial transactions.

2. The PA may use a location service to find an interface reference for the IA, or some other means. The PA will provide
the retailer name, and possibly other information to scope the search of the location service. The capability of the
location service to return this interface reference is an important part in enabling access irrespective of location,
which is one important feature of personal mobility. This assumes that the location service can indeed be contacted,
irrespective of location. Also, it may imply that interworking between location services in different domains is
required. How the location service gains an interface reference of an initial agent is undefined. It is likely that the
location service has to interact with an object in the provider’s domain in order to gain the reference. This interaction
is not defined at present.

3. This capability is an important element in support of personal mobility, as it allows a user to access a provider
domain from various locations.

Table 3-1. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAScsASUAPIntra::i_Access TINAObjPA 4.4.9 Invite a User to Join a Session Annex 2.7

Table 3-2. Required interfaces

Server Interfaces

TINAObjPA
(Provider Agent)

TINAScsPAIntra::i_Initial
TINAScsPAIntra::i_Access
TINAScsPAIntra::i_AccountingPull

TINAObjUSM TINAScsUSMIntra::i_MgmtCtxt

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

29

- convey request for discovering the services and their session models in order to be sure
to have the right ssUAP or download it4,

- convey requests for joining existing service session,

- receive invitations to join existing service sessions (from a UA) and alert the user5,

- anonymously make use of a provider’s services,

- deploy new components into the user’s domain,

- support access to terminal configuration information from a provider’s domain,

- register to receive invitations sent when no access session exists.

Operations supported by a PA are service independent.

For each concurrent access session a user has with a provider, there is one PA instance in the user’s
domain. Each PA may be associated (through an access session) with the same UA, or separate UA
instances. A single PA is only ever associated with one UA through an access session. (When no
access sessions exist, a user domain can still support a PA. It can be used to initiate an access
session, and may receive invitations if registered.)

4. For each service, the retailer might offer an associated service to download the ssUAP.

5. Using an access session related UAP.

Table 3-3. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAScsPAIntra::
i_Initial

TINAObjASUAP 4.3.1 Contact a provider
4.3.2 Login to a Provider as a Known User
4.3.3 Login to Provider as Anonymous User

Annex 2.8

TINAScsPAIntra::
i_Access

TINAObjASUAP

TINAObjASUAP &
TINAObjSSUAP

4.3.4 Logout from a Provider
4.3.6 List Subscribed Services
4.4.7 Resume a Service Session
4.4.8 Resume Participation in a Service Session
4.4.9 Invite a User to Join a Session (case 3)
4.5.6 Register to receive invitations outside of an
access session
4.4.1 Start a Service Session and Selection Of
session model

Annex 2.8

TINAProviderInitial::

i_ProviderAuthenticatea
TINAObjASUAP 4.3.2 Login to a Provider as a Known User Ret-RP

TINAScsPAIntra::
i_AccountingPull

TINAObjASUAP 4.3.5 Check Accounting Information Annex 2.8

TINAUserInitial::
i_UserInitial

TINAObjNamedUA &
TINAObjAnonUA

4.4.9 Invite a User to Join a Session (case 2) Ret-RP

TINAUserAccess::
i_UserAccess

TINAObjNamedUA &
TINAObjAnonUA

Ret-RP

TINAUserAccess::
i_UserTerminal

TINAObjNamedUA &
TINAObjAnonUA

Ret-RP

TINAUserAccess::
i_UserInvite

TINAObjNamedUA &
TINAObjAnonUA

4.4.9 Invite a User to Join a Session (case 1) Ret-RP

TINAUserAccess::
i_UserAccessSessionInfo

TINAObjNamedUA &
TINAObjAnonUA

Ret-RP

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

30

3.2.1 i_Initial interface
• contactProvider () allows the consumer to contact a retailer. The PA offers this

operation to an asUAP, to contact a named provider, and so allow the consumer to
establish and access session.

• requestNamedAccess () allows the consumer to identify himself to the retailer, and
establish an access session. A secure context may have already been set-up between
the consumer and the retailer using CORBA security services. In this case, this operation
returns a reference to a i_RetailerNamedAccess interface. If the consumer has not
already been authenticated, then an e_AuthenticationError exception will be
raised. This contains a reference to a i_RetailerAuthenticate interface, which may
be used to authenticate and set-up the secure context. Then this operation can be
invoked again to retrieve the reference to the i_RetailerNamedAccess interface.

• requestAnonymousAccess () allows the consumer to establish an access session with
the retailer without revealing his identity. The access session will provide access to some
services, although the consumer may need to negotiate with the retailer over which
services are available. (The services will obviously not be specialised to the consumer.)
The consumer interacts with the retailer through a i_RetailerAnonAccess interface.
This operation is otherwise the same as requestNamedAccess ().

a. The interfaceTINAProviderInitial::i_ProviderAuthenticate might be slightly different from the one defined in Ret-RP. This
issue needs further investigation.

TINAUserAccess::
i_UserSessionInfo

TINAObjNamedUA &
TINAObjAnonUA

Ret-RP

TINAScsPAIntra:: i_Init TBD None for this version Annex 2.8

Table 3-4. Required interfaces

Server Interfaces

TINAObjASUAP TINAScsASUAPIntra::i_Access

TINAObjSSUAP TINAScsSSUAPIntra::i_AccessInitialise

TINAObjIA TINAProviderInitial::i_ProviderInitial
TINAProviderInitial::i_ProviderAuthenticate

TINAObjNamedUA TINAProviderAccess::i_ProviderNamedAccess
TINAScsNamedUAIntra::i_AccountingPull
TINAProviderAccess::i_DiscoverServicesIterator

TINAObjAnonUA TINAProviderAccess::i_ProviderAnonAccess

Table 3-3. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

31

3.2.2 i_Access interface

i_Access interface allows a known consumer access to his subscribed services. The consumer
uses it for all operations within a single access session with the retailer6. This interface is returned
when the consumer has been authenticated by the retailer and an access session has been
established. The interface reference is returned by calling requestNamedAccess () on the
i_Initial interface.

This interface allows also the client (usually the asUAP) to register/unregister interfaces to be used
within or outside the access session by the PA. It provides the following operations:

• registerInterface () - allows the asUAP interface to be registered for use within the
current access session. The registrations ends when the access session ends, or when
the unregisterInterface () operation is called. An interfaceIndex is returned to allow
the interface to be unregistered.

• registerInterfaceOutsideAccessSession () - allows the asUAP to register an
interface for use outside an access session. (The interface registered should still be
available when no access session exists between the user and provider).

• listRegisteredInterfaces () - allows the asUAP to list the interfaces which have
been registered with the PA by her. The list defines which interfaces are registered for use
inside an access session, and which are for use outside.

• unregisterInterface () - allows the asUAP to unregister an interface, so that the PA
will not attempt to use that interface, (either inside or outside the access session).

• registerInterfaces () - allows the client to register a list of interfaces to use within the
current access session. The registrations ends when the access session ends, or when
the unregisterInterfaces () operation is called. An interfaceIndexList is returned to
allow the interface to be unregistered.

• unregisterInterfaces () - allows the clientto unregister alist of interfaces, so that the
PA will not attempt to use that interface, (either inside or outside the access session).

• listAccessSessions () - allows the consumer in this access session to find out about
other access sessions that he has with this retailer. (e.g. A consumer is at work, but has
an access session set up at home which runs an active security service session.)

• endAccessSession () - allows the consumer to end a specified access session, either
the current one, or another, found using listAccessSessions (). The consumer can
also specify some actions to do if there are active service sessions.

• getUserInfo () - gets the consumer’s username, and other properties.

• getUserCtxtNames () - retrieves the names of the user contexts registered by the user
agent.

• getUserCtxtNamesAccessSessions () - retrieves the names of the user contexts
requested by the access session that are associated with given access sessions.

• listSubscribedServices () - lists the services to which the consumer is subscribed.
Scoping of subscribed services can be done using property lists. The operation returns
sufficient information for the consumer to start a particular (subscribed)service.

6. Here we make the following implementation assumption: each PA deals with only a single consumer, and provides
a separate interface for each access session, and so does each asUAP.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

32

• discoverServices () - lists all the services available from the retailer. The consumer
can scope the list by suppling some properties that the service should have, and a
maximum number to return. A reference to an i_DiscoverServicesIterator
interface can be used to retrieve the remaining services.

• listServiceSessions () - lists the service sessions of the consumer. The request
can be scoped by the access session, and session properties, (e.g. active, suspended,
service type, etc.).

• getSession{Models,InterfaceTypes,Interface,Interfaces} () - all re-
trieve information on a particular session.

• listSessionInvitations () - lists the invitations to join a service session that have
been sent to the consumer.

• listSessionAnnouncements () - lists the service sessions with have been
announced. It can be scoped by some announcement properties.

• startService () - allows the consumer to start a service session. It is used by a ssUAP
to start a service session, and have interfaces associated with the session returned to it.

• startServiceWithUAP () - allows the consumer to start a service session, using a
specified UAP. It is used by an asUAP to (possibly download and then) launch a ssUAP,
which will be used with the service session.

• endSession () - allows the consumer to end a service session.

• endMyParticipation () - allows the consumer to end his participation in a service
session.

• suspendSession () - allows the consumer to suspend a service session.

• suspendMyParticipation () - allows the consumer to suspend his participation in a
service session.

• resumeSession () - allows the consumer to resume a service session.

• resumeMyParticipation () - allows the consumer to resume his participation in a
service session.

• joinSessionWithInvitation () - allows the consumer to join a service session, to
which he has been invited.

• joinSessionWithAnnouncement () - allows the consumer to join a service session,
which has been announced.

• replyToInvitation () - allows the consumer to reply to an invitation. It can be used
to inform the service session to which they have been invited, that they will/will not be
joining the session, or to send the invitation somewhere else. (It does not allow the
consumer to join the session.)

• receiveInvitationsOutsideAccessSession () - allows the consumer to request
that invitations are sent to a specified user context, when this access session ends.

3.2.3 i_AccountingPull

This interface allows the asUAP to retrieve accounting data from the PA. It provides the following
operations:

• GetUserLogEntries () - allows asUAP to retrieve accounting data about the user
specifying a time interval.

• GetSessionLogEntries () - allows asUAP to retrieve accounting data about a specific
service session the user is/has been taking part in.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

33

3.3 IA
An Initial Agent (IA) is the initial access point to a domain. An IA reference is returned to the
requesting domain (PA or PeerA) when it wishes to contact the domain. The IA supports capabilities
to:

• authenticate the requesting domain and set up a trusted relationship between the
domains (an access session) by interacting with the PA or PeerA,

• establish an access session, but allowing the requesting domain to remain anonymous.
The type of UA accessed in this way is an anonymous user agent.

An IA supports requests from one PA/PeerA at a time. The PA/PeerA requests to contact the domain
and is given a reference to an IA. When the PA/PeerA has interacted with the IA to establish an
access session with a UA/PeerA, the reference to the IA may become invalid. Subsequently, the IA
may be contacted by another PA/PeerA. It relies on interfaces on the UA (both named and
anonymous) and the PeerA for initialization purposes and an interface on an authentication server
(not specified by TINA).

Both i_ProviderInitial and i_ProviderAuthenticate are defined as in Ret [12].

3.4 namedUA
The namedUA supports the following capabilities:

• Within an access session

- Act as a single contact point to control and manage (create/suspend/resume/delete) the
life-cycle of service sessions and user service sessions, taking into account restrictions
posed by the subscriber and the user.

- Suspend/resume existing user service sessions and service sessions. This includes sup-
port for session mobility.

- Manage the user’s preferences (choices or constraints) on service access and service
execution (this is supported by starting a provider specific service session.).

Table 3-5. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAProviderInitial::
i_ProviderInitial

TINAObjPeerA
TINAOnjPA

4.3.2 Login to a Provider as a Known User
4.3.3 Login to Provider as Anonymous User

Ret section C.3

TINAProviderInitial::
i_ProviderAuthenticate

TINAObjPeerA
TINAObjPA

4.3.2 Login to a Provider as a Known User
4.3.3 Login to Provider as Anonymous User

Ret section C.3

Table 3-6. Required interfaces

Server Interfaces

TINAObjAnonUA i_Initial

TINAObjNamedUA i_Initial

TINAObjPeerA i_Initial (unspecified)

Authentication Server Currently unspecified

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

34

- Resolve the service execution environment for the user, allowing him/her to use services
from many different types of terminals. This requires resource configuration information
of the user system (which includes terminals and their access points being used by or
available for the user; access to this information may be restricted by the user/PA.) This
includes support for personal mobility.

- Register user at a terminal to receive invitations. This includes support for personal mo-
bility.

- Allow the user to define user private/public policies (this is supported by starting a pro-
vider specific service session).

- Negotiate the session models and feature sets supported by a service session, in order
for it to interact with a UAP in the user’s domain.

• Accept invitations from users to join a service session.

• Deliver invitations to a terminal, previously registered by the user with the namedUA. No
access session would be required to allow this delivery of invitations.

The namedUA may support the following optional capabilities:

• Perform actions on behalf of the user, when the user is not in an access session with the
namedUA.

• Initiate an access session with a PA.

• Support additional authentication of the user. This may be tailored to the user and the
usage context.

Table 3-7. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAProviderAccess::
i_ProviderNamedAccess

TINAObjPA 4.3.2 Login to a Provider as a Known User
4.3.4 Logout from a Provider
4.4.1 Start a Service Session and Selection Of
session model
4.4.8 Resume Participation in a Service Session
4.4.7 Resume a Service Session

Ret Annex
A
section 0.3

TINAScsNamedUAIntra::
i_Initial

TINAObjIA Annex 2.9

TINAScsNamedUAIntra::
i_SessionInfo

TINAObjUSM 4.4.6 Suspend Participation in a Service Session
4.4.3 End Service Session via Access Session
4.4.5 Suspend a Service Session
4.4.2 End a Service Session

Annex 2.9

TINAScsNamedUAIntra::
i_InvitationDelivery

TINAObjSSM
TINAObjPeerA

4.4.9 Invite a User to Join a Session Annex 2.9

TINAProviderAccess::
i_DiscoverServicesIterator

TINAObjPA None for this version Ret-RP

TINAProviderAccess::
i_ProviderAccess

TINAObjPA None for this version Ret-RP

TINAProviderAccess::
i_ProviderAccessGetInterfaces

TINAObjPA None for this version Ret-RP

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

35

3.4.1 i_ProviderNamedAccess interface

i_ProviderNamedAccess interface allows a known user access to his subscribed services. The
user uses it for all operations within an access session with the provider. This interface is returned
when the user has been authenticated by the provider and an access session has been established.
It is returned by calling requestNamedAccess () on the i_ProviderInitial interface.

TINAProviderAccess::
i_ProviderAccessInterfaces

TINAObjPA None for this version Ret-RP

TINAProviderAccess::
i_ProviderAccessRegisterInterfaces

TINAObjPA None for this version Ret-RP

TINAScsNamedUAIntra::
i_AccountingPull

TINAObjASUAP
TINAObjPA

4.3.5 Check Accounting Information Annex 2.9

TINAScsNamedUAIntra::
i_AccountingPush

TINAObjSSM
TINAObjUSM

4.4.17 Service Session Accounting Annex 2.9

TINAScsNamedUAIntra::
i_SubscriptionNotify

TINAObjSub 4.5.1 Subscribe a New Customer
4.5.2 Modify Subscriber Information
4.5.3 Contract a New Service
4.5.4 Modify Service Contract
4.5.5 Unsubscribe

Annex 2.9

TINAScsNamedUAIntra::
i_ServiceProfileCustomization

TBD None for this version Annex 2.9

TINAScsNamedUAIntra::
i_UserProfileManagement

TBD None for this version Annex 2.9

TINAScsNamedUAIntra::
i_Init

UAF (TBD) None for this version Annex 2.9

Table 3-8. Required interfaces

Server Interfaces

TINAObjPA TINAUserAccess::i_UserInvite
TINAUserAccess::i_UserAccess
TINAUserAccess::i_UserTerminal
TINAUserAccess::i_UserAccessSessionInfo
TINAUserAccess::i_UserSessionInfo
TINAUserInitial::i_UserInitial

TINAObjSSM TINAScsSSMIntra::i_Join

TINAObjSF TINAScsSF::i_SSCreate
TINAScsSF::i_SSManage
TINAScsSF::i_Resume

TINAObjSub TINAScsSubInitial::i_InitialAccess
TINAScsSubscriberInfoAccess::i_SubscriberInfoQuery

Table 3-7. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

36

It provides the following operations:

• setUserContext () - allows the user to inform the provider about interfaces in the user
domain, and other user domain information. (e.g. user applications available in the user
domain, operating system used, etc.). It should be called immediately after receiving the
reference to this interface, or subsequent operations may raise an exception.

• listAccessSessions () - allows the user in this access session to find out about other
access sessions that he has with this provider. (e.g. A user is at work, but has an access
session set up at home which runs an active security service session.)

• endAccessSession () - allows the user to end a specified access session, either the
current one, or another, found using listAccessSessions (). The user can also specify
some actions to do if there are active service sessions.

• getUserInfo () - gets the user’s username, and other properties.

• listSubscribedServices() - lists the services to which the user is subscribed.
Scoping of subscribed services can be done using property lists. The operation returns
sufficient information for the user to start a particular (subscribed) service.

• discoverServices () - lists all the services available from the provider. The user can
scope the list by suppling some properties that the service should have, and a maximum
number to return. A reference to an i_DiscoverServicesIterator interface can be
used to retrieve the remaining services.

• listServiceSessions () - lists the service sessions of the user. The request can be
scoped by the access session, and session properties, (e.g. active, suspended, service
type, etc.).

• getSession{Models,InterfaceTypes,Interface,Interfaces} () - all
retrieve information on a particular session.

• listSessionInvitations () - lists the invitations to join a service session that have
been sent to the user.

• listSessionAnnouncements () - lists the service sessions with have been
announced. It can be scoped by some announcement properties.

• startService () - allows the user to start a service session.

• endSession () - allows the user to end a service session.

• endMyParticipation () - allows the user to end his participation in a service session.

• suspendSession () - allows the user to suspend a service session.

• suspendMyParticipation () - allows the user to suspend his participation in a
service session.

• resumeSession () - allows the user to resume a service session.

• resumeMyParticipation () - allows the user to resume his participation in a service
session.

• joinSessionWithInvitation () - allows the user to join a service session, to which
he has been invited.

• joinSessionWithAnnouncement () - allows the user to join a service session, which
has been announced.

• replyToInvitation () - allows the user to reply to an invitation. It can be used to
inform the service session to which they have been invited, that they will/will not be joining
the session, or to send the invitation somewhere else. (It does not allow the user to join
the session.)

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

37

• getInterfaceTypes () - allows the user to discover all of the interface types supported
by the provider domain.

• getInterface () - allows the user to retrieve an interface reference, giving the interface
type and properties.

• getInterfaces () - allows the user to retrieve a list of all the interfaces supported by the
provider.

• registerInterface () - allows a user interface to be registered for use within the
current access session. The registrations ends when the access session ends, or when
the unregisterInterface () operation is called. An interfaceIndex is returned to allow
the interface to be unregistered.

• registerInterfaceOutsideAccessSession () - allows a user to register an
interface for use outside an access session. (The interface registered should still be
available when no access session exists between the user and provider).

• listRegisteredInterfaces () - allows the user to list the interfaces which have been
registered with the provider by her. The list defines which interfaces are registered for use
inside an access session, and which are for use outside.

• unregisterInterface () - allows the user to unregister an interface, so that the
provider will not attempt to use that interface, (either inside or outside the access
session).

3.4.2 i_Initial

This interface allows its clients to get a reference of interface i_ProviderNamedAccess that is
necessary for access session interaction to take place.

It provides the following operation:

setupAccessSession () - allows its clients to get a reference of interface i_ProviderNamedAccess
for an access session and the access session identifiers.

3.4.3 i_SessionInfo

This interface allows its clients to give the namedUA the information necessary to keep an updated
list of sessions the corresponding user is participating in and the status of both the session and the
user’s participation.

It provides the following operations:

• participationSuspended () - allows its clients to notify the namedUA of the
suspension of the user’s participation in a service session, and provide it with a reference
to an interface of a SF that will be used for resuming the participation and the relevant
accounting information for the suspended service session.

• participationEnded () - allows its clients to notify the namedUA of the end of the
user’s participation in a service session, and provide it with the relevant accounting
information for the ended service session.

• sessionSuspended () - allows its clients to notify the namedUA of the suspension of a
service session where the user was taking part, and provide it with a reference to an
interface of a SF that will be used for resuming the service session and the relevant
accounting information for the ended service session.

• sessionEnded () - allows its clients to notify the namedUA of the end of a service session
where the user was taking part, and provide it with the relevant accounting information for
the ended service session.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

38

• sessionResumed () - allows its clients to notify the namedUA that a previously
suspended service session, where the user was taking part, has been resumed.

3.4.4 i_InvitationDelivery

This interface allows its clients to send invitations to the namedUA’s user or cancel them.

It provides the following operations:

• Invite () - allows its clients to send an invitation to the service session to the namedUA’s
corresponding user. An identifier for the service the user is being invited to join a session
of, as well as the name of the inviting party, the purpose of the session, and the reason
for the invitation, are included in the invocation to allow for different invitation screening
policies. An invitation identifier unique for this user and provider is given as well.

• Cancel () - allows its clients to cancel an invitation previously issued for reasons like the
end of the service session before the invited user joins; the unique invitation identifier is
passed to identify the invitation to be cancelled.

3.4.5 i_AccountingPull

This interface allows its clients to retrieve accounting data from the namedUA.

It provides the following operations:

• GetUserLogEntries () - allows its clients to retrieve accounting data about the
namedUA’s user specifying a time interval.

• GetSessionLogEntries () - allows its clients to retrieve accounting data about a
specific service session the namedUA’s user is/has been taking part of.

3.4.6 i_AccountingPush

This interface allows its clients to store accounting data in the namedUA.

It provides the following operations:

• StoreBillingEvent () - allows its clients to store a specific billing event in the
namedUA.

• StoreBillingEventList () - allows its clients to store a list of billing events in the
namedUA.

• RemoveBillingEvent () - allows its clients to remove a specified billing event
previously stored in the namedUA.

• RemoveBillingEventList () - allows its clients to remove a list of billing events
previously stored in the namedUA.

• RemoveUserLogEntries () - allows its clients to remove log entries corresponding to a
specified time interval.

3.4.7 i_ServiceProfileCustomization

This interface allows the customization of user service profiles. The user service profile includes a
service part, describing customized service characteristics, and a service management part, detailing
the management contexts for the different management areas (FCAPS).

The main operations are:

• getUserServiceProfile () - It returns the service profile defined for the user for a
specific service. If it has not been customized yet it will match with the SAG service profile
corresponding to the SAG the user belongs to (for that service).

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

39

• setUserServiceProfile () - It allows to define the user service profile for a specific
service. If it is consistent with the SAG Service Profile (profile for the group the user be-
longs to) the operation will succeed. If not, an exception is returned.

3.4.8 i_UserProfileManagement

This interface allows to manage the user profile. This profile contains information like: usage context,
defining the user location (and/or terminal) registration and local context in every location (and/or
terminal), and personal configuration, like invitation handling policies and registration schedule. The
usage context allows the client to locate the user and know about the context (terminal type, NAP
type, and available service capabilities) in the current location. The personal preferences allow to
model the behavior of service components in access and service sessions depending on certain
context conditions (time, date, location, session owner or participants, etc.).

It provides the following operations:

• getUserInformation () :.

• setUserInformation ():.

3.4.9 i_SubscriptionNotify

This interface allows its clients to notify the namedUA about new, modified or withdrawn services in
the portfolio of the namedUA’s corresponding user.

It provides the following operation:

• Notify () - allows its clients to notify the namedUA of new services added to the user’s
portfolio, or modifications or withdrawal of existing ones. It includes the list of services to
which the notification refers and their corresponding service profiles.

3.5 anonUA
Editor’s note: Not completed, no IDL available...

An Anonymous User Agent (anonUA) is a service independent SC that represents a user in the
provider’s domain. The anonUA is a specialization of UA for users that do not wish to disclose their
identity to the provider. It is the provider domain’s end-point of an access session with the anonymous
user.

The anonUA supports all of the capabilities which are defined for UA. In addition, it supports the
following capabilities:

• Support a trusted relationship between the user and the provider (an access session) by
referencing the user’s PA. The provider does not know the identity of the user. (‘Trust’ is
not guaranteed by identifying the user, as for the namedUA, but may be ensured by, for
example, pre-payment.);

• within an access session:

- Suspend/resume existing user service sessions and service sessions within an access
session. (Suspended sessions cannot be resumed in a different access session.7);

- Manage the user’s preferences (choices or constraints) on service access and service
execution. (These would have to be determined during the access session, and could
not be re-used in a separate access session.);

7. It is assumed suspended sessions are ended by the provider if the access session is ended.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

40

- Provide access to a user’s contract information with the provider. (This contract would be
defined at the start of the access session and terminated at the end of the access ses-
sion.);

- Define user private /public policies. (This may be supported by starting a provider specific
service session. This information would only be maintained during this access session.);

- Allow the anonymous user to register as a user of the provider (i.e., set-up a contract with
the provider for longer than a single access session);

- Negotiate the session models and feature sets supported by a service session, in order
for it to interact with a UAP in the user’s domain.

The anonUA provides no support for personal or session mobility.

3.5.1 i_ProviderAnonAccess interface

This interface defines no operations. It inherits from i_ProviderAccess defined in Ret.

3.5.2 i_AccountingPull

3.5.3 i_Initial

3.6 Sub - Subscription Management Component
The Subscription Management Component (Sub) allows the management of subscribers,
subscriptions and users for the whole set of services provided by a provider. The main functionality
offered by this component is:

• creation, modification, deletion and query of subscribers,

• creation, modification, deletion and query of subscriber related information (associated
end users, end user groups, etc.),

• creation, modification, deletion and query of service contracts (definition of subscribed
service profiles),

• retrieval of the list of services, either the ones available in the provider domain or the
subscribed ones,

• retrieval of the service profile (SAGServiceProfile) for a specific user (or terminal or NAP).

• creation and deletion of access components,

• notification of changes to the affected users’ access components.

Table 3-9. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

i_Access TINAObjPA 4.3.3 Login to Provider as Anonymous User Ret

i_AccountingPull TINAObjPA

i_Initial TINAObjIA

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

41

The figure shows the interactions of Sub with the rest of service components. Some of these
interactions are described but not prescribed here. The rationale behind this decision is the belief that
most providers will keep on using their subscriber databases and legacy interfaces for accessing
them, but will have to interact with TINA service components (access components and SLCM) in a
standard way.

In order to allow the insertion, modification and deletion of the subscription data Sub provides
interfaces to specific clients. These clients can be specialized service session components
supporting an on-line subscription management service or off-line provider subscription management
applications. The functionality provided by this component includes:

• new customers subscription and contract of new services (interface i_Subscribe),

• handling of service contract information (i_ServiceContractInfoMgmt), and

• handling of subscriber information (i_SubscriberInfoMgmt)

SLCM

instantiation

SSMprimUSMprim

SFprim

SUB

USM/SSMols

Note: The USM/SSMols is a specific session manager for the on-line subscription management service.
Interfaces between SUB and this component are described but NOT prescribed.
USMprim and SSMprim are the session managers for the primary services (those the subscriber contracts
and his associated end-users use).

NamedUAPA

UAPprim

UAPols

Ret-RP

End-User
Domain

Subscriber
Domain

Provider
Domain

SFols

UA
PA

Figure 3-1. Overview of Sub interfaces.

not prescriptive
 prescriptive

 legend:

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

42

The access and service sessions have to behave in line with the contracted service characteristics.
For that reason, Sub stores the subscription information representing the terms of the contract and
offers the i_SubscriberInfoQuery to retrieve it from the access components.

The i_ServiceNotify interface is offered to the SLCM to receive notifications about services
newly deployed or upgraded that are available in the service network for subscription and use, and
about the withdrawal of previously existing ones.

Other interface (i_InitialAccess) is offered to allow clients to retrieve the interfaces according to
their needs.

3.6.1 Subscription Management Type Definitions

In this section, the IDL definition of the information required to handle subscriptions, subscribers and
end-users in a provider domain is included. This will allow to understand more clearly the interface
descriptions.

Table 3-10. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAScsSubscriberInfoAccess::
i_SubscriberInfoQuery

TINAObjNamedUA
TINAObjPeerA

4.3.6 List Subscribed Services Annex 2.14

TINAScsSubInitial::
i_Subscribe

TINAObjUSM/SSMOLS 4.5.1 Subscribe a New Customer
4.5.2 Modify Subscriber Information
4.5.5 Unsubscribe
4.5.3 Contract a New Service
4.5.4 Modify Service Contract

Annex 2.13

TINAScsServiceContractInfoAccess::
i_ServiceContractInfoMgmt

TINAObjUSM/SSMOLS 4.5.1 Subscribe a New Customer
4.5.3 Contract a New Service
4.5.4 Modify Service Contract
4.5.5 Unsubscribe

Annex 2.10

TINAScsSubscriberInfoAccess::
i_SubscriberInfoMgmt

TINAObjUSM/SSMOLS 4.5.1 Subscribe a New Customer
4.5.2 Modify Subscriber Information
4.5.5 Unsubscribe
4.5.3 Contract a New Service
4.5.4 Modify Service Contract

Annex 2.14

TINAScsSubInitial::
i_ServiceNotify

TINAObjSLCM 4.5.7 Register a new service
4.5.8 Modify an existing service
4.5.9 Withdraw a service

(Annex 2.13)

TINAScsSubInitial::
i_InitialAccess

TINAObjNamedUA
TINAObjPeerA
TINAObjUSM/SSMOLS

(Not shown) Annex 2.13

Table 3-11. Required interfaces

Server Interfaces

TINAObjNamedUA TINAScsNamedUAIntra::i_SubscriptionNotify

TINAObjSLCM TINAScsServiceLCMgmt::i_ServiceQuery

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

43

Figure 3-2 represents mainly the relationship between a service and a subscriber, described in terms
of a number of service profiles (service template, subscription profile and SAG service profile). This
information model is described in [Information Model document].

A Subscriber contracts a number of Services; at least one to be considered as such. The information
associated with a subscriber is:

struct t_Subscriber {
t_AccountNumber accountNumber;
TINACommonTypes::t_UserId subscriberName;
t_Person identificationInfo;
t_Person billingContactPoint;
string RatePlan;
any paymentRecord;
any credit;

};

The accountNumber is generated by the provider and unique in its domain. It is used inside the
provider domain to identify the subscriber and, probably, in the bills as well. The subscriberName
is the name the subscriber wants to be named by8. It will be usually more friendly than the
accountNumber . There will be a one-to-one mapping between these two identifiers. The field
identificationInfo stores information like subscriber name, address, etc. The
billingContactPoint keeps the information required to send the invoices for billing. The
paymentRecord contains information about last paid bills to check the billing status. The credit
field stores information about deposits, credits granted to the subscriber, etc.

8. It might be used to generate user identifiers. For instance, user X in provider A could be given an identifier like X_A.

ServiceSubscriber

SAG

TerminalNetworkAccessUser

ServiceTemplateSAGServiceProfile SubscriptionProfile

ServiceContract

contracts

1+

describes

restricts

1+

1+

Figure 3-2. Subscription Management Information Model

1+

restricts

SAE

SubscriptionAssignmentGroup

SubscriptionAssignmentEntity

usage permit

assigned

Point

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

44

The agreed Service Contract defines the conditions of the service provision for each of the service
subscriptions. It is defined as:

struct t_ServiceContract {
TINAAccessCommonTypes::t_ServiceId serviceId;
t_AccountNumber accountNumber;
short maxNumOfServiceProfiles;
t_DateTime actualStart;
t_DateTime requestedStart;
t_Person requester;
t_Person technicalContactPoint;

 t_AuthLimit authorityLimit;
t_SubscriptionProfile subscriptionProfile;
t_SagServiceProfileList sagServiceProfileList;

};

The serviceId and the accountNumber , together, identify uniquely a service contract. The
profiles are the main part of the service contract. Other fields provide additional information about the
contract (starting date, requested starting date, requester, technical contact point, etc.).

A Service Template describes the characteristics of the Service provided by the provider.

struct t_ServiceTemplate {
TINAAccessCommonTypes::t_ServiceId serviceInstanceId;
TINAAccessCommonTypes::t_UserServiceName serviceInstanceName;
t_ServiceIdList requiredServices;
t_ServiceDescription serviceDescription;

};

The Service Description contains the characteristics of a generic service type. It is reused in the
service template to describe the characteristics of a specific service instance (particular
implementation of a service type) and in the service profiles to represent the characteristics of the
service contracted by a subscriber (for the whole set of associated users or for a group of them).

struct t_ServiceDescription {
TINAAccessCommonTypes::t_ServiceId serviceTypeId;
TINAAccessCommonTypes::t_UserServiceName serviceTypeName;
t_ParameterList serviceCommonParams;
t_ParameterList serviceSpecificParams;

};

The Parameter List consist of a sequence of triples composed of parameter name, parameter
configurability and parameter value.

typedef string t_ParameterName;
enum t_ParameterConfigurability {

FIXED_BY_PROVIDER, CONFIGURABLE_BY_SUBSCRIBER, CUSTOMIZABLE_BY_USER
};
typedef any t_ParameterValue;
struct t_Parameter {

t_ParameterName name;
t_ParameterConfigurability configurability;
t_ParameterValue value;

};
typedef sequence<t_Parameter> t_ParameterList;

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

45

The provider may give the subscriber the option to select specific service parameters to apply to all
its associated entities9 -Subscription Profile- or to a group of them -SAG Service Profile-, reducing
the alternatives (restricts association in Figure 3-2) given in the service template. These profiles are
the main part of the service contract.

typedef string t_ServiceProfileId;
struct t_ServiceProfile {

t_ServiceProfileId spId;
t_ServiceDescription serviceDescription;

};
typedef t_ServiceProfile t_SagServiceProfile;
typedef t_ServiceProfile t_SubscriptionProfile;

A set of entities, Users, Terminals or NAPs, can be associated to a subscriber. Let’s call them
Subscription Assignment Entities (SAE).

enum t_entityType {user, terminal, nap};
/**

* Entity Id identifies uniquely a SAE inside the provider domain.
**/

union t_entityId switch (t_entityType) {
case user: TINACommonTypes::t_UserId userId;
case terminal: TINAAccessCommonTypes::t_TerminalId terminalId;
case nap: TINAAccessCommonTypes::t_NAPId napId;

};
typedef sequence<t_entityId> t_entityIdList;
/**

* A SAE is characterized by an identifier, a name and a set of properties.
**/

struct t_Sae {
t_entityId entityId;
string entityName;
TINACommonTypes::t_PropertyList properties;

};

The subscriber may not want to grant all of them with the same service characteristics (or privileges).
For this reason, the subscriber can group them in a set of Subscription Assignment Groups (SAG):

typedef short t_SagId;
/**

* A SAG is characterized by its identifier, a textual description of the
* group and the list of entities composing it.
**/

struct t_Sag {
t_SagId sagId;
string sagDescription;
t_entityIdList entityList;

};

The subscriber can then assign particular service profiles (SAG Service Profile) to each group. The
main reason for using this grouping is to ease the subscription process (assignment of profiles to
users) in subscriber domains where end-users are naturally classified in categories, organizational
or geographical areas, etc., requiring the same service usage privileges. The only restriction to apply
is that every SAE must be assigned to one and only one SAG Service Profile for every service.

For every subscriber a default SAG is created with SAGId (0). Every SAE is always assigned to this
SAG even if it is assigned to other particular SAG. If a user is removed from any SAG, it will still be
associated to this SAG by default. The SAG by default can not be associated to service profiles and
users can not be assigned to this SAG explicitly (they are implicitly assigned to it on creation).

9. Users, terminals or network access points.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

46

It is also possible to assign and remove individual SAEs to/from service profiles. This is specially
interesting in small subscriber organizations (like residential customers), where the definition of user
groups is not strictly needed and does not help the subscriber in the subscription management.
Additionally, this provides a lot of flexibility in the service profile assignment, as some users in a group
can be discriminated for the access to a specific service, without the need of removing them from the
group or defining a new group.

A structure like t_UsagePermit may help in the definition of this restrictions:

enum t_UsagePermitFlag {USAGE_ALLOWED, USAGE_DISALLOWED};

struct t_UsagePermit {

t_entityId entityId;

t_ServiceProfileId serviceProfileId;

t_UsagePermitFlag flag;

};

3.6.2 Subscriber Management Interfaces

Sub offers two interfaces for subscriber information access:

• i_SubscriberInfoQuery : to query subscriber information, and

• i_SubscriberInfoMgmt : to update subscriber information.

Only the first one is prescribed. The second is given for completeness.

3.6.2.1 i_SubscriberInfoQuery

This interface is offered to the access components (NamedUA, PeerA) to allow them to retrieve the
subscription information associated to a particular user, the one that the access components
represent.

The most important operations in this interface are:

• listServices () - returns the list of services the user is subscribed to, indicating which
ones are available with the current terminal configuration.

• getServiceProfiles () - returns the profile assigned to the user (SAG service profile)
for a specific service or a list of services.

• checkServiceProfile () - It checks whether the User Service Profile (customized by
the end user) is compatible with the subscribed profile (corresponding SAG Service Pro-
file).

3.6.2.2 i_SubscriberInfoMgmt

This interface allows to add, modify or delete subscriber related information like associated entities
(users, terminals or NAPs), subscription assignment groups and associations of service profiles to
SAGs. From this interface, the client can access only to the information of a particular subscriber.

• createSAEs () - it creates the entities specified as a parameter returning an identifier for
each of them.

• deleteSAEs () - it deletes the entities specified as a parameter. It removes any existing
assignment to SAGs these entities could have.

• createSAGs () - it creates a (number of) SAG(s). A list of entities for every SAG can be
specified. A SAG identifier is returned to ease its further management.

• assignSAEs () - It assigns a list of entities to a SAG.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

47

• removeSAEs () - It removes a list of entities from a SAG.

• listSAEs () - It returns the list of entities associated to the subscriber. If a (list of) SAG
identifier(s) is specified, it returns only the users assigned to that(those) SAG(s).

• listSAGs () - It returns the list of SAGs (ids) for that subscriber.

• getSubscriberInfo () - It returns the information about the subscriber.

• setSubscriberInfo () - It modifies the information about the subscriber.

• listSubscribedServices () - It returns the list of services subscribed by the subscrib-
er. If a user is specified, it returns the list of services granted to that specific user by the
subscriber.

3.6.3 Service Contract Management Interface

3.6.3.1 i_ServiceContractInfoMgmt

i_ServiceContractInfoMgmt provides functions to define and modify a service contract. It
allows the modification and query of the service contract information.

The main operations are:

• listServiceProfiles () - It returns the list of identifiers for the service profiles asso-
ciated with the service contract.

• getServiceTemplate () - It returns the template for service profile definition.

• defineServiceContract () - It allows to define the service contract. This contract in-
cludes, amongst other contractual information, the set of service profiles composing the
service contract, namely the subscription profile (applicable to all users) and the set of
SAG service profiles (each one applicable to a SAG and consistent with the subscription
profile). It returns a list of SAG profile identifiers to ease their future reference. It is used
to define and redefine (modify) service contracts.

• defineServiceProfiles () - It allows to define a set of service profiles for the service
contract, namely the subscription profile and the set of SAG service profiles. It returns a
list of SAG profile identifiers to ease their future reference. It is used to define and redefine
(modify) service profiles.

• deleteServiceProfiles () - It deletes a service profile removing the SAG that could
be associated to it.

• getServiceContractInfo () - It returns the information related to the service contract.
If a list of SAGs is specified, the set of associated SAG service profiles defined for those
SAGs in the contract is returned.

• assignServiceProfile () - It associates a list of SAEs and SAGs with a SAGService-
Profile10. If the service profile is active, the SAEs (the explicitly stated and the ones in-
cluded in the SAGs) will be able to use the service. In this case, the SAEs’ access com-
ponents will be notified and the SAG service profile will be made available for them.

• removeServiceProfile 11() - It disassociates a list of SAEs and SAGs from a SAG-
ServiceProfile. The specified SAEs (individually specified or inside a SAG) will no longer
be able to use the service, until associated with another active service profile.

10. The operations for service profile assignment allow the subscriber to define the access control list for every profile.
This list is composed of a number of individual users and user groups.

11. The subscriber can also indicate the exclusion of some SAEs belonging to a SAG from the service profile
assignment for that SAG.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

48

• activateServiceProfiles () - It activates a list of SAG service profiles making
them available for use. Only SAEs and SAGs assigned to an active Service Profile can
make use of the service. These SAEs’ access components will be notified and the SAG
service profile will be made available for them.

• deactivateServiceProfiles () - It deactivates a list of SAG service profiles. Us-
ers (or SAEs) assigned to these service profiles will not be able to use the service.

3.6.4 Subscription Initial Interfaces

These interfaces represent the initial access point for Sub clients.

It provides interfaces to clients to get the appropriate interface references (i_InitialAccess) to
perform its corresponding subscription management operations.

An interface (i_Subscribe) is offered to allow clients to apply for or cancel service contracts or
subscriptions to the provider domain.

This set of interfaces includes an interface (i_ServiceNotify) to the SLCM to receive notifications
about new available services or modification/withdrawal of existing ones.

All these interfaces are external (their clients are not subscription management components). Only
the last one is prescribed. The other two are given just to provide a complete solution. The rationale
behind this decision is that in a large number of cases the providers will wish to keep on using their
legacy subscription systems.

3.6.4.1 i_InitialAccess

It allows a client to request an interface to access to the subscription management functionality. In
case the client is an access component, it returns an i_SubscriberInfoQuery interface reference
and, in case it is a SSMols, an i_Subscribe interface reference. A terminate operation is provided
to release the interfaces once they are not needed.

• init () - returns the list of interface references corresponding to the client that makes the
request.

• terminate () - release the resources that were allocated in the init operation.

3.6.4.2 i_Subscribe

It allows to create a subscription contract for a subscriber. These are the main operations in this
interface:

• getReferences () - It returns the references to interfaces to modify subscriber info or
service contract info.

• listServices () - It returns the list of services provided by the provider.

• subscribe () - It allows to create a subscription contract with the provider. As input pa-
rameters it has the subscriber information and a list of services the subscriber is willing to
subscribe to. It returns a subscriber identifier, a reference to the subscriber information
management interface (i_SubscriberInfoMgmt) and a list of interface references for
contracting each of the specified services (i_ServiceContractInfoMgmt).

• unsubscribe () - It allows a subscriber to delete a (list of) service contract(s) or the whole
relationship with the provider.

• contractService () - It subscribes a subscriber to a service and returns an interface
reference where he can define the service contract (i_ServiceContractInfoMgmt).

• listSubscribers () - It returns the list of subscribers. If a service Id is specified, it re-
turns the list of subscribers for that service. Only accessible for a provider operator.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

49

• listServiceContracts () - It returns the list of service contracts. If a service Id is spec-
ified, it returns the list of service contracts for that service. If a subscriber is specified, it
acts as the listSubscribedServices in the i_SubscriberInfoMgmt interface for
that particular subscriber. Only accessible for a provider operator.

• listUsers () - It returns the list of users for a specified service. Only accessible for a pro-
vider operator.

3.6.4.3 i_ServiceNotify

This interface allows the SLCM to notify the Sub about new services deployed and available for
subscription and use, or about modification or withdrawal of existing ones.

• notify () - it notifies Sub about the deployment, upgrade or withdrawal of services in the
network, so that Sub can have updated information about subscribable and available ser-
vices.

3.6.5 Subscription Management Service Interfaces

These are a set of service specific interfaces offered through Ret reference point for the online
management of service subscriptions. There are different interfaces for every user type (subscribers
or retailer operators).

3.6.5.1 i_SubscriberSubscriptionMgmt

It provides operations for subscribing the retailer, contracting services and defining subscriber and
service contract information. It allows the subscription and service contract cancellation and
modification and the query of all the subscriber related information.

Operations for applying for service contracts, subscriptions and cancellations:

• listServices () - It returns the list of services provided by the retailer.

• subscribe () - It allows to create a subscription contract with the retailer. As input param-
eters it has the subscriber information and a list of services the subscriber is willing to sub-
scribe to. It returns a subscriber identifier and a list of service contract identifiers. These
will be used in the following for making reference to specific service contracts.

• unsubscribe () - It allows to delete a (list of) service contract(s) or the whole relationship
with the retailer.

• contractService () - It subscribes a subscriber to a service and returns an interface
reference where he can define the service contract (i_ServiceContractInfoMgmt).

• listSubscribedServices () - It returns the list of contracted services (just the identi-
fiers) and related service contract identifiers. If a user is specified, it returns the list of ser-
vices granted to that specific user by the subscriber. The subscriber identifier (account
number) is indicated as an input parameter.

Operations for handling subscriber information:

• listSAEs () - It returns the list of entities associated to the subscriber. If a (list of) SAG
identifier(s) is specified, it returns only the users assigned to that(those) SAG(s).

• listSAGs () - It returns the list of SAGs (ids) for that subscriber.

• getSubscriberInfo () - It returns the information about the subscriber.

• createSAEs () - it creates the entities specified as a parameter returning an identifier for
each of them.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

50

• deleteSAEs () - it deletes the entities specified as a parameter. It removes any existing
assignment to SAGs these entities could have.

• createSAGs () - it creates a (number of) SAG(s). A list of entities for every SAG can be
specified. A SAG identifier is returned to ease further management.

• assignSAEs () - It assigns a list of entities to a SAG.

• removeSAEs () - It removes a list of entities from a SAG.

• setSubscriberInfo () - It modifies the information about the subscriber.

Operations for defining, modifying and querying service contracts:

• getServiceTemplate () - It returns the template for service profile definition for the
specified service.

• defineServiceContract () - It allows to define the service contract for a specific ser-
vice. This contract includes, amongst other contractual information, the set of service pro-
files composing the service contract, namely the subscription profile (applicable to all us-
ers) and the set of SAG service profiles (each one applicable to a SAG and consistent
with the subscription profile). It returns a list of SAG profile identifiers to ease their future
reference. It is used to define and redefine (modify) service contracts.

• defineServiceProfiles () - It allows to define a set of service profiles for a service
contract, namely the subscription profile and the set of SAG service profiles. It returns a
list of SAG profile identifiers to ease their future reference. It is used to define and redefine
(modify) service profiles.

• deleteServiceProfiles () - It deletes a service profile.

• getServiceContractInfo () - It returns the information related to the service contract
which identifier is passed as parameter. If a list of SAG profile identifiers is specified, the
set of associated SAG service profiles is returned.

Operations for authorization and activation of service profiles:

• assignServiceProfile () - It associates a list of SAEs and SAGs with a SAGService-
Profile. If the service profile is active, the SAEs (the explicitly stated and the ones included
in the SAGs) will be able to use the service. These SAEs’ access components will be no-
tified and the SAG service profile will be make available for them. From this profile, the
SAE will be able to customize its own user service profile using the service profile man-
agement service.

• removeServiceProfile () - It disassociates a list of SAEs and SAGs from a SAGSer-
viceProfile. The specified SAEs (individually specified or inside a SAG) will no longer be
able to use the service, unless associated with another active service profile.

• activateServiceProfiles () - It activates a list of SAG service profiles making
them available for use. Only SAEs and SAGs assigned to an active Service Profile can
make use of the service.

• deactivateServiceProfiles () - It deactivates a list of SAG service profiles. Us-
ers (or SAEs) assigned to these service profiles will not be able to use the service.

3.6.5.2 i_RetailerSubscriptionMgmt

It provides full capabilities for subscribing customers, add, modify, cancel and query service contracts
and adding, removing, modifying and querying subscriber information. In general, it provides access
to the whole subscription database. It is thus a superset of the previous interface.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

51

Additional operations are:

• listSubscribers () - It returns the list of subscribers (identifiers). If a service Id is spec-
ified, it returns the list of subscribers for that service.

• listServiceContracts () - It returns the list of service contracts (identifiers). If a ser-
vice Id is specified, it returns the list of service contracts for that service. If a subscriber is
specified, it acts as the listSubscribedServices in the i_SubscriberInfoMgmt
interface for that particular subscriber.

• listUsers () - It returns the list of users (identifiers) for a specified service.

3.7 ssUAP

Table 3-12. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAScsSSUAPIntra::
i_AccessInitialise

TINAObjPA 4.4.1 Start a Service Session and Selection Of
session model
4.4.10 Join a Service Session with invitation

Annex
2.17

TINAPartyBasicExtUsage::
i_PartyBasicExt
TINAPartyMultipartyUsage::
i_PartyMultipartyExe
TINAPartyMultipartyUsage::
i_PartyMultipartyInfo
TINAPartyMultipartyUsage::
i_PartyMultipartyInd
TINAPartyVotingUsage::
i_PartyVotingInfo
TINAPartyControlSRUsage::
i_PartyControlInd
TINAPartyControlSRUsage::
i_PartyControlInfo
TINAPartyPaSBUsage::
i_PartyPaSBExe
TINAPartyPaSBUsage::
i_PartyPaSBInfo
TINAPartyPaSBIndUsage::
i_PartyPaSBInd

TINAObjUSM 4.4.2 End a Service Session
4.4.3 End Service Session via Access Session
4.4.5 Suspend a Service Session
4.4.6 Suspend Participation in a Service Ses-
sion
4.4.9 Invite a User to Join a Session

Ret

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

52

The ssUAP interacts with the PA and USM. The interactions with the PA mirror those across Ret and
allow the ssUAP to request the start, resumption or joining of service sessions. Similarly the PA may
invoke operations on i_Init to request that the ssUAP initiate these events.

The interactions between the ssUAP and USM are those specified in Ret usage part.

3.7.1 TINAScsSSUAPIntra::i_AccessInitialise

i_AccessInitialise interface is offered to the PA in order that the application can be requested
to respond to invitations to service session which the ssUAP supports.

It provides the following operations (which are analogous to i_ProviderNamedAccess interface:

• startServiceInit () - allows the PA to initialize the ssUAP to invoke a new service
session request for which the ssUAP is compatible.

• resumeParticipationInit () - allows the PA to initialize the ssUAP and instruct it to
invoke a resume request for a specific, suspended service session.

• joinSessionInit () - allows the PA to initialize the ssUAP and instruct it to prepare to
join a specific, pre-existing service session to which the PA has received an invitation.

3.8 SF
A Service Factory (SF) is a service-specific object, which manages the lifecycle of the service session
COs for a service type.

A request to create a service session of a particular service type will result in the creation of one or
more object instances12. The SF will create and initialize the instances according to rules imposed
by their implementation. The SF will return to the client one or more interface references to these
components. (The SF is used to create/ manage instances of all the service session related objects
defined in this document: USM, SSM, CompUSM and PeerUSM.)

Requests to create a new service session are typically made by UAs, PeerAs. SSM is also client of
an SF. It can usually request the SF to create a new USM when a new user is joining an existing
session or can request the deletion/suspension of Service Session objects. Another client of the SF
is the SLCM, which initializes and manages the SF. The client must have an interface reference to
the SF and issue an appropriate request. A SF which supports more than one service type would
typically provide separate interfaces for each service type.

A SF supports capabilities to:

12. Typically, the USM and SSM.

Table 3-13. Required interfaces

Server Interfaces

TINAObjUSM TINAProviderBasicUsage::i_ProviderBasicReq
TINAProviderMultipartyUsage::i_ProviderMultipartyReq
TINAProviderVotingUsage::i_ProviderVotingReq
TINAProviderControlSRUsage::i_ProviderControlSRReq
TINAProviderPaSBUsage::i_ProviderPaSBReq

TINAObjPA TINAScsPAIntra::i_Access

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

53

• create and initialize objects for one or more service type upon request. (This includes
choosing the session models supported by the service session although this may be fixed
by the service type.)

• create and initialize an object (typically USM, or CompUSM) to be used in conjunction
with other objects (typically a SSM & USMs) created by a different factory instance;

• continue to manage the created objects. It may provide a list of sessions managed by it,
and may ‘clean up’ some sessions if requested;

• support suspension/resumption of a service session.

It may optionally include mechanisms to schedule the activation of a session at a specific date and
time. (This mechanism includes resource reservation.).

The SF assembles the resources necessary for the existence of a component it creates. Therefore,
the SF represents a scope of resource allocation, which is the set of resources available to the SF. A
SF may support an interface that enables clients to constrain the scope.

Table 3-14. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAScsSF::
i_SSCreate

TINAObjNamedUA
TINAObjAnonUA
TINAObjPeerA
TINAObjSSM

4.4.1 Start a Service Session and Selection Of session model
4.4.10 Join a Service Session with invitation

Annex 2.18

TINAScsSF::
i_SSManage

TINAObjSSM
TINAObjNamedUA
TINAObjAnonUA

4.4.5 Suspend a Service Session
4.4.6 Suspend Participation in a Service Session
4.4.3 End Service Session via Access Session
4.4.2 End a Service Session

Annex 2.18

TINAScsSF::
i_Resume

TINAObjNamedUA
TINAObjAnonUA
TINAObjPeerA

4.4.7 Resume a Service Session
4.4.8 Resume Participation in a Service Session

Annex 2.18

TINAScsSF::
i_SSEvents

TINAObjSSM
TINAObjMUSM ?

Annex 2.18

TINAScsSF::
i_Init

TINAObjSLCM 4.5.7 Register a new service
4.5.9 Withdraw a service
4.5.8 Modify an existing service

Annex 2.18

Table 3-15. Required interfaces

Server Interfaces

TINAObjSSM TINAScsSSMInit::i_Init
TINAScsSSMIntra::i_Resume
TINAScsSSMIntra::i_AccountingPushMgmt

TINAObjUSM TINAScsUSMInit::i_Init
TINAScsUSMIntra::i_Resume

TINAObjPeerUSM TINAScsPeerUSMInit::i_Init
TINAScsPeerUSMIntra::i_Resume

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

54

3.8.1 i_SSCreate

i_SSCreate interface supports the operations to create Service Session objects (USM, SSM,
CompUSM and PeerUsm)

It provides the following operations:

• createSSession () - allows the AnonUA or NamedUA or PeerA to request the creation
of a new service session. This results in the creation of both a USM and SSM (or
PeerUSM, CompUSM: ffs).

• createUserSSession () - allows the SSM to request the addition of a new User to an
existing service session. This results in the creation of USM.

• createPeerSSession () - allows the SSM to request the creation of a PeerUSM to sup-
port a federated session.

• createCompSSession () - allows the SSM to request the creation of a CompUSM to
support service composition.

3.8.2 i_SSManage

i_SSManage interface supports the operations to manage (end, suspend and get information on)
Service Session and related objects (USM, SSM, CompUSM and PeerUsm). A service session is
uniquely identified by a GlobalSessionId within a Service Factory. Every USM managed by a SF is
uniquely identified by the couple: GlobalSessionId and UsersessionId.

It provides the following operations:

• endSSession () - allows the SSM to request the deletion of a service session. This re-
sults in the deletion of the SSM and all relevant USMs (or PeerUSM and CompUSM). Re-
lated resources are released.

• endUserSSession () - allows the SSM to request the deletion of a Party from an existing
service session. This results in the deletion of the relevant USM. Related resources are
released.

• endPeerSSession () - allows the SSM to request the deletion of a PeerUSM. Related
resources are released.

• endCompSSession () - allows the SSM to request the deletion of a CompUSM to support
service composition.

• listSSession () - allows the AnonUA /NamedUA or the SLCM to request for the list of
service sessions for this retailer service that match a given property list.

• getSsmRef () - allows the AnonUA or NamedUA to request for the interface reference of
the SSM/USM for a specific session.

• suspendSSession () - allows the SSM to request the suspension of an existing service
session. This results in the creation of a i_Resume interface on the SF, that will be used
by UA to resume the service session.

TINAObjCompUSM TINAScsCompUSMInit::i_Init
TINAScsCompUSMIntra::i_Resume

Table 3-15. Required interfaces

Server Interfaces

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

55

• suspendParticipation () - allows the SSM to request the suspension of user partici-
pation in an existing service session. This might result in the deletion/disabling of inter-
faces on USM and in the creation of i_Resume interface that can be used by UA to re-
sume participation.

3.8.3 i_Resume

i_Resume interface supports the operations to resume a service session and user participation in a
service session (USM, SSM, CompUSM and PeerUsm).

It provides the following operations:

• resumeSSession () - allows the AnonUA or NamedUA to request the resuming of a sus-
pended service session. This results in the enabling of interfaces on SSM (identified by
the GlobalSessionId) and on the USM (or PeerUSM and CompUSM) identified by us-
erSessionId.

• resumeParticipation () - allows the AnonUA or NamedUA to request the resuming of
a user participation in an active service session. This results in the enabling of the USM
interfaces of the user identified by userSessionId.

3.8.4 i_Init

This interface allows the SLCM to initialize, configure and manage the SF.

It provides the following operations:

• configure () - allows the SLCM to configure the SF.

• getSessionInfo () - allows the SLCM to get Service Session Instances Information.

• setSessionInfo () - allows the SLCM to set Service Session Instances Information.

• deactivate () - sets the state of the SF to deactivating . Future service session cre-
ation requests will be rejected. Once ongoing service sessions are finished, the SF pass-
es to inactive state.

• activate () - sets the state of the SF to active . In this state, the SF can be used for
service provision.

• halt () - sets the SF state to inactive without a deactivation phase. The SF reports the
users using it about the fact and the service sessions are ended immediately.

• delete () - kills the SF if it is in inactive state.

3.8.5 i_SSEvents

i_SSEvents interface is used by SSM, USM, PeerUSM and CompUSM to send notification to the
SF about changes that occur in the Service Session.

It provides the following operations:

• notifySSModification () - allows the notification of changes in the Service Session
from SS objects (USM, SSM, ...).

3.9 SSM
SSMs support (some or all of) the following capabilities:

• keep track and control the various resources shared by multiple users in a service ses-
sion. This can be done just by having references to other objects (like a CSM) which really
maintain the context of usage for a specific kind of resources;

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

56

• hold the state of the service session and support suspension/resumption of the service
session;

• support adding/inviting/removing users to/from the service session by interacting with the
corresponding UAs;

• support adding/removing/modifying stream bindings and the users’ participation in them;

• support the negotiating capabilities among the users interacting with the USMs. SSM will
serve as a control center of consensus building (such as voting procedures);

• support management capabilities associated with the service session (e.g., accounting).

Table 3-16. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAScsSSMIntra::i_Join UA
(PeerA)

4.4.10 Join a Service
Session with invitation

Annex 2.20

TINAScsSSMInit::i_Init
TINAScsSSMIntra::i_Resume

SF 4.4.1 Start a Service Ses-
sion and Selection Of
session model
4.4.7 Resume a Service
Session
4.4.8 Resume Participa-
tion in a Service Session

Annex 2.19
Annex 2.20

TINAScsSSMProviderBasicUsage::i_ProviderGetInterfaces
TINAScsSSMProviderBasicUsage::i_ProviderRegisterInterfaces
TINAScsSSMProviderBasicUsage::i_ProviderInterfaces
TINAScsSSMProviderBasicUsage::i_ProviderBasicReq
TINAScsSSMProviderControlSRUsage::i_ProviderControlSRReq
TINAScsSSMProviderMultipartyUsage::i_ProviderMultipartyReq
TINAScsSSMProviderPaSBUsage::i_ProviderPaSBReq
TINAScsSSMProviderVotingUsage::i_ProviderVotingReq

USM
(PeerUSM)

Various event traces con-
cerned with usage.

Annex 2.21

Annex 2.22
Annex 2.23
Annex 2.24
Annex 2.25

TINAScsSSMIntra::i_AccountingPush CSM 4.4.17 Service Session
Accounting

Annex 2.20

TINAScsSSMIntra::i_AccountingPushMgmt SF/USM Annex 2.20

Table 3-17. Required interfaces

Server Interfaces

TINAObjnamedUA TINAScsNamedUAIntra::i_InvitationDelivery
TINAScsNamedUAIntra::i_AccountingPush

TINAObjSF TINAScsSF::i_SSEvent
TINAScsSF::i_SSManage
TINAScsSF::i_SSCreate

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

57

3.9.1 i_Join

This interface allows the UA (or PeerA) to forward requests from a consumer to join a session upon
invitation or announcement, it also supports replies to invitations.

It provides the following operations:

• joinSessionWithInvitation () - allows a party to join a service session from which
an invitation has been issued.

• joinSessionWithAnnouncement () - allows a party to join an announced service ses-
sion.

• replyToInvitation () - allows a party to accept (eventually followed by a join...) or re-
ject an invitation.

3.9.2 i_Init

This interface provides the following operation:

• initialise () - allows the SF to initialize the SSM. Return values are references to the
interfaces available to USM(s).

• halt () - Allows the SF to force a service session to end.

• suspend () - Allows the SF to force a service session to be suspended.

3.9.3 i_Resume

This interface is created upon suspension of a service session and the interface reference is stored
by the SF.

It provides the following operations:

TINAObjUSM TINAScsUSMIntra::i_Resume
TINAScsUSMIntra::i_AccountingPush
TINAScsUSMPartyBasicExtUsage::i_PartyBasicExtReq
TINAScsUSMPartyBasicExtUsage::i_PartyGetInterfaces
TINAScsUSMPartyMultipartyIndUsage::i_PartyMultipartyInd
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyExe
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyInfo
TINAScsUSMPartyPaSBIndUsage::i_PartyPaSBInd
TINAScsUSMPartyPaSBUsage::i_GeneralStreamInfo
TINAScsUSMPartyPaSBUsage::i_PartyGeneralStreamInfo
TINAScsUSMPartyPaSBUsage::i_PartyPaSBExe
TINAScsUSMPartyPaSBUsage::i_PartyPaSBInfo
TINAScsUSMPartyVotingUsage::i_PartyVotingInfo
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInd
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInfo

CSM or CC i_AccountingPush

TINAObjPeerA i_InvitationDelivery
i_AccountingPush

Other i_AccountingMgt

Table 3-17. Required interfaces

Server Interfaces

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

58

• resumeSession () - allows the SF to resume a service session and the participation of
a user.

• resumeParticipation () - allows the SF to resume the participation of a given user
in a service session.

3.9.4 i_AccountingPushMgmt

Defined under accounting management. The interface allows management of the accounting event
reporting that is pushed to an accounting interface by the SSM as a consequence of session activity.
Typical clients are SF and USM.

3.9.5 i_AccountingPush

Defined under accounting management. The interface allows accounting event to be pushed to the
SSM from another object, such as CSM, as a consequence of a communication session activity.

3.9.6 Feature set interfaces

The following intradomain interfaces are very similiar to the ones supported by the USM and defined
in Ret. They support the same functionalities, by the way some parameters and exceptions have
been changed (e.g. participantSecretID has been replaced by partyID) :

TINAScsSSMProviderBasicUsage::i_ProviderGetInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderRegisterInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderBasicReq,
TINAScsSSMProviderMultipartyUsage::i_ProviderMultipartyReq,
TINAScsSSMProviderPaSBUsage::i_ProviderPaSBReq,
TINAScsSSMProviderVotingUsage::i_ProviderVotingReq.

3.10 USM

Table 3-18. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAProviderBasicUsage::
i_providerBasicReq
TINAProviderMultipartyUsage::
i_providerMultipartyReq
TINAProviderVotingUsage::
i_providerVotingReq
TINAProviderControlSRUsage::
i_providerControlReq
TINAProviderPaSBUsage::
i_providerPaSBReq

TINAObjssUAP 4.4.2 End a Service Session
4.4.3 End Service Session via
Access Session
4.4.5 Suspend a Service Session
4.4.6 Suspend Participation in a
Service Session
4.4.9 Invite a User to Join a Ses-
sion

Ret

TINAScsUSMIntra::i_SessionCtrl
TINAScsUSMIntra::i_AccountingPushMgmt

TINAObjUA Annex 2.27

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

59

TINAScsUSMInit::i_Init TINAObjSF 4.4.1 Start a Service Session and
Selection Of session model
4.4.7 Resume a Service Session
4.4.8 Resume Participation in a
Service Session
4.4.10 Join a Service Session with
invitation

Annex 2.26

TINAScsUSMIntra::i_Resume TINAObjSSM 4.4.7 Resume a Service Session
4.4.8 Resume Participation in a
Service Session

Annex 2.27

TINAScsUSMIntra::i_AccountingPush TINAObjSSM Annex 2.27

TINAScsUSMPartyBasicExtUsage::
i_PartyBasicExtReq
TINAScsUSMPartyBasicExtUsage::
i_PartyGetInterfaces
TINAScsUSMPartyMultipartyIndUsage::
i_PartyMultipartyInd
TINAScsUSMPartyMultipartyUsage::
i_PartyMultipartyExe
TINAScsUSMPartyMultipartyUsage::
i_PartyMultipartyInfo
TINAScsUSMPartyPaSBIndUsage::
i_PartyPaSBInd
TINAScsUSMPartyPaSBUsage::
i_GeneralStreamInfo
TINAScsUSMPartyPaSBUsage::
i_PartyGeneralStreamInfo
TINAScsUSMPartyPaS-
BUsage::i_PartyPaSBExe
TINAScsUSMPartyPaS-
BUsage::i_PartyPaSBInfo
TINAScsUSMPartyVotin-
gUsage::i_PartyVotingInfo
TINAScsUSMPartyControlSRUsage::
i_PartyControlSRInd
TINAScsUSMPartyControlSRUsage::
i_PartyControlSRInfo

TINAObjSSM all usage
Annex 2.28

Annex 2.30

Annex 2.31

Annex 2.34

Annex 2.29

TINAScsUSMIntra::i_MgmtCtxt TINAObjasUAP Annex 2.27

Table 3-18. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

60

The USM represents one party in a session and therefore offers to the ssUAP the session control
(across Ret) and service specific control (the latter not specified in TINA). The participation of the
party in the service session can also be controlled by the access session (across Ret) via the UA or
directly by the UA using TINAScsUSMIntra::i_SessionCtrl. The UA also controls the delivery of
accounting events sent out by the USM to the UA, by invoking on
TINAScsUSMIntra::i_AccountingPushMgmt.

The interactions between the USM and SSM are numerous and mirror those on both sides of Ret,
because the USM must invoke session control requests on the SSM and, the SSM must indicate and
inform the USM of various changes to the session state. These interfaces are structured in exactly
the same way as Ret Feature Sets. In addition, the USM also supports the
TINAScsUSMIntra::i_AccountingPush so that the SSM can forward accounting information.

The USM has limited interactions with the SF. When instantiated the USM is initialized with the
necessary usage session properties using TINAScsUSMInit::i_Init operations which also return
appropriate USM interface references for the interactions with the ssUAP and UA.

3.10.1 TINAScsUSMIntra::i_SessionCtrl

Enables UA to give session control commands that have been requested across an access session
(not necessarily the access session that started the service)

• endSession () - enables the entire session to be ended by the UA (or other permitted
object) in the retailer domain. The operation should perform similarly to end Session() in-
voked by the ssUAP

Table 3-19. Required interfaces

Server Interfaces

TINAObjSSUAP TINAPartyBasicExtUsage::i_PartyBasicExt
TINAPartyMultipartyUsage::i_PartyMultipartyExe
TINAPartyMultipartyUsage::i_PartyMultipartyInfo
TINAPartyMultipartyUsage::i_PartyMultipartyInd
TINAPartyVotingUsage::i_PartyVotingInfo
TINAPartyControlSRUsage::i_PartyControlSRInd
TINAPartyControlSRUsage::i_PartyControlSRInfo
TINAPartyPaSBUsage::i_PartyPaSBExe
TINAPartyPaSBUsage::i_PartyPaSBInfo
TINAPartyPaSBUsage:: i_GeneralStreamInfo
TINAPartyPaSBUsage:: i_PartyGeneralStreamInfo
TINAPartyPaSBIndUsage::i_PartyPaSBInd

TINAObjUA TINAScsNamedUAIntra::i_AccountingPush
TINAScsNamedUAIntra::i_SessionInfo

TINAObjSSM TINAScsSSMProviderBasicUsage::i_ProviderGetInterfaces
TINAScsSSMProviderBasicUsage::i_ProviderRegisterInterfaces
TINAScsSSMProviderBasicUsage::i_ProviderInterfaces
TINAScsSSMProviderBasicUsage::i_ProviderBasicReq
TINAScsSSMProviderControlSRUsage::i_ProviderControlSRReq
TINAScsSSMProviderMultipartyReq::i_ProviderMultipartyReq
TINAScsSSMProviderPaSBUsage::i_ProviderPaSBReq
TINAScsSSMProviderVotingUsage::i_ProviderVotingReq
TINAScsSSMIntra::i_AccountingPushMgmt

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

61

• endMyParticipation () - enables the UA in the retailer domain to terminate the partic-
ipation of the party represented by the USM.

• suspendSession () - enables the UA in the retailer domain to suspend the entire session
through the USM of the party represented by the UA.

• suspendMyParticipation () - enables the UA in the retailer domain to suspend the
participation in the session of the party represented by the UA.

3.10.2 TINAScsUSMIntra::i_AccountingPushMgmt

Defined under accounting management. The interface allows management of the accounting event
reporting that is pushed to an accounting interface by the USM as a consequence of session activity.

3.10.3 TINAScsUSMIntra::i_AccountingPush

Defined under accounting management. The interface allows accounting event to be pushed to the
USM from another session object, the SSM, a consequence of session activity.

3.10.4 TINAScsUSMInit::i_Init
• initialise () - is used by the SF to initialize the service with appropriate properties

when the component has been newly instantiated for a new session. The operation is
used once and gives access to other interfaces on the USM component.

3.10.5 TINAScsUSMIntra::i_Resume

This interface is given as a fresh reference when the session is suspended or the party represented
by the USM is suspended.

• resumeSession () - is used by the SSM to inform the USM the session is resuming. The
action taken by the USM is specific to the service, but includes informing the namedUA
of the party that the session is resumed.

• resumeMyParticipation () - is used by the SSM to inform the USM the participant is
resuming. The action taken by the USM is specific to the service.

3.10.6 Ret Interfaces

The following interfaces USM-SSM mirror those found in Ret ssUAP-USM and are used by the SSM
to inform the USM of changes to the session, either commands or information. They reflect the Ret
feature sets. Some of them have been modified to reflect that interactions occur within the same
domain:

TINAScsUSMPartyMultipartyIndUsage::i_PartyMultipartyInd
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyExe
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyInfo
TINAScsUSMPartyPaSBIndUsage::i_PartyPaSBInd
TINAScsUSMPartyPaSBUsage::i_GeneralStreamInfo
TINAScsUSMPartyPaSBUsage::i_PartyGeneralStreamInfo
TINAScsUSMPartyPaSBUsage::i_PartyPaSBExe
TINAScsUSMPartyPaSBUsage::i_PartyPaSBInfo
TINAScsUSMPartyVotingUsage::i_PartyVotingInfo
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInd
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInfo

These interfaces are currently empty:

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

62

TINAScsUSMPartyBasicExtUsage::i_PartyBasicExtReq
TINAScsUSMPartyBasicExtUsage::i_PartyGetInterfaces

3.10.7 TINAScsUSMIntra::i_MgmtCtxt
• bind () - binds a set of management context to the service session in question.

• unbind () - unbinds a set of management contexts from the service session in question.

• rebind () - rebinds a set of management contexts to the service session in question.

3.11 SLCM
Editor’s note: IDL is currently not available.

The SLCM provides the required functionality to handle the service type and service instance
lifecycle. It also allows the configuration of the service network. The SLCM offers the following
management functionality (Figure 3-3).

• Service type management: SLCM holds the service descriptions13 for the relevant service
types. Following to Service Deployment, activation/de-activation of service is taken care
of. It also offers service status management including suspension/resumption of TINA
services, not for service instances. Service version is also managed together with service
deployment management.

• Service instance management: SLCM takes care of the deployment (using the
deployment management capabilities, explained below), configuration, activation and
monitoring of the different service instances. These includes the control and configuration
of service factories for each deployed service, the update of traders or locators to make
them reachable and the notification to the Sub component, to make the service
subscribable. It also performs version control on the deployed service instances
(upgrades, modifications, downgrades, etc.). SLCM also controls the deactivation and
withdrawal, including the removal of the deployed software, of service instances.

• Service deployment management: this functionality provides with capabilities for
downloading service related software and data, and launching, configuring and activating
service servers14. It will be supported by DPE and node management facilities15. This
functionality allows the retailer to distribute, over its network composed of a set of service
nodes, the service software (SF, USM, SSM and other service components) that will
provide a particular service instance. It provides access to DPE Kernel repositories and
DPE services databases (for instance, trader and locator) to make the deployed software
active and reachable.

13. These descriptions shall be provided by standardization bodies, industrial fora, operators consortia or the retailer
itself. From these descriptions, the retailer derives the service templates that describes the service instances
(particular implementation of a service type) that it has deployed and provides for use to customers.

14. SFs and other session independent components.

15. These facilities are not specified yet, but they are absolutely needed.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

63

It allows the deployment, configuration, activation, deactivation and withdrawal of service instances
(interface i_InstanceMgmt). It also provides with an interface (i_TypeMgmt) to create, modify,
query and delete service type descriptions. The clients for these interface are specialized
management applications inside the retailer domain.

3.11.1 i_ServiceQuery

This interface provides information needed for service subscription to the Sub.

Table 3-20. Interfaces, clients and where to find specs

Interface Client(s) Event traces IDL

TINAScsServiceLCMgmt::
i_ServiceQuery

TINAObjSub (not shown) -

TINAScsServiceLCMgmt::
i_InstanceMgmt

TINAObjSLCM 4.5.7 Register a new service
4.5.8 Modify an existing service
4.5.9 Withdraw a service

-

TINAScsServiceLCMgmt::
i_TypeMgmt

TINAObjSLCM 4.5.7 Register a new service -

TINAScsServiceLCMgmt::
i_DeploymentMgmt

TINAObjSLCM 4.5.7 Register a new service
4.5.8 Modify an existing service
4.5.9 Withdraw a service

-

Table 3-21. Required interfaces

Server Interfaces

TINAObjSF TINAScsSF::i_Init

TINAObjSub TINAScsSubInitial::i_ServiceNotify

Figure 3-3. Computational Model of Service Life Cycle Management.

Service Life Cycle
Management (SLCM)

Administrator
 (Management AP)

SubSF

i_Init i_ServiceNotify

i_ServiceQuery

i_DeploymentManagement
i_TypeManagement
i_InstanceManagement

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

64

It provides the following operations:

• listServices () - allows Sub to retrieve list of services that the subscriber will be able
to subscribe.

• getServiceInfo () - allows Sub to retrieve the information regarding the service which
could be required to subscription. This information includes the service template.

3.11.2 i_DeploymentMgmt

This interface allows an administrator or a management AP16 to deploy service elements in the
information network. These service elements are service nodes (DPE kernels), DPE services and
DPE facilities.

It provides the following operations:

• createServiceNode () - allows an administrator or a management AP to create and
configure a new service node. A reference to the node manager for that node is passed
as a parameter. The Node Manager is an abstraction of the computing node, that allows
to control and monitor the node resources (CPU, processes, memory and file systems),
the node DPE kernel (different repositories and locator) and installed DPE services.

• deleteServiceNode () - allows an administrator or a management AP to delete a ser-
vice node.

• createServiceDomain () - allows an administrator or a management AP to define a
service domain. This domain is composed of a set of service nodes or service domains
and provides a specific service instance to a number of accessing users. The identity of
the users (UAs) making use of this service domain and of each component service node
is not determined on deployment time. The UAs are assigned to the service domain dy-
namically following the particular operator service provision policy (for instance, KTN ac-
cess point proximity). The DPE platform will be configured in such a way that the service
instance is usable and reachable from the required users, terminals or KTN access points
served by the new service domain.

• addToServiceDomain () - allows an administrator or a management AP to assign a ser-
vice node (or service domain) to a service domain. This implies that the service node will
be provided with the required configuration for the provision of a specific service when the
corresponding service instance is deployed, or immediately if the service instance is al-
ready deployed.

• dropFromServiceDomain () - allows an administrator or a management AP to remove
a service node (or service domain) from a specific service domain. All software and con-
figuration or usage data related to the specific service the domain provides and residing
on the service node is withdrawn.

• deleteServiceDomain () - allows an administrator or a management AP to remove a
service domain. All software and configuration or usage data related to the specific ser-
vice the domain provided and residing on the service nodes composing the domain is
withdrawn.

3.11.3 i_InstanceMgmt

This interface allows an administrator or a management AP to control and manage the service itself
taking into account of service version, access right and so on.

16. For management AP we mean an offline application that accesses management system (but not through Ret.)

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

65

It provides the following operations:

• createServiceInstance () - allows an administrator or a management AP to create a
service instance. If service domains have been defined for that service instance, the de-
ployment will be initiated on those defined service domains. When this operation ends,
the service is deployed but inactive (not available for subscription and use). That implies
that the location and trader services are not updated with the required information to
make the service factories reachable and the subscription component (Sub) does not
know about this new service instance.

• modifyServiceTemplate () - allows an administrator or a management AP to modify
the service template for a service instance.

• modifyServiceConfiguration () - allows an administrator or a management AP to
modify the service configuration for a service instance.

• activateServiceInstance () - allows an administrator or a management AP to acti-
vate a service instance. Once executed, the service is available for subscription and use
in the defined service domains. That implies that the location and trader services are up-
dated with the required information to make the service factories reachable and the sub-
scription component (Sub) is notified about this new subscribable service instance.

• deactivateServiceInstance () - allows an administrator or a management AP to de-
activate a service instance. Once executed, the service is not available for use.

• deleteServiceInstance () - allows an administrator or a management AP to remove
a service instance. Service contracts for that service instance needs to be cancelled or
modified being the contracted service (instance) replaced by a new one.

• getState () - allows an administrator or a management AP to check the state of a service
instance.

3.11.4 i_TypeMgmt

This interface allows an administrator or a management AP to manage the service types lifecycle.

It provides the following operations:

• defineServiceType () - allows an administrator or a management AP to define a new
service type.

• modifyServiceType () - allows an administrator or a management AP to modify an al-
ready existing service type.

• deleteServiceType () - allows an administrator or a management AP to eliminate an
already existing service type.

• listServiceTypes () - allows an administrator or a management AP to retrieve the list
of service types in that retailer domain.

• getServiceTypeInfo () - allows an administrator or a management AP to retrieve in-
formation about a particular service type, namely the service description.

3.12 AmcLadder
Object AmcLadder is a generic object for accounting management, from which other session
components such as SSM and USM can be derived. In other words, AmcLadder object does not exist
as a stand alone object, it exists only as a base object for other service components17.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

66

Figure 3-4. Object Inheritance of AmcLadder to Service Components

Figure 3-4 illustrates object inheritance of AmcLadder to service components. Although AmcLadder
does not show as a service component itself, we are able to treat actual service components (SSM,
USM, etc.) as if they are all amcLadder, as far as accounting management is concerned.

Figure 3-5. Formation of Accounting Management Ladder

Figure 3-5 illustrates the formation of an accounting management ladder. When an AmcLadder is
created (actually SSM, CSM etc.), its notification destination is set to another AmcLadder, which is to
be positioned above in the ladder. For example, when a CSM is created, its notification destination is
set to the corresponding SSM, such that an accounting event path is formed among the session
components. Interface i_AmcLadderElement of the upper element becomes the notification
destination of the lower element.

Object AmcLadder is also an X.742 compliant accountable object. As such, its accounting activities
are controllable from outside, using a management interface i_AccObjectManagement. Although not
being specified in this SCS document, potential clients of this interface are management applications,

17. The namedUA could be derived from this generic object or have a special behavior and definition. In current
specifications, the namedUA is storing persistently (till its records are processed by a BIlling Center application)
the accounting records for the corresponding user, and thus is not considered a pure AmcLadder element.

AmcLadder

namedUA USM SSM CSM

AmcLadder

AmcLadder

i_AccObjectManagement

i_AmcLadderElement

i_AmcLadderElement

i_AccObjectManagement

Retailer Domain

Operation System

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

67

e.g. an operation system in the retailer domain. Service Factory may also use the interface, when it
creates service session and its components, thus forming a part of the accounting management
ladder.

3.12.1 i_AmcLadderElement

This interface provides destination of events from the lower elements of the ladder. It inherits from
COS Event Management (CosEventComm::PushConsumer). No other operations are provided to
this interface.

3.12.2 i_AccObjectManagement

This interface provides the following operations:

• start () - starts accounting activities of the object afresh.

• stop () - stops accounting activities of the object.

• suspend () - suspends accounting activities of the object.

• resume () - resumes accounting activities of the suspended object.

• set_state () - sets the state of the object. This operation is used when recovering from
a crash or system failure, the state of the object has to be restored from a log record.

• set_accounting_cycle () - sets accounting cycle, when the object reports its ac-
counting events periodically to the upper elements in the ladder.

• suspend_notification () - suspends notification of events to the upper elements.
Other accounting activities, however, can continue.

• resume_notification () - resumes notification of events, which is being suspended.

• flush_notification () - flushes events in the notification queue. This operation may
be used to flush all the events to the upper elements, before the object is to be deleted,
at the conclusion of a service transaction.

• set_verbosity_level () - sets verbosity of accounting events. This operation may be
used, in particular, when accounting events go to a log manager.

Table 3-22. Supported Interfaces of AmcLadder

Interface Client(s) Event traces IDL

TINAScsAmcObject::
i_AmcLadderElement

TINAObjAmcLadder Scenario in Accounting Manage-
ment (sect 5)

Annex 2.4

TINAScsAmcObject::
i_AccObjectManagement

Operation System
[AmcLadder]
[SF]

Annex 2.4

Table 3-23. Required Interfaces of AmcLadder

Server Interfaces

TINAObjAmcLadder TINAScsAmcObject::i_AmcLadderElement

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

68

• set_Notification_Destination () - adds an i_AmcLadderElement to its list of no-
tification destination. Note that it is possible that a ladder element may send its events to
multiple destinations, e. g. an SSM may send its events to multiple USMs.

• reset_Notification_Destination () - removes an interface from destination list.

• reset_all_Notification_Destination () - resets all the notification destination,
and the destination list becomes empty.

3.13 Federation and Composition related components
The components below have not been specified in detail for this version since they rely on the
definition of the Retailer-to-Retailer and Third-Party Provider reference points and those reference
points are currently unspecified. This section provides some proposals for what the components are
expected to contain upon specification.

3.13.1 PeerA - Peer Agent

The PeerA should support the combined external capabilities of a namedUA and a PA. In addition to
these capabilities, the PeerA must support inter domain management functionality e.g., transfer of
accounting info.

It is possible that the PeerA needs to support mechanisms for exchanging Session Graph information
between service session in different domains, since the level of trust between two retailers might
affect the level of detail made visible to other domains, yet this level of trust is clearly service
independent.

3.13.2 PeerUSM - Peer Usage Session Manager

The PeerUSM allows a service session to interact with another service session in another domain. It
differs from the USM in a number of ways, most notably it most support all feature set interactions in
both directions, whereas the USM only supports Req’s from the PA and Ind’s, Info’s, and Exe’s from
the SSM. This also means that the SSM must offer the corresponding interfaces to the PeerUSM,
thus the SSM is not yet complete.

3.14 Yet-To-Be-Defined Service Components

3.14.1 Security Manager

The functionality of Security Manager is yet to be defined fully, however it is planned to provide the
following security functionalities.

• Authentication: authentication server is necessary, which will provide authentication infor-
mation of the users of Ret reference point interfaces. The authentication information of
the user may be provided by a third-party authentication service, which would provide
driver’s license number, social security number, bank account number, etc., which would
provide sufficient level of trust of the user. Although TINA user is living in a cyberspace,
those information regarding the user’s physical identity is still necessary to obligate the
user’s financial responsibilities. Along with these physical authentication information, nor-
mal security measures for authentication such as ID card, authentication service based
on symmetric/asymmetric cryptography will be provided to grant access to TINA services.
These cryptographic authentication mechanisms will be provided by DPE security servic-
es.

• Authorization: once the user is authenticated, he is given authorization to access services
(interfaces) given his record from subscription management. In short, s/he is given autho-
rization to services s/he has subscribed to. In this way, security manager has an essential
relationship with subscription management regarding authorization.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

69

• Role Management: the security management is a complex issue, yet it is still relatively
easy when the security management is closed within a single retailer domain. The feder-
ation and composition concept, though they are still experimental at this point, can create
a very complex security issue. In particular trust management is a difficult issue, as it can
be quite involved to know who represents whom and who trusts whom by how much in a
complex delegation chain. Ideas have proposed (TINA’97, “Dynamic Role Creation from
Role Class Hierarchy” by Takeo Hamada) to manage the complexity of this issue by in-
troducing role based management in TINA service session. Roles are introduced as a
consequence of subscription management, from which the user is entitled to have a role
within a service session. More details are yet to be defined in the subsequent version of
SCS specifications.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

70

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

71

4. Dynamic Behavior

This chapter defines a set of interactions between TINA service components. Dynamic interactions
are part of the computational viewpoint, and are complementary to the “static” component definitions
presented in Chapter 3. These interactions must be supported by TINA components in order for them
to interoperate1. Interactions are defined in a set of scenarios. Scenarios are based upon a user
wishing to perform an action. Scenarios are categorized according to the separation of access and
usage.

4.1 Scenario Groupings
The following is a list of scenarios, which identify interactions between TINA components. Only
scenarios for which the interactions have been defined have been included. Scenarios are listed
below as access and usage related as defined in Service Architecture 5.0. Usage scenarios are
further categorized by primary usage and ancillary usage.

Access related scenarios are associated with the establishment and ending of an access session.

Usage related scenarios are associated with the use of service sessions. The primary usage
scenarios are based upon the use of generic service session control operations. These operations
are applicable to both primary usage and ancillary usage service sessions, but are given in this
section for clarity. The ancillary usage scenarios are based on actual ancillary services that a provider
may wish to support, e.g. subscription.

Access related scenarios:

1. Contact a provider (Section 4.3.1)

2. Login to a Provider as a Known User (Section 4.3.2)

3. Login to Provider as Anonymous User (Section 4.3.3)

4. Logout from a Provider (Section 4.3.4)

5. Check Accounting Information (Section 4.3.5)

6. List Subscribed Services (Section 4.3.6)

Usage related scenarios:

The following are primary usage related scenarios:

1. Start a Service Session and Selection Of session model (Section 4.4.1)

2. End a Service Session (Section 4.4.2)

3. End Service Session via Access Session (Section 4.4.3)

4. End Participation in a Service Session (Section 4.4.4)

5. Suspend a Service Session (Section 4.4.5)

6. Suspend Participation in a Service Session (Section 4.4.6)

1. Conforming to the scenarios defined here is not sufficient to ensure interoperability.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

72

7. Resume a Service Session (Section 4.4.7)

8. Resume Participation in a Service Session (Section 4.4.8)

9. Invite a User to Join a Session (Section 4.4.9)

10. Join a Service Session with invitation (Section 4.4.10)

11. Add Participant Oriented Stream Binding to a Service Session (Section 4.4.11)

12. Add Participants to a Participant Oriented Stream Binding (Section 4.4.12)

13. Delete a Participant Oriented Stream Binding from the Service Session (Section 4.4.14)

14. Delete Participants from a Participant Oriented Stream Binding (Section 4.4.13)

15. Example of Voting Procedure (Section 4.4.15)

16. Example of Control FS usage (Section 4.4.16)

17. Service session accounting (Section 4.4.17)

The following are ancillary usage related scenarios:

1. Subscribe a New Customer (Section 4.5.1)

2. Modify Subscriber Information (Section 4.5.2)

3. Contract a New Service (Section 4.5.3)

4. Modify Service Contract (Section 4.5.4)

5. Unsubscribe (Section 4.5.5)

6. Register to receive invitations outside of an access session (Section 4.5.6)

7. Register a new service (Section 4.5.7)

8. Modify an existing service (Section 4.5.8)

9. Withdraw a service (Section 4.5.9)

10. On-line Accounting (Section 4.5.10)

4.2 Scenario Descriptions
Each scenario defines a precondition; a number of sequential steps that take place in the defined
order, and a post-condition. The scenario steps are also shown diagrammatically in event traces.

The precondition defines a state that must have been fulfilled before the steps of the scenario can
occur. (Usually other scenarios that must have been performed before this scenario can take place.)
The post-condition defines the expected state that the various components in the scenario would be
in after the step have been performed.

Some scenarios are split into several cases. The cases cover scenarios that can be initiated in a
number of ways, or detail options which depend upon the situation.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

73

Event trace diagrams trace the steps defined in each scenario. Comment boxes denote actions
performed by the object. (These actions may be entirely internal, or involve interactions with objects
which are not prescribed by TINA). Return messages are denoted by [], and those which return a
value as [return value].

Abbreviations for components are the same as in Section 2. In addition, IR denotes interface
reference, and an interface type is in courier font.

The following are assumptions which apply to many of the scenarios:

• Components in the user’s domain can gain interface references to other components in
the user’s domain. How references are retrieved is not specified;

• UAPs are categorized into access session related UAPs, and service session related
UAPs. When a scenario refers to an access session related UAP, the UAP must provide
access session related capabilities. When a scenario refers to a service session related
UAP, the UAP must provide service session related capabilities;

• The service session related UAPs may have to be a service specific UAP i.e., a UAP
which is specialized to the service type of session;

• The naming service is a DPE service. It provides interface references to provider domain
objects, (e.g. initial agents), when given a provider’s name and/or user’s name. It is
directly accessible by all components on the DPE. How the naming service gains
interface references is undefined. This may require the naming service to contact the
provider in order to gain a reference to the required object;

• The location service is a DPE service. It provides interface references to service factories.
(Other location services are also possible.) How the location service gains interface
references is undefined. This may require the location service to contact the provider of
the factory in order to gain a reference to the required object;

• Both naming service and location service can be replaced with trading service, depending
on how interface references of objects are exported to the service. Naming, location and
trading service use within the scenarios is for further study;

• Some scenarios indicate that interface references to components become invalid. This
means that components which have interface references to these components should not
use them, and that the DPE may ensure that such references cannot be used to interact
with the components.

4.3 Access related scenarios

4.3.1 Contact a provider

This example shows the user making contact with a provider. This scenario supports user mobility by
allowing the user to contact a specific provider from any terminal.

A PA must be present in the user’s domain.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

74

Figure 4-1. Contact a Provider

1. User starts an access session related UAP. He supplies the provider name he wishes to
contact. The UAP gains a reference to the PA i_Initial interface.

2. UAP -> PA::i_Initial::contactProvider()
UAP requests the PA to contact the provider, giving the provider name.

3. PA gains a reference to an i_ProviderInitial interface of an initial agent of the provider2

using a location or naming service.

PA returns success to UAP.

The PA has an interface reference to the IA. The user has not setup an access session between the
PA and IA. The IA does not support invocation of services, only operations to set up an access
session as a known user or an anonymous user.

The IA has no knowledge of any interfaces on the PA or in the user’s domain.

It is possible for the provider to download a provider specific PA to the user’s domain, once an
interface reference to the IA has been gained by the PA. This helps to support user mobility. No
scenario describing how this is achieved is defined at present.

4.3.2 Login to a Provider as a Known User

This scenario shows how a user can establish an access session with his named UA in the domain
of a certain provider, so he can make use of this provider’s services to which he has previously
subscribed.

It is assumed that the user has already had an initial contact with this provider by means of which the
user’s PA obtained a reference to the i_ProviderInitial interface of an initial agent of the
provider.

2. The PA may use a location service to find an interface reference for the IA, or some other means.

asUAP PAIntra::i_Initial
1. User starts asUAP

2. Gain PA IR

4. Request IA IR
from Naming Service

5. IR to IA::i_ProviderInitial
returned

3. contactProvider

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

75

Figure 4-2. Logon as a known user

1. asUAP -> PA::i_Initial::requestNamedAccess()
The user uses an access session related UAP to forward to the PA the request to log in to the
provider as a known user. The access session UAP may request the user’s user name and
other security related information, like for instance a password, to forward to the PA in the
request.

2. PA -> IA::i_ProviderInitial::requestNamedAccess()
The PA invokes requestNamedAccess () on the provider’s IA to establish an access session
that allows the user to access the services he is subscribed to.

At this stage, a secure context between user and provider may have already been established
through DPE security services. If this is the case, and no further authentication of the user and
provider is necessary, then this operation returns a reference to the
i_ProviderNamedAccess interface, and the scenario continues at step 12.

If a secure context between user and provider has not been established yet, the provider will
not allow an access session to be set-up, so the IA returns an exception
e_AuthenticationError which contains a reference to an i_ProviderAuthenticate

asUAP PA IA
namedUA

1. i_Initial::
requestNamedAccess 2. i_ProviderInitial::

requestNamedAccess

[authentication error]

4. i_ProviderAuthenticate::
getAuthenticationMethods

[]

8. i_ProviderAuthenticate::
continueAuthentication

[]

10. i_ProviderInitial::
requestNamedAccess

12. i_ProviderNamedAccess::
setUserCtxt

[]
[]

6. i_ProviderAuthenticate::
authenticate

[]

[authentication error]

3. i_ProviderAuthenticate::
getAuthenticationMethods

[]

5. i_ProviderAuthenticate::
authenticate

[]

7. i_ProviderAuthenticate::
continueAuthentication

[]

9. i_Initial::
requestNamedAccess

11. i_Initial::
setupAccessSession

[]
[]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

76

interface. This interface can be used to authenticate the user and provider domains, and
establish a secure context.

The invocation on the PA returns an exception as well to the asUAP.

3. asUAP -> PA::i_ProviderAuthenticate::getAuthenticationMethods()
The i_ProviderAuthenticate interface provides a generic set of operations that can be
used to ‘transport’ authentication information between the authenticating domains (user and
provider). In order to use these methods for authentication, both domains must know the
authentication method they will use to generate the authentication data ‘transported’ in the
authenticate () and continueAuthentication () operations.

The asUAP request the PA to find out the authentication methods the provider supports

4. PA -> IA::i_ProviderAuthenticate::getAuthenticationMethods()
The PA request a list of the authentication methods the provider supports. The provider should
return one or more authentication methods that he wishes the user to use to authenticate the
domains. (Only one authenticate method will be used to authenticate).

The list of authentication methods is forwarded to the asUAP.

5. asUAP -> PA::i_ProviderAuthenticate::authenticate()
The asUAP uses the authenticate () operation to select an authentication method and pass
authentication data to the PA. The operation also allows the request for specific privileges for
the user, that are used as part of the secure context.

6. PA -> IA::i_ProviderAuthenticate::authenticate()
The PA passes the selected authentication method and authentication data to the provider, and
the request for specific privileges for the user.

The provider processes the authentication data. If the authentication method has successfully
authenticated the domains, then the operation returns with the authentication status as
SecAuthSuccess , and the privileges allowed by the user. An access session has been
established between the domains, and the scenario continues with step 10. (In order to
establish the secure context for DPE interactions, some of the returned privileges, and
authentication specific data may need to be passed to the DPE. This is DPE specific and not
defined by TINA).

If the authentication status is SecAuthContinue, the authentication must continue, using the
continueAuthentication () operation. The provider returns some more authentication
(challenge) data from authenticate (). It is forwarded to the asUAP.

7. asUAP -> PA::i_ProviderAuthenticate::continueAuthentication()
The asUAP responds to the challenge data, (processing it according to the authentication
method, and passing the results to the PA).

8. PA -> IA::i_ProviderAuthenticate::continueAuthentication()
The PA forwards the results to the provider..

Again if the authentication has been successful, the provider returns the privileges granted to
the user, and possibly some authentication specific data. (As in step 5., in order to establish the
secure context for DPE interactions, some of the returned privileges, and authentication
specific data may need to be passed to the DPE. This is DPE specific and not defined by
TINA).

If the authentication status is SecAuthContinue, then the PA must continue to process the
challenge data, returned by this operation, and invoke continueAuthentication () with the
new results. This loop continues until the authentication status is successful, or a
SecAuthFailure , or a SecAuthExpired is returned. The former means the user has failed

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

77

to authenticate, (because he has been sending the wrong responses to the challenge data).
The latter means that responses must be generated within a certain timeframe (according to
the authentication method), and the PA did not respond quickly enough. They may attempt to
authenticate again, restarting the authentication process by calling authenticate().

9. asUAP -> PA::i_Initial::requestNamedAccess()
Now that a secure context between user and provider has been established, the asUAP again
requests that the access session is established. This operation returns the PA::i_Access
Interface Reference to the asUAP.

10. PA -> IA::i_ProviderInitial::requestNamedAccess()
The PA forwards the request to the provider.

11. IA -> UA::i_Initial::setupAccessSession()
The provider’s IA contacts the namedUA of the user and requests the setup of an access
session with the authenticated user. The namedUA generates the necessary access session
identifiers and returns them together with a reference to the i_ProviderNamedAccess
interface; this interface will be used for interactions during the access session; the access
session identifier will be used in all requests on this interface.

The access session ids and interface reference are passed to the PA.

12. PA -> UA::i_ProviderNamedAccess::setUserCtxt()
The PA starts access session interactions invoking the setUserCtxt () operation on
i_ProviderNamedAccess . This gives the user’s UA some information about the user’s
domain, such as interface references, available user applications, or the operating system
used.

The user’s UA acknowledges the receipt of this user’s domain information. The PA should have
this acknowledgment before considering the establishment of the access session complete
because some operations may rise an exception if the UA does not have this information.

The PA informs the asUAP of the successful establishment of the access session. The asUAP
in turn will inform the user who can now start using the services he is subscribed to.

The asUAP can now start to register its interfaces to the PA::i_Access.

4.3.3 Login to Provider as Anonymous User

This scenario allows the user to establish an access session with an anonymous user agent of the
provider. It is used when the user wishes to make use of the provider’s services, but does not wish
to disclose their identity, or form a contract with the provider that lasts longer than a single access
session. This scenario supports user mobility, by allowing the user to establish an access session
with a provider from any terminal.

It is assumed that the user has already had an initial contact with this provider by means of which the
user’s PA obtained a reference to the i_ProviderInitial interface of an initial agent of the provider.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

78

Figure 4-3. Login as an anonymous user

1. User uses an access session related UAP to login to the provider, as an anonymous user.

2. asUAP -> PA::i_Initial::requestAnonymousAccess()
The user uses an access session related UAP to forward to the PA the request to log in to the
provider as an anonymous user.

3. PA -> IA::i_ProviderInitial::requestAnonymousAccess()
The PA invokes requestAnonymousAccess() on the provider’s IA to establish an access
session that allows the user to access the provider’s services.

4. At this stage, a secure context between user and provider may have already been established
through DPE security services. If this is the case, then this operation returns a reference to the
i_ProviderAnonymousAccess interface, and the scenario continues at step 12.

If a secure context between user and provider has not been established yet, the provider may
not allow an access session to be established, so the IA returns an exception
e_AuthenticationError which contains a reference to an i_ProviderAuthenticate interface. This
interface ‘can’ be used to authenticate the user and provider domains, and establish a secure
context. (An anonymous user will not wish to identify themselves to the provider, but they may
wish to authenticate the provider, ensuring they have established an access session with the
‘actual’ provider, and not another spoofing their identity. The i_ProviderAuthenticate interface
can be used to authenticate the provider, given that an appropriate authentication method is
used).

asUAP PA
::i_Initial IA

.
1. User uses asUAP to login

as an anonymous user

anonUA
::i_ProviderAnonAccess

4. If i_ProviderAnonAccess IR, goto 9.
If e_AuthenticationError, continue.

2. requestAnonymousAccess
3. i_ProviderInitial:: requestAnonymousAccess

[i_ProviderAnonAccess IR]

[i_ProviderAnonAccess IR, or e_AuthenticationError]

8. i_ProviderInitial:: requestAnonymousAccess

10. []

5. i_ProviderAuthenticate:: getAuthenticationMethods

[list of authentication methods]

6. i_ProviderAuthenticate:: authenticate
[authentication data]

7. i_ProviderAuthenticate:: continueAuthentication

[credentials]

9. setUserCtxt

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

79

5. PA -> IA::i_ProviderAuthenticate::getAuthenticationMethods()
The i_ProviderAuthenticate interface provides a generic set of operations that can be used to
‘transport’ authentication information between the authenticating domains (user and provider).
In order to use these methods for authentication, both domains must know the authentication
method they will use to generate the authentication data ‘transported’ in the authenticate() and
continueAuthentication() operations.

The PA request a list of the authentication methods the provider supports. The Provider should
return one or more authentication methods that allows the provider to authenticate itself to the
user, without the user providing any authentication information. (Only one authenticate method
will be used to authenticate).

6. PA -> IA::i_ProviderAuthenticate::authenticate()
The PA uses to the authenticate() operation to select an authentication method. (They will also
pass some authentication data generated according to authentication protocol, by the user
domain). The operation also allows the PA to request specific privileges for the user, that are
used as part of the secure context3.

If the authentication method is successful, the operation returns with the authentication status
as SecAuthSuccess, and the privileges allowed by the user. An access session has been
established between the domains, and the scenario continues with step 10. (In order to
establish the secure context for DPE interactions, some of the returned privileges, and
authentication specific data may need to be passed to the DPE. This is DPE specific and not
defined by TINA).

If the authentication status is SecAuthContinue, the authentication must continue, using the
continueAuthentication() operation. The provider returns some more authentication (challenge)
data from authenticate().

7. PA -> IA::i_ProviderAuthenticate::continueAuthentication()
The PA responds to the challenge data, (processing it according to the authentication method,
and passing the results to the provider through continueAuthentication()).

Again if the authentication has been successful, the provider returns the privileges granted to
the user, and possibly some authentication specific data. (As in step 5., in order to establish the
secure context for DPE interactions, some of the returned privileges, and authentication
specific data may need to be passed to the DPE. This is DPE specific and not defined by
TINA).

If the authentication status is SecAuthContinue, then the PA must continue to process the
challenge data, returned by this operation, and invoke continueAuthentication() with the new
results. This loop continues until the authentication status is successful, or a SecAuthFailure, or
a SecAuthExpired is returned. The former means the user has failed to authenticate, (because
they have been sending the wrong responses to the challenge data). The latter means that
responses must be generated within a certain timeframe (according to the authentication
method), and the PA did not respond quickly enough. They may attempt to authenticate again,
restarting the authentication process by calling authenticate().

8. PA -> IA::i_ProviderInitial::requestAnonymousAccess()
Now that a secure context between user and provider has been established, the PA again
requests that the access session is established.

3. While the user may not be authenticated for anonymous usage of the provider, there are third-party authentication
schemes that allow a user’s true identity to be kept from the provider. The user may be known to the provider by a
temporary alias. In either circumstance there is still a need to agree the secure context between user and provider.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

80

If the provider accepts this request, then a reference to the i_ProviderAnonAccess interface of
the anonUA4 is returned. This interface will be used for interactions during the access session.
Included in the return is an access session identifier that will be used in all requests on that
interface.

9. PA -> anonUA::i_ProviderAnonAccess::setUserCtxt()
The PA starts access session interactions invoking the setUserCtxt() operation on
i_ProviderAnonAccess. This gives the user’s UA some information about the user’s domain,
such as interface references, available user applications, or the operating system used.

The user’s UA acknowledges the receipt of this user’s domain information. The PA should have
this acknowledgment before considering the establishment of the access session complete
because some operations may rise an exception if the UA does not have this information.

10. The PA informs the asUAP of the successful establishment of the access session and returns
the PA::i_Access interface reference, to be used by the asUAP for further request during the
access sesion. The asUAP in turn will inform the user who can now start ‘subscribing’ to
services that they will use during the access session.

The asUAP can now register its interfaces to the PA::i_Access.

4.3.4 Logout from a Provider

This event trace shows how a user can logout from a provider. Logging out means ending all the
access sessions the user has with this provider. In the example followed here the user has only one
access session with the provider, and no service sessions.

Figure 4-4. Logout from a provider

4. The anonymous User Agent (anonUA) has no knowledge of the users identity, nor personal information. Besides
usually an anonymousUA instance can support more than one anonymous user.

asUAP
PA

::i_Access
namedUA

::i_ProviderNamedAccess

1. listAccessSessions
2. listAccessSessions

[]
[]

3. listServiceSessions
4. listServiceSessions

[]
[]

5. endAccessSession

6. endAccessSession

[]

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

81

1. asUAP -> PA::i_Access::listAccessSessions()
The user uses an access session related UAP to logout from the provider, starting with
checking whether or not (s)he has other access sessions going on with the same provider.

2. PA -> UA::i_ProviderNamedAccess::listAccessSessions()
The PA forwards this request to the user’s UA, which stores updated information about the
access sessions the user is involved in.

The UA returns the list of access sessions the user has with the provider; in this case the list
will only contain one access session, which is the one within which these interactions are taking
place.

The PA forwards the list to the asUAP which in turn forwards it to the user.

3. asUAP -> PA::i_Access::listServiceSessions()
The user does not want to leave the access session before finishing any service session (s)he
may have with the provider, so (s)he uses the asUAP to request a list of service sessions,
scoped to contain only service sessions in the current access session.

4. PA -> UA::i_ProviderNamedAccess::listServiceSessions()
The PA forwards this request to the user’s UA, which stores updated information about the
service sessions the user is involved in.

The UA returns the list of service sessions the user has in this access session; in this case the
list is empty.

The PA forwards the empty list to the asUAP which in turn forwards it to the user.

If the list were not empty the user would start the process of finishing the service sessions, or
decide against ending the access session.

5. asUAP -> PA::i_Access::endAccessSession()
The user requests through the asUAP the end of the current access session. In case (s)he had
not made sure there no service sessions running in this access session, (s)he could use this
request to specify some actions to be taken if there are. It would also be possible to request
ending all access session with the provider in this invocation if there were any more.

6. PA -> UA::i_ProviderNamedAccess::endAccessSession()
The PA forwards the request to end the access session; instructions to follow if any service
sessions were active in the access session would be forwarded too.

The UA considers the access session finished (deletes associated interfaces and user context)
and returns an acknowledgment to the PA.

The PA deletes the interfaces associated to the access session and forwards the
acknowledgment to the UAP, which in turn informs the user of the completion of the logout
process.

4.3.5 Check Accounting Information

This event trace shows how User (asUAP) can check its accounting information using namedUA. As
preconditions of the scenario, namedUA has billing records stored by previous and on-going service
sessions (see Section 4.4.17), which are made accessible from asUAP or PA, through the interface
(namedUA::i_AccountingPull). As postconditions, retrieved billing information can be
consumed at asUAP and PA, or cached into PA, in which case later references to the billing
information. can be obtained from PA, which resides in the user domain, not necessarily through
namedUA across Ret reference point. The matter, however, is an implementation option.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

82

Figure 4-5. Check Accounting Information

1. asUAP -> PA::i_AccountingPull::GetUserLogEntries()
GetUserLogEntries request is sent from asUAP to PA. A list of billing records is returned to
asUAP as its reply. asUAPs (Access Session UAP) are capable of querying billing status of the
user (pull-accounting events).

2. PA -> namedUA::i_AccountingPull::GetUserLogEntries()
UA periodically displays billing information of on-going service sessions via the corresponding
PA, when on-line billing is used. The user is able to query the current billing status using PA,
which requests billing information from UA. GetUserLogEntries request is sent from PA to
named UA. A list of billing records is returned to PA as its reply.

4.3.6 List Subscribed Services

This scenario allows the user to request a list of their subscribed services. These are services to
which the user has subscribed to, or been subscribed to by a third party./

The scenario is applicable to both named and anonymous users. The interactions between the user
domain and the provider domain are identical for both types of user. For this reason, the User Agent
(UA) component and i_ProviderAccess interfaces are used in the scenario and event traces. These
are abstract components/interfaces, and so direct instances of these types are created in the provider
domain. However, sub-types of these for named users, (namedUA, i_ProviderNamedAccess), and
anonymous users (anonUA, i_ProviderAnonAccess) are created by the provider domain.

This scenario does not describe how the user subscribes to, or becomes subscribed to these
services. This is covered by traces in Section 4.5.1 and Section 4.5.3.

It is assumed that the user has established an access session with this provider, and the user’s PA
has a reference to the i_ProviderAccess interface of a user agent of the provider.

asUAP namedUA
::i_AccountingPull

PA
::i_AccountingPull

1. GetUserLogEntries

2. GetUserLogEntries

[]

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

83

Figure 4-6. List subscribed services

1. asUAP -> PA::i_Access::listSubscribedServices()
The user uses the as-UAP to obtain a list of their subscribed services. The as-UAP invokes this
operation on the PA.

The PA may have previously retrieved a list of the user’s subscribed services, and so may not
need to invoke the next operation. (The PA is informed of new subscribed services through the
newSubscribedServicesInfo() operation on the i_UserAccessSessionInfo interface.)

This scenario assumes the PA does not have up-to-date information on the subscribed
services, and continues to the next step.

2. PA -> UA::i_ProviderNamedAccess::listSubscribedServices()
The PA retrieves the list of services subscribed to by the user. This information is held by the
UA. (The UA may retrieve this information from the SubscriptionAgent when it initializes, or at
any other time.)

The UA returns a list of the subscribed services, including properties of each of the services.

4.4 Usage related Scenarios

4.4.1 Start a Service Session and Selection Of session model

This scenario allows a user involved in an access session with a named or anonymous UA to start a
service session that supports a specified session model. The UA is used as the generalization of both
the anonUA and namedUA. There are two cases which are supported:

• Case 1: User starts a service session using an ssUAP. This assumes that the ssUAP is
available in the user’s domain and can be launched by the user and can obtain references
to the access session PA.

• Case 2: User starts a service session using an asUAP. This does not require the ssUAP
to be present in the user’s domain provided there is a deployment/download capability
and assumes the component can be launched by the PA.

4.4.1.1 Case 1: User starts a service session using an ssUAP

The ssUAP is present in the users domain and is launched by the user. The ssUAP holds references
to the PA supporting the access session.

asUAP PA
::i_Access

UA
::i_ProviderNamedAccess

1. listSubscribedServices

2. listSubscribedServices

[list of services]

3. [list of services]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

84

Figure 4-7. Case 1: User instructs an ssUAP to start a service session

1. ssUAP -> PA::i_Access::startService()
requests from the PA a new service session of a particular service type which supports a
specified session model (e.g. TINA service session graph). Other properties for the service can
be specified. The ssUAP may also give the interface types and references it will support in the
session.

2. PA -> UA::i_ProviderNamedAccess::startService()
requests from the UA a new service session of a particular service type which supports a
specified session model (e.g. TINA service session graph). Other properties for the service can
be specified. The PA may also give the interface types and references that the ssUAP will
support in the session. The UA may perform (various non-prescriptive) authorization and
personalization actions before continuing. The UA may return unsuccessful and raise an
exception to the PA if the service request is declined. The UA must obtain a reference to a
service factory to create the session components. This may be predefined or the result of a
scoped search on a trader.

3. UA -> SF::i_SSCreate::createSSession()
requests both the USM and SSM session components to be instantiated and initialized with
optional properties specified by the UA

4. SF -> SSM::i_Init::initialise()
the SSM is initialized and interface references are returned

5. SF -> USM::i_Init::initialise()
the USM is initialized with SSM references and USM interface references are returned.

6. USM -> SSM::i_ProviderRegisterInterfaces::registerInterfaces()
SSM is given USM interface references by the USM.

References to the USM are returned to UA and ssUAP respectively.

ssUAP
PA

::i_Access
UA

::i_ProviderNamedAccess
SF

::i_SSCreate

USM
::i_Init

SSM

Optional

Optional

1. startService
2. startService

3. createSSession

[USM IR]

4. i_Init::initialise

[IRs]

[USM IRs]

7. i_ProviderBasicReq::setSessionModel

[]

[IRs]

[IRs]

8. i_ProviderBasicReq::registerSessionModel

5. initialise

[]

[IRs,GlobalSSid]

6. i_ProviderRegisterInterfaces::
registerInterfaces

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

85

ssUAP has references to interfaces on the USM. If the references are not to i_ProviderBasicReq
interfaces then they have bespoke behavior and are undefined in TINA, this scenario has completed.
The UAP is able to interact with the USM using the references to the Ret or service-specific
interfaces.

The following optional scenario is supported by the ProviderBasic feature set defined in Ret. The
exchange of interface types, references and session models across Ret is more capable if the ssUAP
supports the ProviderBasicExt feature set. If ssUAP has references to USM::i_ProviderBasicReq
interfaces, then the scenario may continue to allow the ssUAP and USM to select alternative
interfaces for their interactions:

7. Optional: ssUAP -> USM::i_ProviderBasicReq::i_SessionModel::setSessionModel()
requests the USM to return other possible session models supported by the service. This may
return a list of models and optionally feature sets and interface references. If references are not
returned they can be obtained using i_ProviderBasicReq::getInterface().

8. Optional: ssUAP -> USM::i_ProviderBasicReq::i_SessionModel::registerSessionModel()
enables the ssUAP to inform the USM that it supports a specified session model and optionally
feature sets and interface references. the return confirms that configuration is accepted.

4.4.1.2 Case 2: User starts a service session using an asUAP

Figure 4-8. Case 2: User instructs asUAP to start a service session

This case allows service sessions to be started where an appropriate service-specific UAP does not
exist on the terminal.

1. asUAP -> PA::i_Access::startServiceWithUAP()
requests the a service session to be started using an optionally specified UAP. If necessary the
PA will trigger the download/deployment of the ssUAP or launch a pre-existing ssUAP. See also
‘‘Update terminal with new service session components’ scenario. The PA starts the ssUap
when it becomes available on the terminal and obtains the ssUAP::i_Init reference.

2. PA -> ssUAP::i_Init::startServiceInit()
initializes the application to start a service session of a specified type; the PA interface
reference is passed to the ssUAP.

3. ssUAP -> PA::i_Access::startService()
This is equivalent as step 1 in Case 1 ‘ ssUAP to start service’ except the ssUAP responds to
the initialization from the PA not the user.

The ssUAP uses the PA to start the session of the service type, as defined in 4.4.1.1.

asUAP
PA

i_Access
ssUAP
::i_Init

PA may initiate download
of ssUAP

1. startServiceWithUAP
start service using specific application

2. startServiceInit
initialise to start specific service

[]

3. startService
continuing as Case 1

[]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

86

4.4.2 End a Service Session

This scenario covers a user ending a service session. This ends the session for all the users of the
session.

An access session exists between the PA and a UA. A service session exists between an ssUAP,
USM and SSM.

Figure 4-9. End a Service Session through ssUAP

1. ssUAP -> USM::i_ProviderBasicReq::endSessionReq()
The user requests (through the ssUAP) the session to be ended.

2. USM -> SSM::i_ProviderBasicReq::endSessionReq()
Request is passed on to the SSM. The return value of this invocation is the accounting
information for the requesting user.

3. SSM -> USM::i_PartyMultipartyInd::endSessionInd()
The SSM sends an indication about the request to end the session to all other user’s USMs

4. USM -> ssUAP::i_PartyMultipartyInd::endSessionInd()
The indication is passed on to the respective ssUAP’s. Involved parties may vote on the
decision to end the session, parties with owner rights might refuse, but assuming it is accepted
to end the session:

5. SSM -> USM::i_PartyMultipartyExe::endSessionExe()
The SSM sends an Exe to all other USMs instructing them to end the session. Accounting
information is passed to the USMs with this invocation. This is considered the ‘point of no
return’; if a provider so chooses, the initial invocation can return here (similar to the

Other's UAs
::i_SessionInfo

Req's
USM

::i_ProviderBasicReq
Req's
ssUAP

SSM
::i_ProviderBasicReq

SF
::i_SSManage

Legend:
 Req = Requesting User

Other's
ssUAPs

Other's
USMs

Req's UA
::i_SessionInfo

 1. endSessionReq
 2. endSessionReq

 2. [AccInfo]

3. i_PartyMultipartyInd::
endSessionInd

 8. endSSession

 []

 []

 4. i_PartyMultipartyInd::
endSessionInd

 []

 5. i_PartyMultipartyExe::
endSessionExe 6. i_PartyMultipartyExe::

endSessionExe

[]

 []

 7. sessionEnded

[]

9. sessionEnded

 []

 []

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

87

asynchronous version of e.g. Section 4.4.11). All accounting has stopped and the service
session specific interfaces are no longer available to the user.

6. USM -> ssUAP::i_PartyMultipartyExe::endSessionExe()
The instruction is passed to the respective ssUAPs.

7. USM -> UA::i_SessionInfo::sessionEnded()
All other participants UA’s are informed about the session being ended and accounting
information is transferred. If the i_ProviderSessionInfo was passed as part of the setUsrCtxt,
the UA sends an endSessionInfo to the PA (not shown in the diagram, applies to step 9. as
well).

8. SSM -> SF::i_SSManage::endSSession()
The SF is informed that the session is about to end and eventually releases the resources.

9. USM -> UA::i_SessionInfo::sessionEnded()
The USM informs the requesting users UA about the session ending and transfers accounting
information.

The UAP may still be running. Any references to the USM/SSM held by the UAP are invalid i.e., use
of them will not cause operations to occur on any USM/SSM or other CO. Their use should raise an
exception from the DPE.

4.4.3 End Service Session via Access Session

Figure 4-10. End service session (via access)

Other's UAs
::i_SessionInfoReq's

USM
::i_ProviderBasicReqReq's

asUAP

SSM
::i_ProviderBasicReq

SF
::i_SSManage

Legend:
 Req = Requesting User

ssUAPs
Other's
USMsReq's UA

::i_ProviderNamedAccessReq's PA
::i_Access

Req's
ssUAP

Optional

 1. endSession

 5. endSessionReq
6. i_PartyMultipartyInd::

endSessionInd

12. endSSession

 []

 []

7. i_PartyMultipartyInd::
endSessionInd

9. i_PartyMultipartyExe::
endSessionExe 10. i_PartyMultipartyExe::

endSessionExe

[]

 []

11. sessionEnded

[]

[accounting info]

 []

2. endSession
3. i_SessionControl::

endSession

[]

[]

8. [acc Info]

4. i_PartyMultipartyInd::endSessionInd

10. i_PartyMultipartyExe::
endSessionExe

[]

[]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

88

The access session used to end a particular service session may not be the access session
responsible for starting the service session originally. In the general case the asUAP used to end the
service session and the ssUAP participating in the service may not be collocated and therefore not
ordinarily they are not likely to hold interface references to each other.

1. asUAP -> PA::i_Access::endSession()
The asUAP instructs the PA to end the specified session. The session identifier can have
previously been obtained using PA::i_Access::listServiceSessions()

2. PA -> Req’s namedUA::i_ProviderNamedAccess::endSession()
The PA instructs the namedUA to end the specified service session.

3. namedUA -> Req’s USM::i_SessionCtrl::endSession()
The namedUA which holds a reference to the USM instructs USM to end the session. If this is
permitted the next stages occur.

4. USM -> ssUAP::i_PartyMultipartyInd::endSessionInd()
Optionally the USM may give the participant's ssUAP indication that the endSession request
has been received. This may assist the ssUAP to clear down the session gracefully in advance
of the final 'Exe' message.

5. USM -> SSM::i_ProviderBasicReq::endSessionReq()
The USM issues the endSession request to the SSM. The stages to 10 follow the same format
as the end session scenario initiated from the participating ssUAP.

6. SSM -> Other’s USM::i_PartyMultipartyInd::endSessionInd()
The SSM issues indications to the other USMs.

7. USM -> ssUAP::i_PartyMultipartyInd::endSessionInd()
The other USM's may issue indications to their respective ssUAP.

8. The SSM confirms to the requesters USM that the session is ending. Accounting information
are passed to the USM (accounting info will be then passed back by the USM to the UA).

9. SSM -> other’s USM::i_PartyMultipartyExe::endSessionExe()
The SSM instructs all USMs but the requester’s to end. Accounting information are sent to
USMs.

10. USM -> ssUAP::i_PartyMultipartyExe::endSessionExe()
All USMs forward the Exe to their respective ssUAPs.

11. USM -> namedUA::i_SessionInfo::sessionEnded()
Other participants UAs are informed that the session has ended. Accounting information is
passed to the UAs by the USMs

12. SSM -> SF::i_SSManage:::endSSession()
The SSM informs the service factory that the session has ended and resources have been
released.

4.4.4 End Participation in a Service Session

This scenario covers a user ending participation in a service session. This leaves other participants
continuing in the session. The event sequence bears a close relationship to end service session.

An access session exists between the PA and a UA. A service session exists between a UAP, USM
and SSM.)

In this scenario, we assume that requesting user differs from the user whose end of participation is
requested. It is possible for a user to use the same operations for ending the participation of that user
as well, but then the scenario follows the one given below in Figure 4-12.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

89

Figure 4-11. End Participation in a Service Session

1. ssUAP -> USM::i_ProviderMultipartyReq::endPartyReq()
A user requests the USM to end the participation for a given user.

2. USM -> SSM::i_ProviderMultipartyReq::endPartyReq()
USM forwards the request to SSM. This operation will return, if successful, accounting info.

3. SSM -> Ending user’s USM::i_PartyMultipartyInd::endPartyInd()
If the user being requested to end participation has the right to reject the request, an indication
is sent to ending user’s USM

4. USM -> Other users ssUAP::i_PartyMultipartyInd::endPartyInd()
The indication is forwarded to ending user’s ssUAP.

5. SSM -> Other users USM::i_PartyMultipartyInd::endPartyInd()
All other users (with voting, write or ownership rights for the session) receive indications that
the participant is about to end participation.

6. USM -> Other users ssUAP::i_PartyMultipartyInd::endPartyInd()
Indication is forwarded to corresponding ssUAPs. If the request is rejected by sessions
owner(s) or by votes, an exception is raises and the scenario stops, otherwise:

End's UA
::i_SessionInfo

USM
::i_ProviderMultipartyReq

Req's
ssUAP

SSM
::i_ProviderMultipartyReq other

user's
USMs

other
user's

ssUAPs
SF

::i_SSManage

Legend:
 Req = Requesting User

End = Ending Party

End's
ssUAPEnd's

USM

 1. endPartyReq
 2. endPartyReq

 []

5. i_PartyMultipartyInd::
endPartyInd

 10. endUserSSession

 []

 []

 6. i_PartyMultipartyInd::
endPartyInd

 []

11. oneway i_PartyMultipartyInfo::
endPartyInfo

12. oneway i_PartyMultipartyInfo::
endPartyInfo

3. i_PartyMultipartyInd::
endPartyInd

 []

4. i_PartyMultipartyInd::
endPartyInd

 []

7. i_PartyMultipartyExe::
 endPartyExe 8. i_PartyMultipartyExe::

endPartyExe

 []

 []

 9. participationEnded

 []

 []

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

90

7. SSM -> Ending user’s USM::i_PartyMultipartyExe::endPartyExe()
SSM instructs USM of the ending user to end the participation. Accounting info is passed to the
USM. Point of no return (see Section 4.4.2 step 5.)

8. USM -> Ending user’s ssUAP::i_PartyMultipartyInd::endPartyInd()
The instruction is passed on to the user ssUAP, upon return, the ssUAP can no longer access
interfaces on the USM

9. SSM -> Ending user’s UA::i_SessionInfo::participationEnded()
The ending user’s UA is informed that the participation in the service session is ended,
accounting info is passed to UA

10. SSM -> SF::i_SSManage::endUserSSession()
The SF is instructed to release resources previously reserved for the ending user. In this
scenario the SF can kill the ending user’s USM immediately.

11. SSM -> Other users USM::oneway i_PartyMultipartyInfo::endPartyInfo()
All other USMs are informed that the ending user is no longer participating in the service
session.

12. USM -> ssUAP::i_PartyMultipartyInfo::endPartyInfo()
Information passed to ssUAPs

A special case is shown in Figure 4-12. where a user directly ends her participation.

Figure 4-12. End My Participation in a Service Session

It follows the same principle as the general case, main differences are that the initial request is a
different operation (endMyParticipation) and that no indications or Exe’s are sent to the ending user.

Furthermore, the SF can not kill the USM immediately, but must wait till the USM has returned (see
Section 4.4.2 for a possible solution). The accounting information is here passed as a return
parameter to the call from USM to SSM and the call to the UA occurs after that return.

The ssUAP may still be running. Any references to the USM/SSM held by the ssUAP (of the ending
user) are invalid i.e., use of them will not cause operations to occur on any USM/SSM or other CO.
Their use should raise an exception from the DPE.

UA
::i_SessionInfo

USM
::i_ProviderMultipartyReqssUAP

SSM
::i_ProviderMultipartyReq

other
user's
USM

other
user's

ssUAPs
SF

::i_SSManage

 1. endMyParticipationReq

 2. endMyParticipationReq
 3. i_PartyMultipartyInd::

endPartyInd

 7. endUserSSession

[]

[]

 4. i_PartyMultipartyInd::
endPartyInd

[]

5. oneway
 i_PartyMultipartyInfo::

endPartyInfo
6. oneway

i_PartyMultipartyInfo::
endPartyInfo

 8. participationEnded

[]

 [AccountingInfo]

 []

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

91

4.4.5 Suspend a Service Session

The user and provider have an access session. The user is involved in a service session with active
ssUAP, USM and SSM.

Figure 4-13. Suspend a Service Session

1. ssUAP -> USM::i_ProviderBasicReq::suspendSessionReq()
UAP requests USM to suspend the service session.

2. USM -> SSM::i_ProviderBasicReq::suspendSessionReq()
Request is passed to SSM. This operatio returns Resume interface reference and Accounting
information.

3. SSM -> Other user’s USM::i_PartyMultipartyInd::suspendSessionInd()
USM’s of users with decision rights receive indications, that the session is about to be
suspended

4. USM -> Other user’s ssUAP::i_PartyMultipartyInd::suspendSessionInd()
Indication is passed to ssUAPs. If the suspension is rejected, the thread stops with an
exception, otherwise:

5. SSM -> SF::i_SSManage::suspendSSession()
SSM informs SF that the session will be suspended. The return value is an interface reference
on the SF that can be used to resume the session.

Other user's
UAs

::i_SessionInfo
Req's USM

::i_ProviderBasicReq
Req's
ssUAP

SSM
::i_ProviderBasicReq

other
user's

ssUAPsSF

Other
user's
USMs

Req's UA
::i_SessionInfo

 1. suspendSessionReq

 2. suspendSessionReq
3. i_PartyMultipartyInd::

suspendSessionInd

5. i_SSManage::
suspendSSession

[]

[ResumeIR]

[]

4. i_PartyMultipartyInd::
suspendSessionInd

[]

6. i_PartyMultipartyExe::
suspendSessionExe

[]

7. i_PartyMultipartyExe::
suspendSessionExe

[]

[]

[ResumeIR,AccInfo]

 9. sessionSuspended

[]

 8. sessionSuspended

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

92

6. SSM -> Other user’s USM::i_PartyMultipartyExe::suspendSessionExe()
Other USMs are instructed to suspend the session. The resume IR and relevant accounting
information is passed to each USM. Point of no return (see Section 4.4.2 step 5.)

7. USM -> ssUAP::i_PartyMultipartyExe::suspendSessionExe()
The instruction is passed on to each ssUAP

8. USM -> Other user’s UA::i_SessionInfo::sessionSuspended()
Each UA is informed about the suspension. The resume IR and accounting info is stored in the
UAs.

9. USM -> Requesting user’s UA::i_SessionInfo::sessionSuspended()
Similar action for the requesting user.

The session descriptor can be used later by the UAP or be retrieved by the UA so that resumption of
participation can be from a different terminal. The service session ceases to become interactive for
all users of the session. Depending on the semantics of the service, the session state when resumed
may not correspond to the moment of suspension. Possible communication sessions are ended.

4.4.6 Suspend Participation in a Service Session

‘Suspend participation in a service session’ scenario may be used by users who simply wish
temporarily not to be involved in a service session. It may be resumed from within the same access
session, but it can also be used to allow session mobility and resumed within a different access
session, possibly from a different location. The ‘Resume Participation in a Service Session’ scenario
is used to resume the session, whether session mobility occurs or not.

As was the case for ‘End Participation in a Service Session’, two cases are considered, a general
case, where a user requests a given users participation to be suspended, and a specialized case
where the user whose participation is requested to be suspended is actually the requesting user.

The user and provider have an access session. The user to be suspended is involved in a multiparty
service session with active ssUAP, USM and SSM.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

93

Figure 4-14. Suspend Participation in a Service Session

This scenario is very similar to ‘End Participation in a Service Session’. A few exceptions are given
below:

1. ssUAP -> USM::i_ProviderMultipartyReq::suspendPartyReq()

2. USM -> SSM::i_ProviderMultipartyReq::suspendPartyReq()

3. SSM -> Suspending user’s USM::i_PartyMultipartyInd::suspendPartyInd()

4. USM -> Suspending user’s ssUAP::i_PartyMultipartyInd::suspendPartyInd()

5. SSM -> Other user’s USM::i_PartyMultipartyInd::suspendPartyInd()

6. USM -> Other user’s ssUAP::i_PartyMultipartyInd::suspendPartyInd()

7. SSM -> SF::i_SSManage::suspendParticipation()
The SF returns a resume interface reference to be used to resume participation.

Susp's UA
::i_SessionInfo

USM
::i_ProviderMultipartyReq

Req's
ssUAP

SSM
::i_ProviderMultipartyReq

other
user's
USMs

other
user's

ssUAPs
SF

::i_SSManage

Legend:
Req = Requesting User

Susp = Suspending Party

Susp's
ssUAP

Susp's
USM

 1. suspendPartyReq
 2. suspendPartyReq

 []

 5. i_PartyMultipartyInd::
suspendPartyInd

 7. suspendParticipation

 []

 []

 6. i_PartyMultipartyInd::
suspendPartyInd

 []

11. oneway
 i_PartyMultipartyInfo::

suspendPartyInfo 12. oneway
 i_PartyMultipartyInfo::

suspendPartyInfo

 3. i_PartyMultipartyInd::
suspendPartyInd

 []

 4. i_PartyMultipartyInd::
suspendPartyInd

 []

8. i_PartyMultipartyExe::
 suspendPartyExe 9. i_PartyMultipartyExe::

suspendPartyExe

 []

 []

10. participationSuspended

 []

 [Resume IR]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

94

8. SSM -> Suspending user’s USM::i_PartyMultipartyExe::suspendPartyExe()
An interface reference for resuming the SSM is passed with this call. Point of no return (see
Section 4.4.2 step 5.)

9. USM -> Suspending user’s ssUAP::i_PartyMultipartyExe::suspendPartyExe()
Interface references for resuming SSM and suspending users USM are passed to the ssUAP

10. USM -> Suspending user’s UA::i_SessionInfo::participationSuspended()
Interface references for resuming SSM and suspending users USM are passed to the UA
together with the accounting info.

11. SSM -> Other user’s USM::i_PartyMultipartyInfo::suspendPartyInfo()

12. USM -> Other user’s ssUAP::i_PartyMultipartyInfo::suspendPartyInfo()

Figure 4-15. shows a special case of suspend participation, where Req and Susp coincide.

Figure 4-15. Suspend My Participation in a Service Session

‘Suspend My Participation in a Service Session’ differs in the same way from ‘Suspend Participation
in a Service Session’ as the two cases of End Participation differ.

The resume interfaces can be used later by the ssUAP or be retrieved by the UA so that resumption
of participation can be from a different terminal. The service session ceases to be interactive for the
user who suspended participation. Depending on the semantics of the service the session state when
resumed may not correspond to the moment of suspension. Possible communication sessions are
ended if all participants are suspended.

UA
::i_SessionInfo

USM
::i_ProviderMultipartyReqssUAP

SSM
::i_ProviderMultipartyReq

other
user's
USMs

other
user's

ssUAPsSF
::i_SSManage

1. suspendMy-
 ParticipationReq 2. suspendMy-

ParticipationReq

[ResumeIR
accounting info]

 8. participationSuspended

3. i_PartyMultipartyInd::
suspendPartyInd

7. oneway
 i_PartyMultipartyInfo::

suspendPartyInfo

 5. suspendParticipation

[]

[ResumeIR]

[]

4. i_PartyMultipartyInd::
suspendPartyInd

[]

6. oneway
 i_PartyMultipartyInfo::

suspendPartyInfo

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

95

4.4.7 Resume a Service Session

This event trace shows how a user can resume a service session that (s)he previously suspended.
It is assumed that the user is allowed to do so

As when resuming participation in a service session (see 4.4.8) the user can start requesting from
the provider a list of suspended service sessions; since these steps are exactly the same as in 4.4.8
they will be omitted here.

Figure 4-16. Resume a Service Session

1. asUAP -> PA::i_Access::resumeSession()
The user uses an access session UAP to forward the PA the request to resume the suspended
service session.

2. PA -> namedUA::i_ProviderNamedAccess::resumeSession()
The PA forwards the request to the user’s namedUA.

3. namedUA -> SF::i_Resume::resumeSSession()
The user’s namedUA uses the resume interface reference obtained in the suspension
interactions to request from a service factory the resumption of the service session.

Notice that it is not necessary that the resuming user is the one that suspended the service
session. It is only necessary that the user has the necessary rights, but all service session
participants get the resume interface at the end of the service session suspension interactions
so they have the means to resume the session.

4. SF -> SSM::i_Resume::resumeSession()
The SF forwards the resume request to the service session SSM. The SSM checks that
particular user is allowed to request

5. SSM -> resuming user’s USM::i_Resume::resumeSession()
The SSM informs the USM of the user that started the resume interactions, that the session
has resumed.

The USM returns information about the service session, including the interface references
necessary to interact with it.

6. SSM -> other participants’ USM::i_Resume::sessionResumed()
The service session’s SSM informs then the USMs of the user sessions of all the rest of the
session participants that the session has resumed.

7. USM -> namedUA::i_SessionInfo::sessionResumed()
Each USM in turn informs its corresponding namedUA that the session has resumed, so

asUAP

PA
::i_Access

resuming user's
namedUA

::i_ProviderNamedAccess
SF

::i_Resume
SSM

::i_Resume

resuming users’
USM

::i_Resume

other users'
USM

::i_Resume

other users'
namedUA

::i_SessionInfo

1. resumeSession
2. resumeSession

3. resumeSSession
4. resumeSession

5. resumeSession

[session info]

[session info]

[session info]

[session info]

6. sessionResumed
7. sessionResumed

[]

[session info]

[session info]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

96

namedUAs can have an updated list of service sessions the corresponding user is participating
in, together with the session status.

After receiving returns from the UAs, the USMs return the service session information to the
SSM.

Returns notifying of the success of the resume operation go back step by step to the user,
carrying the service session information to the asUAP; the asUAP will communicate with the
ssUAP to forward to it this service session information, but these interactions are out of the
scope of these component specifications.

4.4.8 Resume Participation in a Service Session

This event trace shows how a user can resume his/her participation in a service session after having
suspended it. It is assumed that the service session is still going on, otherwise the user would have
been notified of its termination. It is also assumed that the service session has not changed during
the time the user’s participation was suspended; see [1] for a study of the possibilities in case the
service session does change.

Figure 4-17. Resume Participation in a Service Session

1. asUAP -> PA::i_Access::listServiceSessions()
The user uses an access related UAP to forward the PA the request for a list of service
sessions; the request will be scoped to include only service sessions that the user was taking
part of and where (s)he suspended his/her participation.

2. PA -> namedUA::i_ProviderNamedAccess::listServiceSessions()
The PA forwards the request to the user’s namedUA; it is assumed here that in this access
session the user logged in as a known user, but the anonymous case is formally identical.

asUAP
PA

::i_Access
namedUA

::i_ProviderNamedAccess
SF

::i_Resume
SSM

::i_Resume

resuming
user's
USM

::i_Resume

other users'
USM

::i_PartyMultipartyInfo

1. listService-
Sessions 2. listService-

Sessions

[]

[]

3. resumeMy-
Participation

4. resumeMy-
Participation 5. resume-

Participation
6. resume-

Participation 7. resumeMy-
Participation

[session info]

[session info]
[session info]

[session info]

[session info]

8. resume-
PartyInfo

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

97

The namedUA returns the list to the PA, that forwards it to the asUAP, which in turn forwards it
to the user, who chooses among them the service session where (s)he wants to resume his/her
participation.

These two first steps may not be necessary, but they are shown here to make this example
more complete.

3. asUAP -> PA::i_Access::resumeMyParticipation()
The user uses the access related UAP to forward the PA the request of resuming his/her
participation in a certain service session, identified by a service session id.

4. PA -> namedUA::i_ProviderNamedAccess::resumeMyParticipation()
The PA forwards the request to the user’s namedUA

5. namedUA -> SF::i_Resume::resumeParticipation()
The user’s namedUA uses the resume interface reference obtained in the previous suspension
interactions to request from a service factory the resumption of his/her participation.

6. SF -> SSM::i_Resume::resumeParticipation()
The SF informs the service session’s SSM of the user’s participation resumption.

7. SSM -> Resuming user’s USM::i_Resume::resumeMyParticipation()
The service session’s SSM informs the user session’s USM of the user’s participation
resumption; the USM returns asome information about the service session, including the
interface references necessary to interact with it.

8. SSM -> Other user’s USM::i_PartyMultipartyInfo::resumePartyInfo()
The same notification is sent to the USMs corresponding to the user sessions of the other
users in this service session.

Returns to indicate the successful completion of the process go back from the SSM to the SF,
then to the namedUA, to the PA, and to the asUAP that informs the user. The service session
information is returned until it reaches the ssUAP.

4.4.9 Invite a User to Join a Session

This scenario defines how an existing service session participant can invite a potential participant to
join in the service session. Although the invitee can respond immediately to the invitation the session
is joined when the invitee invokes the join session scenario. The scenario does not show voting
defined in Ret.

The user who issues the invitation (inviter) and other existing participants in the service session have
active access sessions and service session components that have multiparty capabilities. The
participant receiving the invitation (invitee) may have an access session, or has registered a PA
invitation interface with the UA or, the UA cannot forward the invitation to the PA. Invitations require
immediate responses to confirm their delivery, but subsequent responses are also possible

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

98

Figure 4-18. Case 1: Participant instructs ssUAP to invite a potential participant to join service
session

1. UAP -> USM::i_ProviderMultipartyReq::inviteUserReq()
instructs the USM to invite a user to join the session. An existing participant (inviter) has
instructed the ssUAP to issue an invitation to a potential participant (invitee) to join a session.
The inviter supplied a resolvable name/address of the invitee.

2. USM -> SSM::i_ProviderMultipartyReq::inviteUserReq()
instructs the SSM to invite a user to join the session.

3. Optional SSM -> USM::i_PartyMultipartyInd::inviteUserInd()
optionally informs other USMs in the existing session that a new user is about to be invited to
join. This allow the service to support USM voting or invitation blocking at this point not
considered further here.

4. Optional USM -> ssUAP::i_PartyMultipartyInd::inviteUserInd()
optionally informs other USMs in the existing session that a new user is about to be invited to
join. This allow the service to support participant voting or invitation blocking at this point not
considered further here. See Section 4.4.15, "Example of Voting Procedure".

5. SSM -> UA::i_InvitationDelivery::invite()
delivers the invitation to the invitee’s UA.
The SSM uses a trading service to resolve the invitee’s name/address to a uaInvite interface
reference which can be used to issue the invitation. The naming service will be federated
amongst retailer and third party domains. The methods by which the location trading service is
established or maintained is outside this event trace. The naming service returns a reference to

Inviter's
ssUAP

USM
::i_ProviderMultipartyReq SSM

Optional

Invitee's UA
i_InvitationDeliveryother

participant
USMs

other
participant
ssUAPs

Optional

12. Option Case 1 or 2 or 3

Optional

6. Option Case 1 or 2

1. inviteUserReq 2. i_ProviderMultipartyReq::
inviteUserReq

5. invite

3. inviteUserInd
4. i_PartyMultipartyInd::

inviteUserInd

9. i_PartyMultipartyInfo::
inviteReplyInfo

8. [invitation outcome]

10. [invitation outcome]

11. i_PartyMultipartyInfo::
inviteReplyInfo

13. i_Join::
replyToInvitation

14. i_PartyMultipartyInfo::
inviteReplyInfo

14. i_PartyMultipartyInfo::
inviteReplyInfo

15. i_PartyMultipartyInfo::
inviteReplyInfo

15. i_PartyMultipartyInfo::
inviteReplyInfo

[]

[]

7. [reply]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

99

the invitee’s UA::i_InvitationDelivery. It is assumed that the domain federation (including DPE
security) permits this when the invitee and inviter have UAs residing in different retail domains.
The UA may perform actions which are not prescribed, before continuing. For example, the UA
may check its user profile for a policy on invitations to this specific service and conditions. The
policy will determine the UA actions. A number of options are possible.

6. Optional Case 1. The UA can decide to forward the invitation to the invitee’s terminal before
replying (see Figure 4-19).

7. UA -> SSM returns
the invitation outcome. A number of outcomes are defined.

8. SSM -> USM return
to invited user giving invitation outcome.

9. SSM -> USM::i_PartyMultipartyInfo::inviteReplyInfo()
informs other USMs of a invitation reply

10. USM -> ssUAP return
to invited user giving invitation reply outcome

11. USM -> ssUAP::i_PartyMultipartyInfo::inviteReplyInfo()
of other participant UAPs informing of invitation outcome.

12. Optional Case 1 or 2 or Case 3.

13. Optional UA -> SSM::i_Join::replyToInvitation()
a subsequent invitation reply can be made according to the outcome of Case 1 or 2 or 3 or due
to a decision of the UA (e.g. the UA may time-out an invitation if the invitee cannot be
contacted).

14. Optional SSM -> USM::i_PartyMultipartyInfo::inviteReplyInfo()
the subsequent invitation reply is forwarded to USMs

15. Optional USM -> ssUAP::i_PartyMultipartyInfo::inviteReplyInfo()
the subsequent invitation reply is forwarded to UAPs

Optional Case 1 and 2 - UA forwards the invitation to the invitee’s terminal

This option can be used as part of the synchronous response to the deliver invitation invocations.
However, this part of the event trace may occur at a significantly later time than step 9. The main
feature is that the synchronous return of the SSM->UA invocation can decoupled from any
subsequent interaction between the invitee’s UA<->PA<->asUAP. Case 1 and 2 only differ by which
interface and operation is used to deliver the invitation to the PA in step 1.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

100

Figure 4-19. Case1+2 the invitee is/is not involved in an active access session

1. Case 1 UA -> PA::i_UserInvite::inviteUser()
is used to deliver the invitation to a terminal If the UA holds an active PA invite interface inside
the access session.

1. Case 2 UA -> PA::i_UserInitial::inviteUserOutsideAccessSession()
delivers the invitation to a terminal if the UA holds a current PA reference for use outside an
access session.

2. PA -> asUAP::i_Access::inviteUser()
forwards this to the asUAP which can respond appropriately to the invitation on the invitee’s
behalf or in by interaction.

PA returns the invitation outcome to the UA across Ret. There are a number of possible responses
to the invitation with semantics such as declined, ringing, accepted, and party unknown.

Optional Case 3

This option demonstrates how an invitation held by a UA that has already received a synchronous
reply can be responded to later by the invitee. For example the UA may have returned to the SSM
the status trying to contact the invitee. At a later time the invitee starts an access session and
explicitly browses invitations received.

UA
PA

asUAP
::i_Access

Case 2 no access session exists

Case 1 an access session exists

1. i_UserInitial::inviteUserOutsideAccessSession
2. inviteUser

1. i_UserInvite::inviteUser

[]
[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

101

Figure 4-20. Case 3 the invitee is involved in an access session and requests invitations

1. asUAP -> PA::i_Access::listSessionInvitations()
requests a list of invitations received by the PA.

2. PA -> UA::i_ProviderNamedAccess::listSessionInvitations()
requests a list of invitations received by the UA.

3. UA -> PA returns
list of invitations

4. PA -> asUAP returns
list of invitations

5. asUAP -> PA::i_Access::replyToInvitation()
responds to the invitation now held by asUAP
The return gives the success of the invocation.

6. PA -> UA::i_ProviderNamedAccess::replyToInvitation()
responds to the invitation. The return gives the success of the invocation.

4.4.10 Join a Service Session with invitation

The user and provider have an access session. The user has started a service session related UAP
which holds a descriptor of the service session which is active . The session descriptor, the invitation
ID and a Service Info5 are assumed to have been made available to the ssUAP by an invitation
scenario through the PA. During the invitation scenario

5. Service info can carry the SSM::i_join interface reference. This interface reference is then used by the UA to contact
the SSM.

UA
::i_ProviderNamedAccessPA

::i_AccessasUAP

3. [invitation list]

5. replyToInvitation

6. replyToInvitation

1. listSessionInvitations

2. listSessionInvitations

4. [invitation list]

[]

[]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

102

Figure 4-21. Join with Invitation Scenario

1. UAP -> PA::i_Access::joinSessionWithInvitation()
User starts a service session related UAP. UAP gains a reference to the PA. User instructs UAP
to join an identified session. UAP requests to join a session, identified by a session descriptor.
This request is sent to the PA.

2. PA -> UA::i_ProviderNamedAccess::joinSessionWithInvitation()
PA requests to join a session, identified by a session invitation ID, to the
i_ProviderNamedAccess interface of the UA.
UA performs actions before continuing. For example authorization decisions may be taken. UA
may return unsuccessful, and raise an exception to the PA, if the UA wishes to refuse the join
request.

3. UA -> SSM::i_Join::joinSessionWithInvitation()
UA requests to join with invitation to the i_Join interface of the SSM.

4. SSM -> USM::i_PartyMultipartyInd::joinSessionInd()
The SSM checks whether the invitation is still valid and then it forwards all USMs that a user
has requested to join the session.

5. USM -> ssUAP::i_PartyMultipartyInd::joinSessionInd()
USMs forwards their respective UAPs that a user has requested to join the session.

6. SSM -> SF::i_SSCreate::createUserSSession()
The SSM processes the answers from the USMs and according to service specific policies
decides whether to accept or not the join request. In case of acceptance SSM requests to
create a User Service Session to the SF.

7. SF -> USM::i_Init::initialise()
SF allocates resources for a new USM, creates an USM, and initialize it (in the initialization
phase the needed references of UA, SSM and UAP are passed to the USM). The USM
interface references and the needed information on the session (FSs and Session model) are
passed back to the SSM, UA and the UAP.

8. SSM -> others’ USMs::i_PartyMultipartyInfo::joinSessionInfo()
SSM notifies all USMs that the user has joined the session

UA
::i_ProviderNamedAccess

USM
::i_Init

asUAP
SSM

::i_Join
other user's

USM
other user's

ssUAP
PA

::i_Access
SF

::i_SSCreate

1. joinSession-
WithInvitation

9. i_PartyMultipartyInfo::
joinSessionInfo

2. joinSession-
WithInvitation

[]
[]

6. createUserSSession
7. initialise

[]
[]

[]
8. i_PartyMultipartyInfo::

joinSessionInfo

4. i_PartyMultipartyInd::
joinSessionInd 5. i_PartyMultipartyInd::

joinSessionInd

[]
[]

3. joinSession-
WithInvitation

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

103

9. USMs -> UAPs::i_PartyMultipartyInfo::joinSessionInfo()
The notification of step 8. is forwarded to UAPs

The invited user has joined the service session he had been invited to, the user remains involved in
an access session.

4.4.11 Add Participant Oriented Stream Binding to a Service Session

This scenario covers the procedures to add a Participant Oriented Stream Binding to a service
session. Both the synchronous and asynchronous procedures are covered.

Figure 4-22. Add Participant Oriented Stream Binding to a Service Session

1. ssUAP -> USM::i_ProviderPaSBReq::addProviderPaSBReq()
A party in the service session initiates the addition of the streambinding. The requesting party
can already include a list of SFEPs he wants to bind. The request operation also includes a
description of the media associated to the streambinding and a list of parties which need to be
invited to join the streambinding.

2. USM -> SSM::i_ProviderPaSBReq::addProviderPaSBReq()
The request is forwarded to the SSM. If the request is processed asynchronously, an
e_NoSynchronousReqResp exception is thrown, which is forwarded to the invoking ssUAP.

3. SSM -> USM::i_PartyPaSBInd::addPartyPaSBInd()
An addPartyPaSBInd is invoked on the USM of selected parties in the service session. These
parties can be selected according to service-specific semantics or as a result of control session
relationship settings in the TINA service session model.

USM
::i_ProviderPaSBReq

Req's
ssUAP

SSM
::i_ProviderPaSBReq Part's

USM

other
user's
USMs

Part's
ssUAP

other
user's
ssUAP

Interaction with CSM

1. addProviderPaSBReq
2. addProviderPaSBReq

[asynchronous: exception]

[asynchronous: exception]

3. i_PartyPaSBInd::
addPartyPaSBInd

[]

5. i_PartyPaSBInd::
addPartyPaSBInd

7. i_PartyPaSBExe::
joinPartyPaSBExe

[]

6. i_PartyPaSBInd::
addPartyPaSBInd

[]

8. i_PartyPaSBExe::
joinPartyPaSBExe

[]

4. i_PartyPaSBInd::
addPartyPaSBInd

9. oneway i_PartyPaSBInfo::
confirmPartyGSInfo 10. oneway i_PartyPaSBInfo:

confirmPartyGSInfo

11. oneway i_PartyPaSBInfo::
notifyGSInfo

12. oneway i_PartyPaSBInfo::
notifyGSInfo

[synchronous: return |
asynchronous: 14.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

[synchronous: return |
asynchronous: 13.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

104

4. USM -> ssUAP::i_PartyPaSBInd::addPartyPaSBInd()
The indication is forwarded to the related ssUAPs.

5. SSM -> USM::i_PartyPaSBInd::addPartyPaSBInd()
An addPartyPaSBInd is invoked on the USM of those parties which are being invited to join the
streambinding.

6. USM -> ssUAP::i_PartyPaSBInd::addPartyPaSBInd()
The indication is forwarded to the related ssUAPs.
The optional voting procedure takes place. If the voting results in acceptance, the scenario
continues:

7. SSM -> USM::i_PartyPaSBExe::joinPartyPaSBExe()
A joinPartyPaSBExe is invoked on the USM of those parties which are being invited to join the
streambinding.

8. USM -> ssUAP::i_PartyPaSBExe::joinPartyPaSBExe()
The operation is forwarded to the related ssUAPs. The invited parties return a list of the SFEPs
they want to bind as an out parameter of the operation. This list is further returned to the SSM
as an out parameter of 7.
When all invited parties have returned their SFEPs for binding, the SSM determines the related
stream flow connections and interacts with the CSM to establish these connections. When the
connections are established successfully, the scenario continues:

9. oneway SSM -> USM::i_PartyPaSBInfo::confirmPartyGSInfo()
A confirmPartyGSInfo is invoked on the USM of those parties which have been invited in order
to inform them that the procedures to add the streambinding have finished successfully.

10. oneway USM -> ssUAP::i_PartyPaSBInfo::confirmPartyGSInfo()
The info is forwarded to the related ssUAPs.

11. oneway SSM -> USM::i_PartyPaSBInfo::notifyGSInfo()
A notifyGSInfo is invoked on the USM of selected parties (as in 3.) to inform them that the
procedures to add the streambinding have finished successfully.

12. oneway USM -> ssUAP::i_PartyPaSBInfo::notifyGSInfo()
The info is forwarded to the related ssUAPs.

13. oneway SSM -> USM::i_PartyPaSBInfo::confirmPartyGSInfo()
When the addition of the streambinding has been processed asynchronously, the requester is
informed of the successful outcome by means of a confirmPartyGSInfo.

14. oneway USM -> ssUAP::i_PartyPaSBInfo::confirmPartyGSInfo()
The info is forwarded to the requesting party's ssUAP.

4.4.12 Add Participants to a Participant Oriented Stream Binding

This scenario covers the procedures to add new Participants to an already established Participant
Oriented Stream Binding.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

105

Figure 4-23. Add Participants to a Participant Oriented Stream Binding

1. ssUAP -> USM::i_ProviderPaSBReq::addParticipantsProviderPaSBReq()
A party in the service session initiates the addition of new parties to the streambinding. The
request operation includes a list of parties which need to be invited to join the streambinding.
This list can include the requester himself, in which case a list of SFEPs for binding can be
included in the operation.

2. USM -> SSM::i_ProviderPaSBReq::addParticipantsProviderPaSBReq()
The request is forwarded to the SSM. If the request is processed asynchronously, an
e_NoSynchronousReqResp exception is thrown, which is forwarded to the invoking ssUAP.

3. SSM -> USM::i_PartyPaSBInd::addParticipantsPartyPaSBInd()
An addPartyPaSBInd is invoked on the USM of selected parties in the service session. These
parties can be selected according to service-specific semantics or as a result of control session
relationship settings in the TINA service session model.

4. USM -> ssUAP::i_PartyPaSBInd::addParticipantsPartyPaSBInd()
The indication is forwarded to the related ssUAPs.

5. SSM -> USM::i_PartyPaSBInd::addParticipantsPartyPaSBInd()
An addPartyPaSBInd is invoked on the USM of those parties which are being invited to join the
streambinding.

USM
::i_ProviderPaSBReq

Req's
ssUAP

SSM
::i_ProviderPaSBReq

Legend:
Req = Requesting User

Part=Party which is Invited to Join the SB

Part's
USM

other
user's
USMs Part's

ssUAP

other
user's
ssUAP

Interaction with CSM

1. addParticipants-
ProviderPaSBReq 2. addParticipants-

ProviderPaSBReq

[asynchronous: exception]
[asynchronous: exception]

3. i_PartyPaSBInd::
addParticipantsPartyPaSBInd

[]

5. i_PartyPaSBInd::
addParticipantsPartyPaSBInd

[]

7. i_PartyPaSBExe::
joinPartyPaSBExe

[]

6. i_PartyPaSBInd::
addParticipantsPartyPaSBInd

[]

8. i_PartyPaSBExe::
joinPartyPaSBExe

[]

4. i_PartyPaSBInd::
addParticipantsPartyPaSBInd

[]

9. oneway i_PartyPaSBInfo::
confirmPartyGSInfo 10. oneway i_PartyPaSBInfo:

confirmPartyGSInfo
11. oneway i_PartyPaSBInfo::

notifyGSInfo
12. oneway i_PartyPaSBInfo::

notifyGSInfo

[synchronous: return |
asynchronous: 14.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

[synchronous: return |
asynchronous: 13.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

106

6. USM -> ssUAP::i_PartyPaSBInd::addParticipantsPartyPaSBInd()
The indication is forwarded to the related ssUAPs.
The optional voting procedure takes place. If the voting results in acceptance, the scenario
continues completely identical as in the scenario "Add Participant Oriented Stream Binding to a
Service Session".

4.4.13 Delete Participants from a Participant Oriented Stream Binding

This scenario covers the procedures to delete Participants from a Participant Oriented Stream
Binding. Both the synchronous and asynchronous procedures are covered.

Figure 4-24. Delete Participants from a Participant Oriented Stream Binding

1. ssUAP -> USM::i_ProviderPaSBReq::deleteParticipantsProviderPaSBReq()
A party in the service session initiates the deletion of parties from the streambinding. The list of
parties that are to be removed can include the requester himself.

2. USM -> SSM::i_ProviderPaSBReq::deleteParticipantsProviderPaSBReq()
The request is forwarded to the SSM. If the request is processed asynchronously, an
e_NoSynchronousReqResp exception is thrown, which is forwarded to the invoking ssUAP.

3. SSM -> USM::i_PartyPaSBInd::deleteParticipantsPartyPaSBInd()
A deleteParticipantsPartyPaSBInd is invoked on the USM of selected parties in the service
session. These parties can be selected according to service-specific semantics or as a result of

USM
::i_ProviderPaSBReqReq's

ssUAP

SSM
::i_ProviderPaSBReq

Legend:
Req = Requesting User

Part=Party which is deleted from the SB

Part's
USM

other
user's
USMs

Part's
ssUAP

other
user's
ssUAP

Interaction with CSM

1. deleteParticipants-
ProviderPaSBReq 2. deleteParticipants-

ProviderPaSBReq

[asynchronous: exception]

[asynchronous: exception]
3. i_PartyPaSBInd::

deleteParticipantsPartyPaSBInd

5. i_PartyPaSBExe::
leavePartyPaSBExe 6. i_PartyPaSBExe::

leavePartyPaSBExe

4. i_PartyPaSBInd::
deleteParticipantsPartyPaSBInd

7. oneway i_PartyPaSBInfo::
confirmPartyGSInfo 8. oneway i_PartyPaSBInfo:

confirmPartyGSInfo

9. oneway i_PartyPaSBInfo::
notifyGSInfo

10. oneway i_PartyPaSBInfo::
notifyGSInfo

[synchronous: return |
asynchronous: 12.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

[synchronous: return |
asynchronous: 11.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

107

control session relationship settings in the TINA service session model. The parties that are to
be deleted can be among these selected parties, but this is not required.

4. USM -> ssUAP::i_PartyPaSBInd::deleteParticipantsPartyPaSBInd()
The indication is forwarded to the related ssUAPs.
The optional voting procedure takes place. If the voting results in acceptance, the SSM
determines the effect of removing parties from the streambinding and interacts with the CSM to
request the relevant modifications to the communication session. When the modifications are
successful, the scenario continues:

5. SSM -> USM::i_PartyPaSBExe::leavePartyPaSBExe()
A leavePartyPaSBExe is invoked on the USM of those parties which are being deleted from the
streambinding.

6. USM -> ssUAP::i_PartyPaSBExe::leavePartyPaSBExe()
The operation is forwarded to the related ssUAPs.

7. SSM -> USM::i_PartyPaSBInfo::confirmPartyGSInfo()
A confirmPartyGSInfo is invoked on the USM of those parties which have been deleted from
the streambinding,.

8. oneway USM -> ssUAP::i_PartyPaSBInfo::confirmPartyGSInfo()
The info is forwarded to the related ssUAPs.

9. oneway SSM -> USM::i_PartyPaSBInfo::notifyGSInfo()
A notifyGSInfo is invoked on the USM of selected parties (as in 3.) to inform them that the
procedures to delete parties from the streambinding have finished successfully.

10. oneway USM -> ssUAP::i_PartyPaSBInfo::confirmPartyGSInfo()
The info is forwarded to the related ssUAPs.

11. oneway SSM -> USM::i_PartyPaSBInfo::confirmPartyGSInfo()
When the operation has been processed asynchronously, the requester is informed of the
successful outcome by means of a confirmPartyGSInfo.

12. oneway USM -> ssUAP::i_PartyPaSBInfo::confirmPartyGSInfo()
The info is forwarded to the requesting party's ssUAP.

4.4.14 Delete a Participant Oriented Stream Binding from the Service Session

This scenario covers the procedures to delete a Participant Oriented Stream Binding from the Service
Session. Both the synchronous and asynchronous procedures are covered.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

108

Figure 4-25. Delete a Participant Oriented Stream Binding

1. ssUAP -> USM::i_ProviderPaSBReq::deleteProviderPaSBReq()
A party in the service session initiates the deletion of the streambinding.

2. USM -> SSM::i_ProviderPaSBReq::deleteProviderPaSBReq()
The request is forwarded to the SSM. If the request is processed asynchronously, an
e_NoSynchronousReqResp exception is thrown, which is forwarded to the invoking ssUAP.

3. SSM -> USM::i_PartyPaSBInd::deletePartyPaSBInd()
A deletePartyPaSBInd is invoked on the USM of selected parties in the service session. These
parties can be selected according to service-specific semantics or as a result of control session
relationship settings in the TINA service session model. The parties that have previously joined
the streambinding can be among these selected parties, but this is not required.

4. USM -> ssUAP::i_PartyPaSBInd::deletePartyPaSBInd()
The indication is forwarded to the related ssUAPs. The optional voting procedure takes place. If
the voting results in acceptance, the SSM interacts with the CSM to request the relevant
modifications to the communication session. When the modifications are successful, the
scenario continues exactly as in scenario 4.4.13.

USM
::i_ProviderPaSBReq

Req's
ssUAP

SSM
::i_ProviderPaSBReq

Legend:
Req = Requesting User

Part=Every party in the SB (Except the requester)

Part's
USM

other
user's
USMs

Part's
ssUAP

other
user's
ssUAP

Interaction with CSM

1. deleteProviderPaSBReq
2. deleteProviderPaSBReq

[asynchronous: exception]

[asynchronous: exception]

3. i_PartyPaSBInd::
deletePartyPaSBInd

5. i_PartyPaSBExe::
leavePartyPaSBExe 6. i_PartyPaSBExe::

leavePartyPaSBExe

4. i_PartyPaSBInd::
deletePartyPaSBInd

7. oneway i_PartyPaSBInfo::
confirmPartyGSInfo 8. oneway i_PartyPaSBInfo:

confirmPartyGSInfo

9. oneway i_PartyPaSBInfo::
notifyGSInfo 10. oneway i_PartyPaSBInfo::

notifyGSInfo

[synchronous: return |
asynchronous: 12.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

[synchronous: return |
asynchronous: 11.

oneway i_PartyPaSBInfo::
confirmPartyGSInfo]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

109

4.4.15 Example of Voting Procedure

This scenario covers the processing of the voting procedure. Whether or not voting is required is
defined by either service-specific semantics or as a result of control session relationship settings in
the TINA service session model. (Here, “XXX” means Basic, ControlSR, and so on)

Figure 4-26. Usage of Voting Feature Set

1. ssUAP -> USM::i_ProviderXXXReq::XXXReq()
A party in the service session initiates a request.

2. USM -> SSM::i_ProviderXXXReq::XXXReq()
The request is forwarded to the SSM.

3. SSM -> USM::i_PartyXXXInd::XXXInd()
An XXXInd is invoked on the USM of selected parties in the service session. The indication is
identified by an "IndId". All parties which have voting right for the requested action have to
reveive an indication. However, indication can also be invoked on additional parties. The
parties which receive an indication can be selected according to service-specific semantics or
as a result of control session relationship settings in the TINA service session model.

4. USM -> ssUAP::i_PartyXXXInd::XXXInd()
The indication is forwarded to the related ssUAPs.

5. ssUAP -> USM::i_ProviderVotingReq::voteReq()
The voting user issues a vote by invoking a voteReq.

USM
::i_ProviderXXXReq

Req's
ssUAP

SSM
 ::i_ProviderXXXReq

Legend:
Req = Requesting User

Part=Every Party Which Receives An Indication

Part's
USM

Part's
ssUAP

Determine Outcome of Voting Result

Continue with Execution and Information Phase

1. XXXReq
2. XXXReq

[asynchronous: exception]

[asynchronous: exception]
3. i_PartyXXXInd::

XXXInd

[]

6. oneway
i_ProviderVotingReq::

voteReq

7. oneway
i_PartyVotingInfo::

voteInfo

9. oneway i_PartyXXXInfo::
XXXInfo

4. i_PartyXXXInd::
XXXInd

[]

5. oneway
i_ProviderVotingReq::

voteReq

8. oneway
i_PartyVotingInfo::

voteInfo

10. oneway
i_PartyXXXInfo::

XXXInfo[synchronous:return |
asynchronous: 12.

oneway i_PartyXXXInfo::
XXXInfo]

[synchronous:return |
asynchronous: 11.

oneway i_PartyXXXInfo::
XXXInfo]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

110

6. USM -> SSM::i_ProviderVotingReq::voteReq()
... which is forwarded to the SSM. The voteReq contains the IndId to identify the indication it
refers to. It is service-specific to determine until what time the SSM is ready to accept votes. It
might be that it is required that the voteReq is invoked BEFORE the indication returns, but this
requires multithreading in the SSM within the processing context of the request. In most cases,
a timer will be started to determine the timeframe for receiving votes. It is again service-specific
to determine the “default” vote result, i.e. to treat votes which are awaited but which are not
received as either acceptance or failure.
Determination of the outcome of the voting procedures is either service-specific or results from
control session relationship settings in the TINA service session model.

7. oneway SSM -> USM::i_PartyVotingInfo::voteInfo()
The result of the voting procedures can optionally be communicated to selected parties (as in
3.)

8. oneway USM -> ssUAP::i_PartyVotingInfo::voteInfo()
The voteInfo is forwarded to the ssUAP.
If the voting procedures result in acceptance, the processing of the action continues as if no
voting has taken place.

4.4.16 Example of Control FS usage

This scenario covers the procedures to set a control session relationship.

Figure 4-27. Set a Control Session Relationship

1. ssUAP -> USM::i_ProviderControlSRReq::setControlReq()
A party in the service session initiates the setting of a control session relationship. If no explicit
session relationship is created between a controlling party and a controlled object, a default is
assumed to exist, whose value is determined either according to service-specific semantics or
TINA service session defined default.

2. USM -> SSM::i_ProviderControlSRReq::setControlReq()
The request is forwarded to the SSM.

USM
::i_ProviderControlSRReq

Req's
ssUAP

SSM
::i_ProviderControlSRReq

Legend:
Req = Requesting User

Part=Every Party Which Receives An Indication

Part's
USM

Part's
ssUAP

1. setControlReq
2. setControlReq

3. i_PartyControlSRInd::
setControlInd

[]

5. oneway
 i_PartyControlSRInfo::

setControlInfo

[success or failure]

[success or failure]

4. i_PartyControlSRInd::
setControlInd

[]

6. oneway
i_PartyControlSRInfo::

setControlInfo

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

111

3. SSM -> USM::i_PartyControlSRInd::setControlInd()
A setControlInd is invoked on the USM of selected parties in the service session. These parties
can be selected according to service-specific semantics or as a result of control session
relationship settings in the TINA service session model.

4. USM -> ssUAP::i_PartyControlSRInd::setControlInd()
The indication is forwarded to the related ssUAPs.
The optional voting procedure takes place. If the voting results in acceptance, the scenario
continues:

5. SSM -> USM::i_PartyControlSRInfo::setControlInfo()
A setControlInfo is invoked on the USM of selected parties (as in 3.) to inform them that the
procedures to add a control session relationship have finished successfully.

6. oneway USM -> ssUAP::i_PartyControlSRInfo::setControlInfo()
The info is forwarded to the related ssUAPs.

4.4.17 Service Session Accounting

This scenario shows how the accounting events are pushed from lower levels up to the user agent
that finally stores the information. Figure 4-28 provides a graphical representation of this scenario.

In this scenario, we assume a transparent billing context model, where the provider acts as a billing
agent for the connectivity provider (CP). Although the flow of accounting events may differ, overall
accounting management architecture and necessary component specifications are almost the same
for the opaque billing context model.

Bare transport level traffic is measured, as they are specified in NRIM [6], which corresponds to the
NFC under measurement. The accounting events are recorded, or collected using an event
management ladder [7], such that usage information of the NFC is collected by CC. Although network
resource components such as LNC, TM, etc. do not appear in the figure, they are assumed as they
are described in NRA, forming an event management ladder when their instances are created.

In WYSWYP (What You See is What You Pay) [13] performance monitoring, performance and traffic
on SFC are measured at SFEP, with assistance from TCSM (not shown in the figure). This provision
is particularly useful for connection-less traffic on IP networks, where internet service provider (CP)
is not concerned with per connection QoS or its traffic measurement. The accounting management
events, which may include both traffic measurement and performance monitoring results, are sent to
and collected by CSM, via TCSM in the user domain.

Accounting events (records) are passed to CSM from CC. When on-line billing is used, filtered
accounting events, which may cause a change in the provider’s billing status, are passed on-the-fly
during the service transaction. When on-line billing is not used, only the calibrated billing information
is passed from CC to CSM at the conclusion of the service transaction. The billing information is
calibrated by taking both performance monitoring results and price compensation scheme into
account, both of which should be agreed at the beginning of the service transaction, as part of
management context negotiation.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

112

Figure 4-28. An example scenario of accounting management

1. CSM -> SSM::i_AccountingPush::push()
Filtered accounting events are passed to SSM, which in turn may pass the events to
corresponding USMs or to UAs, depending on the availability of the components.

2. SSM -> USM::i_AccountingPush::push()
SSM passes accounting events or billing information to corresponding per user components.
When on-line billing are used, and the bills are to be split among interested parties, the
accounting events from CSM are stipulated and then passed to the corresponding USMs of the
participating (paying) users. When on-line billing is not used, and only the billing information is
obtained from CC at the conclusion of the service transaction, the stipulated billing information
may be passed to UAs, not USMs, as the USMs may be non-existent at the time. This situation
occurs because TINA service session is a multi-party entity, that is a user can leave a service
session whereas other users are still on the session.

3. USM -> namedUA::i_AccountingPush::push()
Accounting events sent to USM are turned into billing information, which is to be stored in UA.
UAs continue to accumulate billing information of service sessions per user basis, which are
made permanent to acquire fault tolerance. Temporary billing information of the on-going
service sessions are also stored at UA, which can be used for on-line billing.

After step 3, the accounting information is stored in the namedUA. When on-line billing is used, the
PA can request accounting information from the UA (see Section 4.3.5). Provider’s billing systems
can also access the UA to get the user’s accounting information to produce the user’s bill.

4.5 Ancillary Usage Related Scenarios
In the scenarios for subscription management only some interactions are prescriptive:

• Interactions through Ret (between user application and USM/SSMols).

• Interactions with the User Agent.

• Interactions with the SLCM.

Interactions between Sub and USM/SSMols are not prescribed and are shown just for completeness.

These scenarios do not include the access phase and the start of a subscription management service
session. This has been described in detail in the previous sections.

4.5.1 Subscribe a New Customer

This event trace describes how a new customer is subscribed to the provider, contracting a number
of services, and how the service contract and subscriber information (associated end users and end
user groups) are defined.

namedUA
::i_AccountingPushCSM

SSM
::i_AccountingPush

USM
::i_AccountingPush

1. push
2. push

3. push

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

113

The customer is not previously subscribed to the provider. The scenario “Contract a New Service” on
page 118 describes how to contract new services for a customer that is already subscribed to the
provider.

Figure 4-29. Subscribe a new customer.

1. ssUAPols -> USM/SSMols::i_ProviderOlsSi::listServices()
The ssUAPols requests the list of services to the session manager through Ret-RP.

2. USM/SSMols -> Sub::i_Subscribe::listServices()
The USM/SSMols requests the list of services. Sub returns the list of services provided by the
provider. USM/SSMols returns it on its turn to the user application.

3. ssUAPols -> USM/SSMols::i_ProviderOlsSi::subscribe()
The ssUAPols requests the creation of a new subscriber. The required subscriber information
(for instance, identification and billing information) and the list of services the new customer
wants to subscribe to are the main parameters in this operation. The subscriber identifier is
returned as a result. The list of service templates for each of the requested services is returned
as well.

USM/SSMols
::i_ProviderOlsSi

TINAScsSubInitial
::i_Subscribe

TINAScsSubscriberInfoAccess
::i_SubscriberInfoMgmt

TINAScsServiceContractInfoAccess
::i_ServiceContractInfoMgmt

TINAScsNamedUAIntra
::i_SubscriptionNotify

Anonymous Access

ssUAPols

[]

[]

[]

[]

[]

....create UA....

16. notify

2. listServices

[]

1. listServices

[]

3. subscribe
4. subscribe

[]

5. getServiceTemplate

6. defineServiceContract
7. defineServiceContract

[]

8. createSAEs
9. createSAEs

[]

10. createSAGs
11. createSAGs

[]

12. assignServiceProfile
13. assignServiceProfile

[]

[]

notify

[]

14. activateServiceProfiles
15. activateServiceProfiles

[]
[]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

114

4. USM/SSMols -> Sub::i_Subscribe::subscribe()
The USM/SSMols requests to Sub the creation of a new subscriber. The subscriber information
and the list of services received from the user application are passed as parameters. The new
subscriber identifier is returned as a result. Some interfaces references are also returned, the
subscriber information management interface (i_SubscriberInfoMgmt) and a set of
interfaces for service contract definition (i_ServiceContractInfoMgmt), one for each
requested service. Optionally6, a service contract identifier can be returned for every requested
service.

5. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::getServiceTemplate()
For every service, the USM/SSMols requests a service template using the corresponding
service contract management interface.

At this moment, the reply to the subscriber request is sent to the user application. The
subscriber identifier and the list of service templates for each of the requested services are
returned in the reply. The ssUAPols will use these service templates to derive the service
profiles that will define the service contracts.

6. ssUAPols -> USM/SSMols::i_ProviderOlsSi::defineServiceContract()
The defineServiceContract operation is used by the ssUAPols to specify the service
contract. The Subscription Profile and a list of SAG Service Profiles are the main components
of the service contract.

7. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::defineServiceContract()
The USM/SSMols uses an equivalent operation on Sub to pass it the contract information. A list
of SAG Service Profile identifiers is got as a return value. The list of identifiers is passed back
to the ssUAPols.

8. ssUAPols -> USM/SSMols::i_ProviderOlsSi::createSAEs()
All the subscription assignment entities (users, terminals or NAPs) in the subscriber domain
that could make use of the contracted services are defined using the createSAEs operation
on the online subscription service specific interface. The user application can propose
identifiers for the users it is defining.

9. USM/SSMols -> Sub::i_SubscriberInfoMgmt::createSAEs()
These entities are passed to Sub using the equivalent createSAEs operation on the
subscriber information management interface. The subscriber Identifier can be required if the
i_SubscriberInfoMgmt is not unique per subscriber. Sub might create at this moment the
Access Agent for that entity7, a namedUA in case of a user.

The list of assigned entity identifiers is the returned value. These identifiers are unique in the
provider domain8.

The list is passed back to the user application.

10. ssUAPols -> USM/SSMols::i_ProviderOlsSi::createSAGs()
Then, the subscriber, through the user application, creates a number of SAGs. The input values
for the creation operation is a list of pairs <list of SAEs, proposed SAG identifier>.

6. In implementations that provides only one service contract management interface per service. This interface is
shared by all the service contracts.

7. The creation can be deferred to the moment in which this SAE is assigned to a service profile and, thus, has access
to some service.

8. The identifier might be a composition of user identifier (the one passed as an input parameter) and the subscriber
identifier. For instance, the invocation of createSAEs(..Juan...) from subscriber TinaC could receive as a
return value Juan_TinaC . Any other way of constructing identifiers is valid as well, as long as it guarantees the
uniqueness of the user identifier in the providler domain.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

115

11. USM/SSMols -> Sub::i_SubscriberInfoMgmt::createSAGs()
The creation operation is forwarded to the Sub. This invocation may require the Subscriber Id
(in implementations with just one shared subscription information management interface).

The list of SAG identifiers is returned. These identifiers are unique in the provider domain.

12. ssUAPols -> USM/SSMols::i_ProviderOlsSi::assignServiceProfile()
The subscriber, through the user application, can assign a service profile to a number of SAEs
and SAGs. The USM/SSMols may check whether the service profile is part of the subscriber’s
service contract or not and whether the SAEs and SAGs belong to the subscriber or not, before
proceeding with the next step.

13. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::assignServiceProfile()
The assignment operation is forwarded to the Sub. When this operation returns, the SAEs (the
ones explicitly stated and the ones composing the SAGs) will have a service profile describing
the characteristics of the service they will receive from the provider, but they will not be able to
use the service unless the service profile is made active.

14. ssUAPols -> USM/SSMols::i_ProviderOlsSi::activateServiceProfiles()
This is the final step in the subscription process. The ssUAPols requests the activation of a
number of service profiles. The USM/SSMols may check whether the service profile is part of
the subscriber’s service contract or not, before proceeding with the next step.

15. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::activateServiceProfiles()
The activation operation is forwarded to the Sub. Internally, Sub can notify the subscriber
manager component about this activation, so that they can notify the namedUA about the new
available subscribed service. Depending on the implementor choice, this might trigger the
creation of a namedUA in case this is the first service (profile) assigned to the user.

16. USM/SSMols -> namedUA::i_SubscriptionNotify::notify()
Sub notifies the assigned users’ namedUA of the new available service. The service identifier
and the service profile for the group (SAG) the user has been assigned to are the relevant
parameters in the notification.

The activation operation returns at this moment.

The customer is subscribed to the provider. From then on, the defined end-users can make use of
the services they have been granted using the service profile that has been assigned for them or for
the group (SAG) they belong to. An interface through which these users’ namedUAs can retrieve this
information (service profiles and subscribed services) is created in Sub.

4.5.2 Modify Subscriber Information

This scenario describes how the subscriber information is modified. The main aspects that can be
modified are SAGs, SAEs and assignment of SAEs to SAGs. This event trace shows first how new
SAEs are defined and assigned to existing SAGs, then how existing SAEs are removed from a SAG
and finally how some are deleted.

The subscriber is already subscribed to the provider and has contracted some services. A number of
SAGs and SAEs have been previously defined for the subscriber.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

116

Figure 4-30. Modify Subscriber Information.

Definition of new SAEs:

1. USM/SSMols -> Sub::i_Subscribe::getReferences()
The USM/SSMols gets the interface references for subscription information management
(i_SubscriberInfoMgmt). This operation is optional and needs not to be performed in case
the USM/SSMols holds the interface references from previous interactions with Sub. It is shown
just for completeness. The subscriber identifier will be required in the invocation if the particular
Sub implementation offers a different management interface for every subscriber.

2. ssUAPols -> USM/SSMols::i_ProviderOlsSi::createSAEs()
The subscriber defines some new entities (SAEs) using the online subscription service specific
interface (i_ProviderOlsSi). An identifier for each of them may be proposed.

3. USM/SSMols -> Sub::i_SubscriberInfoMgmt::createSAEs()

This request is forwarded to Sub. This could result in the creation of an access agent
(namedUA) for these entities (this is an implementor’s choice). Another option is to delay the
namedUA creation until a service is made available to the user.

An identifier for each SAE is got as a result and passed back to the user application. These
identifiers are unique in the provider domain.

Now the new SAEs are assigned to an existing SAG:

USM/SSMols
::i_ProviderOlsSi

TINAScsSubInitial
::i_Subscribe TINAScsSubscriberInfoAccess

::i_SubscriberInfoMgmt

TINAScsNamedUAIntra
::i_SubscriptionNotifyssUAPols

Named Access
[]

[]

[]

[]

[]

[]

[]

[8. notify]

13. notify

.......delete UA.......

....[create UA]....

2. createSAEs

1. getReferences

[]

3. createSAEs

4. listSAGs
5. listSAGs

[]

6. assignSAEs
7. assignSAEs

[]

[]

[]

9. listSAEs
10. listSAEs

[]

11. removeSAEs
12. removeSAEs

14. deleteSAEs
15. deleteSAEs

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

117

4. ssUAPols -> USM/SSMols::i_ProviderOlsSi::listSAGs()
The ssUAPols asks for the list of SAGs defined for the subscriber.

5. USM/SSMols -> Sub::i_SubscriberInfoMgmt::listSAGs()
USM/SSMols passes this query to the Sub. The Subscriber identifier may be required in the
invocation to determine the subscriber, in case of Sub implementations in which the subscriber
information management interface is shared by more than one subscriber. A list of SAG
identifiers is returned and passed back to the user application.

6. ssUAPols -> USM/SSMols::i_ProviderOlsSi::assignSAEs()
A list of SAEs is assigned to an existing SAG.

7. USM/SSMols -> Sub::i_SubscriberInfoMgmt::assignSAEs()
The request is passed to Sub. Again, the subscriber id may be required if the interface is
shared by more than one subscriber.

8. Sub -> namedUA::i_SubscriptionNotify::notify()
This operation is not always required. If the SAG has a service profile associated, this will be
available for the assigned entities and, thus, a notification should be done to the corresponding
agents. Sub notifies each assigned entity’s namedUA about the new available service,
indicating the service identifier and the corresponding service profile.

Removal of SAEs from a SAG:

9. ssUAPols -> USM/SSMols::i_ProviderOlsSi::listSAEs()
ssUAPols asks for the list of SAEs assigned to a specific SAG. The SAG identifier is one of the
input parameters.

10. USM/SSMols -> Sub::i_SubscriberInfoMgmt::listSAEs()
USM/SSMols asks the Sub for this list. A list of entity identifiers is returned and passed back to
the ssUAPols.

11. ssUAPols -> USM/SSMols::i_ProviderOlsSi::removeSAEs()
The subscriber, through the user application, requests the removal of a list of entities from a
group (SAG).

12. USM/SSMols -> Sub::i_SubscriberInfoMgmt::removeSAEs()
USM/SSMols passes this request to Sub. Sub removes the entities from the SAG, disabling the
usage of the service profiles assigned to the SAG for the removed entities.

13. Sub -> namedUA::i_SubscriptionNotify::notify()
Sub notifies the corresponding namedUAs about the service withdrawn. In case the user has
no other service assigned, the namedUA may be deleted (this is an implementors choice).

Deletion of SAEs:

14. ssUAPols -> USM/SSMols::i_ProviderOlsSi::deleteSAEs()
With this operation, the ssUAPols requests the deletion of a number of entities.

15. USM/SSMols -> Sub::i_SubscriberInfoMgmt::deleteSAEs()
The USM/SSMols forwards this operation to the Sub. This derives in the removal of the entities
from any SAG they could be assigned to and in the deletion of the corresponding namedUA.

The subscriber information is updated in the subscriber database and is available for any external
client (with the required authorization). The namedUAs have been notified of all the changes in the
subscriber information that affects its represented user. The namedUA has performed the required
actions to keep the consistency between modified service profiles and possible customisations
performed by the user. Some namedUAs may have been deleted as a result of these modifications,
either because of the deletion of an entity or because the corresponding entity is no longer assigned
to any service.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

118

4.5.3 Contract a New Service

This scenario shows how a new service contract for a subscriber can be defined. The scenario
“Subscribe a New Customer” on page 112 describes how to contract services for a customer that is
not subscribed to the provider yet.

The subscriber is already subscribed to the provider. Some entities (users, terminals or NAPs) have
been already defined for that subscriber.

Figure 4-31. Contract a new service.

1. ssUAPols -> USM/SSMols::i_ProviderOlsSi::listServices()
The subscriber, via the ssUAPols, asks for the list of services he is subscribed to. This operation
is optional and need not to be performed in case the ssUAPols keeps this information. It is
shown just for completeness.

2. USM/SSMols -> Sub::i_Subscribe::listServices()
The USM/SSMols asks for this list of services to the Sub. This operation is optional for the same
reason above mentioned.

3. ssUAPols -> USM/SSMols::i_ProviderOlsSi::contractService()
The ssUAPols requests the contract of a list of services for the subscriber.

4. USM/SSMols -> Sub::i_Subscribe::contractService()
The USM/SSMols requests the contract of a list of services for a specific subscriber. A list of
service contract management interfaces is returned, one per requested service.

SSMols TINAScsSubInitial
::i_Subscribe

TINAScsSubscriberMgmt
::i_ServiceContractInfoUpdate

TINAScsServiceContractInfoAccess
::i_ServiceContractInfoMgmt TINAScsNamedUAIntra

::i_SubscriptionNotify

ssUAPols
Named Access

2. listServices

4. contractService

5. getServiceTemplate

[]

[]

[]

7. defineServiceProfiles

[]

12. notify

1. listServices

[]

3. contractService

[]

6. defineServiceProfiles

[]

9. assignServiceProfile
8. assignServiceProfile

notify

[]
[]

10. activateServiceProfile
11. activateServiceProfile

[]
[]

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

119

5. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::getServiceTemplate()
The USM/SSMols uses the interfaces received in the previous step to query for the
corresponding service templates and returns them back to the user application as a reply to the
contract request.. These templates are used by the ssUAPols to derive the corresponding
subscription and SAG service profiles.

6. ssUAPols -> USM/SSMols::i_ProviderOlsSi::defineServiceProfiles()
The user application requests the creation of the service profiles for that subscriber. The set of
profiles includes a generic profile for the subscriber (applicable to all users) and a number of
SAG service profiles, that must be consistent with the previous one.

7. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::defineServiceProfiles()
USM/SSMols requests the creation of these service profiles to the Sub. The subscriber identifier
may be required in the invocation if the service contract management interface is shared by
more than one service contract.

A list of SAG service profiles is returned as a reply and passed back to the ssUAPols.

8. ssUAPols -> USM/SSMols::i_ProviderOlsSi::assignServiceProfile()
Then, the service profiles can be assigned to a number of SAGs and SAEs. The input values
for this operation are the list of SAGs and SAEs and the identifier of the SAG service profile that
is assigned to them.

9. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::assignServiceProfile()
USM/SSMols passes this request to the Sub that performs the assignment.

10. ssUAPols -> USM/SSMols::i_ProviderOlsSi::activateServiceProfile()
The last step is the service profile activation. The user application requests this activation
through the subscription service specific interface.

11. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::activateServiceProfile (Service Profile id)
The USM/SSMols passes this activation request to the Sub that performs the required actions.
The service profile is then ready for use. The end-users can make use of it.

12. Sub -> namedUA::i_SubscriptionNotify::notify()
Sub notifies the assigned users’ naemdUA of the new available service. The service identifier
and the service profile for the group (SAG) the user has been assigned to are the relevant
parameters in the notification.

The new service is available for the assigned users, terminals or NAPs, using the service profile that
has been assigned to them. An interface through which these users’ namedUAs can retrieve this
information (service profiles and subscribed services) may be created in Sub at this point.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

120

4.5.4 Modify Service Contract

This trace shows the modification of a service contract. The service profile for an already contracted
service is modified and a new SAG (and its corresponding service profile) is defined.

The subscriber is subscribed to the provider. A service contract has been already signed.

Figure 4-32. Modify a service contract.

1. USM/SSMols -> Sub::i_Subscribe::getReferences()
The USM/SSMols gets the reference of the subscriber information management interface. If a
service is specified, this operation returns the service contract information management
interface for that service (and that subscriber, in case there is one interface per subscriber -
service contract-). This operation and the third one are optional and need not to be performed
in case the USM/SSMols keeps this information. It is shown just for completeness.

2. ssUAPols -> USM/SSMols::i_ProviderOlsSi::listSubscribedServices()
The subscriber, via the ssUAPols, asks for the list of services he(she) has contracted.

3. USM/SSMols -> Sub::i_SubscriberInfoMgmt::listSubscribedServices()
The USM/SSMols gets the list of services a subscriber is subscribed to and passes it back to
the ssUAPols. The subscriber identifier may be required in implementations in which the
subscriber information management interface is shared by more than one subscriber. This

SSMols TINAScsSubInitial
::i_Subscribe

TINAScsSubscriberInfoAccess
::i_SubscriberInfoMgmt

TINAScsServiceContractInfoAccess
::i_ServiceContractInfoMgmt

TinaScsNamedUAIntra
::i_SubscriptionNotify

ssUAPols

Named Access

[]

[]

[]

[]

[]

10. notify

17. notify

1. getReferences

2. listSubscribedServices
3. listSubscribedServices

[]

4. listServiceProfiles
5. listServiceProfiles

[]

6. getServiceContractInfo
7. getServiceContractInfo

8. defineServiceProfiles
9. defineServiceProfiles

[]
[]

[]

11. defineServiceProfiles

[]

12. defineServiceProfiles

13. assignServiceProfile
14. assignServiceProfile

notify

[]

[]
[]

15. activateServiceProfile
16. activateServiceProfile

[]
[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

121

remark is applicable to most of the operations on the subscriber and service contract
information management interfaces.

4. ssUAPols -> USM/SSMols::i_ProviderOlsSi::listServiceProfiles()
The ssUAPols asks for the list of service profiles defined for a specific service.

5. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::listServiceProfiles()
USM/SSMols forwards the request to Sub. USM/SSMols receives a list of service profile
identifiers that is passed back to the user application.

6. ssUAPols -> USM/SSMols::i_ProviderOlsSi::getServiceContractInfo()
These ssUAPols requests a number of profiles, specifying their identifiers.

7. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::getServiceContractInfo()
USM/SSMols retrieves the service profiles corresponding to the specified identifiers. The
profiles, and the rest of service contract information, are returned to the ssUAPols.

8. ssUAPols -> USM/SSMols::i_ProviderOlsSi::defineServiceProfiles()
The ssUAPols requests the modification of the service profile.

9. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::defineServiceProfiles()
The USM/SSMols passes the request to Sub.

10. Sub -> namedUA::i_SubscriptionNotify::notify()
Sub notifies the namedUA of each entity assigned to the modified service profile about the
modification. The namedUA checks the consistency between the modified service profile and
the possible customisations performed by the user and performs the required actions. For
instance, it may reject those customisations not allowed in the new profile and apply the rest to
it.

11. ssUAPols -> USM/SSMols::i_ProviderOlsSi::defineServiceProfiles()
The ssUAPols defines a new service profile.

12. USM/SSMols -> Sub::i_ServiceContractInfoMgmt::defineServiceProfiles()
The USM/SSMols passes the request to Sub. A new service profile identifiers is received and
passed back to the user application.

Steps 13 to 17 are described in Section 4.5.3 (steps 8 to 12).

The service contract has been modified. From then on, the users that have been assigned to the new
profile can make use of the service and the users assigned to the modified profile will use the service
according to the new definition.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

122

4.5.5 Unsubscribe

This scenario describes the procedure for cancelling a service contract or the whole subscription to
a provider.

The subscriber is subscribed to the provider and has contracted a number of services. This trace
covers the partial and total withdrawal of a subscription.

Figure 4-33. Total or partial cancellation of a subscription.

1. ssUAPols -> USM/SSMols::i_ProviderOlsSi::listSubscribedServices()
The ssUAPols asks for the list of services the subscriber is subscribed to. This operation needs
to be performed only in case the ssUAPols does not keep track of this information.

2. USM/SSMols -> Sub::i_SubscriberInfoMgmt::listSubscribedServices()
The USM/SSMols forwards the operation to Sub. This operation needs to be performed only in
case the USM/SSMols does not keep track of this information and may require a previous
retrieval of the subscriber information management interface (see
i_Subscriber::getReferences operation usage in Section 4.5.2).

3. ssUAPols -> USM/SSMols::i_ProviderOlsSi::unsubscribe()
The ssUAPols requests the cancellation of the contracts for a list of services.

4. USM/SSMols -> Sub::i_Subscribe::unsubscribe()
The USM/SSMols requests the cancellation of the list of service contracts. All the specified
contracts are removed, together with the interface to access them. In case it requests the
withdrawal of all the contracted services (this can be indicated as an empty list or as a list
including all the services), the subscriber, its management interface and all the corresponding
namedUAs are removed.

5. Sub -> namedUA::i_SubscriptionNotify::notify()
In case the cancellation affects only to a part of the contracted services, Sub notifies the
affected users (namedUAs) of those services withdrawal.

No user associated to that subscriber can make use of the service(s) whose service contract has(ve)
been cancelled. The service contract management interfaces related to the cancelled contracts are
no longer available.

SSMols TINAScsSubInitial
::i_Subscribe

TINAScsSubscriberInfoAccess
::i_SubscriberInfoMgmt

TINAScsServiceContractInfoAccess
::i_ServiceContractInfoMgmt

TINAScsNamedUAIntra
::i_SubscriptionNotify

ssUAPols

NamedAccess

[]

....[delete IF]....

....delete IF....

....[delete UA]

5. notify

1. listSubscribedServices

[]
2. listSubscribedServices

[]

3. unsubscribe
4. unsubscribe

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

123

Some namedUAs associated to the subscriber may be deleted in case no service is available for the
represented user after the unsubscribe operation. The query interfaces in Sub
(i_SubscriberInfoQuery) are also removed.

If all the subscribed services are cancelled, the customer is removed from the subscribers list in the
provider domain, and the subscriber management interfaces and all the associated namedUAs are
deleted.

4.5.6 Register to receive invitations outside of an access session

This scenario allows a user to register with a provider for service invitations to be sent to a particular
user context. The registration will result in invitations to join a service to arrive at a specific invitation
interface when there is no access session for the user. This is an important part of personal mobility.

It is assumed that the user has established an access session, within which to make this request.

The user requests that invitations are sent to a particular user context. A user context represents a
specific Provider Agent, which usually equates to a particular terminal. When a user establishes an
access session, they can request that the user context for this access session is ‘saved’ by the UA.
(The user chooses the name of the user context, so they can recognize and select them as part of
this scenario.)

Figure 4-34. Register to receive invitations outside of an access session.

1. asUAP -> PA::i_Access::getUserCtxtNames().
The user uses the as-UAP to get a list of the user contexts that are ‘saved’ within the UA, in
order to select one to receive invitations outside of the access session.

2. PA -> namedUA::i_ProviderNamedAccess::getUserCtxts().
The PA requests a list of the user contexts known by the UA. This list will include those user
contexts ‘saved’ by the UA, as well as any other user contexts from current access sessions
with the user.

(Other operations could also be invoked to retrieve this information for a specific user context:
getUserCtxt(), or based on the user’s access sessions: getUserCtxtsAccessSessions()).

The UA returns the list of user contexts. Each context contains information about the terminal
capabilities and user domain interfaces, including an invitation interface.

The PA returns a list of the user context names to the as-UAP.

asUAP
PA

::i_Access
namedUA

::i_ProviderNamedAccess

Optional:

3. receiveInvitationsOutsideAccessSession 4. i_ProviderAccessRegisterInterfaces
::registerInterfaceOutsideAccessSession

[]

[]
[]

2. getUserCtxts
1. getUserCtxtNames

[]

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

124

3. asUAP -> PA::i_Access::receiveInvitationsOutsideAccessSession().
The user uses the as-UAP to select a user context at which they wish to receive invitations
outside of this access session. The as-UAP invokes this operation to identify the name of the
user context.

4. PA ->
namedUA::i_ProviderAccessRegisterInterfaces::registerInterfaceOutsideAccessSession().
The PA retrieves the i_UserInitial interface from the chosen user context. It uses this operation
to register this interface with the namedUA. The namedUA will send invitations to this interface
after this access session ends.

This operation returns an interface index number that can be used to unregister the interface
(unregisterInterface()). The interface can be unregistered within any access session.

4.5.7 Register a new service

This scenario describes the procedure for deploying a new service in the service network.

The service instance is not previously deployed. Steps 1 to 3 are optional. They are shown for
completeness and represent the case in which the service type the service instance corresponds to
is not already defined and the service network over which the service instance is to be deployed is
not configured.

A set of different management applications may make use of the SLCM. In the trace, these are
represented as one management application (managementAP).

Figure 4-35. Register a new service.

1. managementAP -> SLCM::i_TypeMgmt::defineServiceType()
The management application or a client external to the provider domain (for instance, an

managementAP
SLCM

::i_TypeMgmt
SLCM

::i_DeploymentMgmt
SLCM

::i_InstanceMgmt

SF::i_Init

Sub
::i_ServiceNotify

download sw on SNs
register SF on DPE repository

update trader info

1. defineServiceType

[]

2. createServiceNodes

[]

3. createServiceDomain

[]

4. createServiceInstance

....create SF

5. configure

8. notify

6. activateServiceInstance

[]

[]

7. activate

[]

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

125

information distribution application from an industrial forum or provider consortium) may define
the service description that a provider’s service instance must be consistent with in order to be
considered as corresponding to a particular service type.

2. managementAP -> SLCM::i_DeploymentMgmt::createServiceNodes()
The service network administrator, through a management application that can be different
from the previous one, describes the service nodes composing the service network. A set of
Node Manager9 interface references, one for each node, are passed as a parameter. A list of
service node identifiers is returned. These identifiers may be generated by the SLCM, in case
they have not been specified in the call.

3. managementAP -> SLCM::i_DeploymentMgmt::createServiceDomain()
The service network administration application defines a service domain for a specific service.
In this operation the set of service nodes composing the domain, the service provided and the
deployment and configuration policies are defined.

4. managementAP -> SLCM::i_InstanceMgmt::createServiceInstance()
The management application (maybe different from the one we referred to in previous steps)
requests the deployment of a new service instance. The identifier of the new instance and a set
of service instance information parameters are specified in the call. These parameters will allow
the SLCM to determine how the service instance needs to be deployed over the service
network.

Based on this information, the SLCM will transfer the service software (SF, SSM, USM and
other specific service components) to the appropriate service nodes and update each node
DPE repositories accordingly.

The Service Factories are started.

5. SLCM -> SF::i_Init::configure()
SLCM transfers the required configuration information to the SF.

6. managementAP -> SLCM::i_InstanceMgmt::activateServiceInstance()
Once the service instance is deployed, the management application (maybe different from the
one we referred to in previous steps) requests its activation. The identifier of the new instance
is the main input parameter.

7. SLCM -> SF::i_Init::activate()
SLCM changes the SF state to active , so that it can accept requests.

Then, it updates the information in the trader or location DPE services used to retrieve to the
service factory interfaces. This action will make the SFs reachable by their clients.

8. SLCM -> Sub::i_ServiceNotify::notify()
Finally, the Subscription component is notified about the new service instance. The instance
identifier and its service template are passed as input parameters in this operation.

The new service instance is deployed, active and ready for subscription and use. The service nodes
providing the service, composing the service domain(s) defined for that service instance, have the
required software configuration (new executables, DPE repositories updated) and the involved DPE
services are configured to support the service instance.

9. These Node Managers provide the SLCM with the interfaces required to handle the deployment and configuration
of service software in a service node and to control and monitor the node resources. They are not shown for
simplicity.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

126

4.5.8 Modify an existing service

This scenario describes the procedure for modifying a service instance already deployed in the
service network. Two types of updates are considered: changes in the service template (additional
parameters or new values in already existing ones) and changes in the service software10. The first
type of modifications affects the subscription component mainly and does not necessarily require any
new software deployment. The second requires new service software deployment, configuration and
activation.

The service instance is already deployed. The service instance is active and giving service, the
service factories are handling some (active or suspended) service sessions.

Figure 4-36. Modify an existing service.

1. managementAP -> SLCM::i_InstanceMgmt::modifyServiceTemplate()
The management application requests the modification of the service template. A new service
template is passed as a parameter.

2. SLCM -> Sub::i_ServiceNotify::notify()
SLCM notifies the Subscription component about the new service instance. The instance
identifier and its new service template are passed as input parameters in this operation.

10. We are considering changes in the SF software. Updates of other service components might not affect the running
SFs and service sessions. As it represents a simpler case, it is not shown in this document.

managementAP

SLCM
::i_InstanceMgmt

Old SF
::i_Init Sub

::i_ServiceNotify

unregister old SF from DPE repository
remove previous sw from SNs

update trader info

New SF
::i_Init

install new sw in SN
register new SF in DPE repository

8. delete

5. deactivate [halt]

[]

1. modifyServiceTemplate
2. notify

[]

3. modifyServiceConfiguration

....create SF....

4. configure [activate]

[]

[]

6. getSessionInfo

7. setSessionInfo

[]

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

127

Sub will take the required actions, like checking the consistency of the new service template
with the already defined service profiles. In some cases, it may require a new contract
negotiation with the subscribers.

3. managementAP -> SLCM::i_InstanceMgmt::modifyServiceConfiguration()
The management application requests the modification of the service configuration. If this new
configuration involves an update of the service software, this is deployed over the
corresponding service nodes and registered in each involved node DPE repository.

If the SF software is updated, a new SF is started.

4. SLCM -> new SF::i_Init::configure[&activate]()
SLCM configures the new SF and changes its state to active . It can be done in the same
configure operation or require an additional call to the activate operation.

Then, the SLCM updates the information in the involved trader and location DPE services, so
that the new SFs and not the old ones are reachable by new clients.

5. SLCM -> new SF::i_Init::configure[&activate]()
SLCM configures the new SF and changes its state to active . It can be done in the same
configure operation or require an additional call to the activate operation.

6. SLCM -> old SF::i_Init::deactivate[halt]()
SLCM changes the state of the replaced SF to deactivating or inactive , (operations
deactivate or halt , respectively) depending on its will of keeping the existing sessions alive
or not after the request.

The next two operations show a mechanism for transferring the control of existing service
sessions from one SF to another. This allows to delete the old SFs immediately and keep the
existing sessions alive.

7. SLCM -> old SF::i_Init::getServiceSessionInfo()
SLCM gets the information about all the existing service sessions (active or suspended).

8. SLCM -> new SF::i_Init::setServiceSessionInfo()
SLCM transfers the control of the old SF’s service session instances to the new SF. The new
SF may notify the UAs involved in suspended service sessions about the new resume
interfaces at the new SF.

9. SLCM -> old SF::i_Init::delete()
At this moment, the SLCM can delete the old SF. Its related software is removed from the
service node and the related information is deleted from the DPE repositories.

The Sub component is working with the new service template and the already defined service profiles
are consistent with the new template.

The clients can no longer use the service through the replaced SFs. Existing sessions can still be
running under the control of the new SFs and all the new sessions are requested to the new SFs.
Service nodes, DPE repositories and DPE services are updated with the information required to
make the new service software active and reachable.

4.5.9 Withdraw a service

This event trace represents the procedure followed by the SLCM in the withdrawal of a service.

The service instance is already deployed, active and giving service and there are customers
subscribed to the service.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

128

Figure 4-37. Withdraw a service,

1. managementAP -> SLCM::i_InstanceMgmt::stopServiceSubscription()
Some time before withdrawing the service, the administrator requests the stop of the
subscription to that service to the SLCM.

2. SLCM -> Sub::i_ServiceNotify::notify()
SLCM notifies the Subscription component about the service instance withdrawal.

Sub will take the required actions, like informing the customers subscribed to that service that
the service will be withdrawn. The service contracts shall be cancelled or replaced by contracts
to a new service instance, in case the withdrawn service instance is substituted by a new one.

3. managementAP -> SLCM::i_InstanceMgmt::deleteServiceInstance()
The management application requests the service instance deletion. The SLCM withdraws the
trader entries for that service instance, so that it is no longer reachable.

4. SLCM -> SF::i_Init::deactivate[or halt]()
SLCM requests the SF stop. For this sake, it changes the SFs state to inactive . It can be
done in two ways: waiting for the existing sessions to finish (deactivate) or deleting all
sessions immediately (halt), after the proper indications.

5. SLCM -> SF::i_Init::delete()
Once the SFs are inactive, the SLCM deletes them.

After the deletion, the service software is unregistered from the DPE repositories and removed
from the service nodes.

The Sub component is aware of the withdrawal and is not offering the withdrawn service in the list of
available (subscribable) services.

The customers can no longer use the service or contract it. There is no information about the removed
service instance in DPE repositories, services or facilities and the related service software is not
residing in any service node.

managementAP
SLCM

::i_InstanceMgmt SF::i_Init
Sub

::i_ServiceNotify

unregister SF on DPE repository
remove deployed sw from SNs

update trader info

1. stopServiceSubscription

5. delete

2. notify

3. deleteServiceInstance

4. deactivate | halt

[]

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

129

4.5.10 Ancillary On-line Accounting Service

Basic on-line accounting approach built-in the TINA service architecture is already described in
Section 4.3.5 and Section 4.4.17. User-customized billing can be provided as a separate service (a
specific USM/SSM) to control the user billing information in a retailer domain. In this case, an
accounting management specific interface should be defined for this service. This approach gives
more flexibility to on-line accounting.

• By way of ancillary accounting USM (AA-USM), asUAP are able to contact namedUA, to
derive accounting/billing information, and to pay the bill electronically. A user customized
accounting/billing applications can be run as ssUAP, which can contact namedUA in the
same manner.

• AA-USM can be upgraded or customized totally independent of other interface specifica-
tions in SCS and Ret. Therefore, user-customized or retailer-specific billing interfaces can
be offered through AA-USM, from which more intelligent or sophisticated billing options
may be made available.

Figure 4-38. Ancillary On-line Accounting Service

Figure 4-38 illustrates ancillary on-line accounting service. There are two scenario shown in the
figure. In the first scenario (1-a), an ancillary on-line accounting service (AOA-service) is requested
from asUAP, and the requested component (AA-USM) is created by the retailer. In the second
senario, a special user billing application is started (ssUAP), while an ancillary on-line accounting
service is requested at the same time. In either case, the rest of the sequence (2-4) are the same.

1-a. An access session UAP (asUAP) requests an AOA-service to the retailer. The retailer creates
an AA-USM, whose interface reference is returned to the asUAP.

1-b. a special user billing application (ssUAP) is started in the user domain, while an AOA-service is
requested at the same time. The retailer creates an AA-USM, whose interface reference is
returned to ssUAP.

2. NamedUA only supports basic per user accounting interface (i_AccountingPull). NamedUA
may cache accounting/billing information of active service sessions, however, billing records
need to be stored in a billing database to give the records permanency. NamedUA is acting as
a front end to a possibly retailer-specific billing service, as far as billing records are concerned.

Ret

namedUA

Billing
DB

Billing Service

AA-USM

asUAP

ssUAP

User Retailer

(1-b)

(2)

(3)

(4)

(1-a)

i_AccountingPull

i_CustomizedAccounting

i_
R

et
ai

le
rS

pe
ci

fic

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

130

3. When billing query are obtained from AA-USM, of which NamedUA has no cached billing
records, namedUA translates and forwards the query to the billing database.

4. AA-USM can directly access to Billing DB, when necessary. In particular, when billing needs
are highly retailer-specific and have to be customized, this approach is more direct, which
would enable simpler realization. Currently, billing service interface is not within the scope of
SCS. When electronic bill-payment is considered, in particular, additional information such as
credit card number may have to be passed from the user to the retailer, with more involved
interaction between (as or ss)UAP and AA-USM, and between AA-USM and the billing service.

Due to the nature of AA-USM, details of its interface can be quite service specific, thus it is not defined
in the current SCS. Some examples may be included in the future version, however. For example,
the specified AA-USM may convert its billing information to an e-mail, with double certificates by the
user and the retailer attached, are sent to a virtual banking firm, which handles all the payment
request of the user. More sophisticated e-commerce oriented approach can be implemented as an
AA-USM within the basic TINA accounting architecture.

It is to be noted that neither asUAP or ssUAP are allowed to access namedUA directly, which would
violate security principle of the current Ret design.

Billing Service
::i_RetailerSpecific

asUAP
or

ssUAP
AA-USM

::i_CustomizedAccounting namedUA

1. push

2. push

3. push

4. query

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

131

5. Acronyms

Amc Accounting Management component

anonUA anonymous User Agent

asUAP Access Session User Application

CC Connection Coordinator

CO Computational Object

CompD_USS Composer Domain Usage Service Session

CompUSM Composer Usage Session Manager

ConS Connectivity Service inter-domain reference point

CORBA Common Object Request Broker Architecture

COS Common Object Service

CP Connectivity Provider

CSM Communication Session Manager

DPE Distributed Processing Environment

D_USS Domain Usage Service Session

FCAPS Fault, Configuration, Accounting, Performance, Security

FS Feature Set

GDMO Guidelines for the Definition of Managed Objects

GRM General Relationship Model

IA Initial Agent

IDL Interface Definition Language

IR Interface Reference

KTN Kernel Transport Network

LNC Layer Network Coordinator

management AP Management Application

Mgmt Ctxt Management Context

MUSM Member Usage Service Session Manager

namedUA Named User Agent

NAP Network Access Point

NCF Network Flow Connection

NCS Network Component Specification

NFEP Network Flow End Point

NRA Network Resource Architecture

NRIM Network Resource Information Model

ODL Object Definition Language

ols On-line Subscription

PA Provider Agent

PeerA Peer Agent

PeerD_USS Peer Domain Usage Service Session

PeerUSM Peer Usage Session Manager

PM Performance Monitoring

prim Primary Service

PSS Provider Service Session

PS_USS Provider Domain User Service Session

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

132

QoS Quality of Service

Ret Retailer inter-domain reference point

RP Reference Point

SAE Subscription Assignment Entity

SAG Subscriber Assignment Group

SC Service Component

SCM Service Contract Manager

SCS Service Component Specification

SDM Service Deployment Manager

SF Service Factory

SFC Stream Flow Connection

SFEP Stream Flow End Point

SIM Service Instance Manager

SLCM Service Life Cycle Management

SN Service Network

SSM Service Session Manager

ssUAP Service Session User Application

STM Service Type Manager

Sub Subscription Management Component

SubAg Subscriber Agent

SubMgr Subscriber Manager

TCM Trail Connection Manager

TCon Terminal Connection inter-domain reference point

TCSM Terminal Communication Session Manager

TINA [-C] Telecommunications Information Networking Architecture [Consortium]

ToM Terms of Management

UA User Agent

UAF User Agent Factory

UD_USS User Domain Usage Service Session

USM User Service Session Manager

WYSWYP What You See is What You Pay

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

133

6. References

The TINA-C documents may be acquired from the TINA-C WWW page at:

http://tinac.com:4070/index.html

The TINA-C web site provides a search engine. To find a particular document use the
document number or the title of the document as search parameters.

TINA-C Documents

TINA-C Valid Baseline Documents

[1] C. Abarca, P. Farley, J. Forslöw, J. C. García, T. Hamada, P. F. Hansen, S. Hogg, H.

Kamata, L. Kristiansen, C. A. Licciardi, H.Mulder, E. Utsunomiya, M. Yates, Service
Architecture, Version 5.0, TINA-C, June 1997; Public.
/u/tinac/97/services/docs/sa/sa5.0/final/main.ps (+annex.ps; not part of the baseline)

[2] M. Yates, W. Takita, L. Demounem, R. Jansson, H. Mulder(ed.) TINA Business Model
and Reference Points, Version 4.0, TINA-C, May 1997; Public.
/u/tinac/97/integration/docs/business/viewable/final_v4.0.ps

[3] H. Christensen, E. Colban, Information Modelling Concepts, Document No.
TB_EAC.001_1.2_94, TINA-C, April1995; public.
/u/tinac/94p2/viewable/info.ps

[4] T. Handegård, Many TINA-C Core Team Members, Computational Modelling
Concepts, Version 3.2, Document No. TP_HC.012_3.2_96, TINA-C, May1996; TINA-
C internal.
/u/tinac/96/dpe/docs/computational_model/v3.2/cmc.ps

[5] A. Parhar, TINA Object Definition Language Manual, Version 2.3, Document No.
TR_NM.002_2.3_96, TINA-C, July1996; TINA-C internal.
/u/tinac/96/dpe/viewable/odl_manual_v2.3.ps

[6] N. Natarajan, H. Flinck, R. Rosli, Network Resource Information Model Specification
(NRIM), June 1997; to be released.

[7] C. Abarca, J. Forslow, T. Hamada, S. Hogg, H. B. Jeon, D. S. Kim, H. Y. Lee, N.
Natarajan, F. Steegmans (Ed.), Network Resource Architecture (NRA) Version 3.0,
TINA-C, Feb. 1997; public.
/u/tinac/96/resources/viewable/nra_v3.0.ps

[8] H.Mulder (ed.), , TINA Glossary of Terms, Version 2.1, TINA-C, January 1997; Public.
/u/tinac/97/integration/docs/glossary/v2.1/GLOSSARY.ps

Miscellaneous TINA-C Core Team Documents
[9] A. Parhar, TINA-C File and Directory Style Guide, TINA-C, April 1996; TINA-C internal.

/u/tinac/general/file_style_guide.txt

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

134

[10] T. Hamada, Accounting Management Architecture, Version1.2, Document No.
EN_TH.001_1.2_95, TINA-C, March1996; TINA-C internal.
/u/tinac/95/resources/viewable/accounting.ps

[11] TINA-C Core Team, Response to a Request for Refinements and Solutions - The Ret
Reference Point, Version 1.1, TINA-C; TINA-C internal.
/u/tinac/96/integration/rfrs/RFR-96-01/Responses/core_team_v1.1.ps

[12] P. Farley (ed.), S. Hogg, L. Kristiansen, C. A. Licciardi, M. Mampaey, R. Minetti, S.
Pensivy, C. Smith, R.S. Westerga, M. Yates, Ret Reference Point Specifications,
Version 0.8, TINA-C; October 1997, TINA-C internal.
/u/tinac/97/integration/rfrs/RFR-96-01/interim/draft0.8/doc/ret.ps

[13] T. Hamada, et al., Service Quality in TINA, to be presented at EDOC’97 (Oct. 1997).

International Standards Documents

ISO/IEC and CCITT/ITU-Tdocuments
[14] ISO/IEC DIS 10165-4, CCITT Recommendation X.722, Information Technology -

Open Systems Interconnection - Structure of Management Information - Part 4:
Guidelines for the Definition of Managed Objects (GDMO), International Organization
for Standardization and International Electrotechnical Committee, September 1991.

Books
[15] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William

Lorensen, Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs,
N.J., 1991.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

135

7. Acknowledgments

The authors want to thank the following:

• VITAL ACTS project for providing valuable input such as deliverable D10 and IDL speci-
fications for VITAL v2;

• The Ret EG for providing specification of Access and Usage parts of Ret, that has been
considered a basis for our specification work;

• Vital and Sprint for providing valuable comments on early versions of the document

• Hiroshi Kamata for his useful comments to early sspecifications;

• The Service Management WG for providing useful input to Subscription components

• The authors would like to thank particularly the external reviewers from the following com-
panies that all provided useful comments:

- Alcatel: M. Mampay et al.;
BT: P.Loosemore, M. Ellis;
France Telecom: D. Guy;
Hitachi: K. Kusama;
Lucent Technologies: B. Opdyke;
NTT: H. Kobayashi
Sprint: M. Barrow;
Telia Research: J. Bengtsson et al.

Chelo Abarca Patrick Farley
Alcatel Telecom, Madrid BT
Spain United Kingdom

Juan Carlos García Takeo Hamada
Telefónica Fujitsu Laboratories
Spain Japan

Per Fly Hansen Patrick Hellemans
Tele Danmark Alcatel
Denmark Belgium

Carlo A. Licciardi Koki Nakashiro
CSELT Hitachi
Italy Japan

Martin Yates
BT
United Kingdom

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

136

Computational Model and Dynamics Service Component Specification
Version 1.0b , January19,1998

137

Annex 1. ODL-specs

This section gives the available ODL-specs:

1.1 TINAObjASUA
/** TINAObjASUAP.odl */
/** */
/** Access Session User Application */
/** */
/** Author: Patrick Farley (BT) */
/** Reviewer: Carlo Licciardi (CSELT) */
/** Creation date: September 5th, 1997 */
/** Review: */

#ifndef TINAObjASUAP_ODL
#define TINAObjASUAP_ODL

#include "TINACommonTypes.idl"
#include "TINAUserAccess.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAScsASUAPIntra.idl"
#include "TINAScsPAIntra.idl"

object TINAObjASUAP {
requires

// asUAP
TINAScsPAIntra::i_Initial,
TINAScsPAIntra::i_Access,
TINAScsPAIntra::i_AccountingPull,

// USM
TINAScsUSMIntra::i_MgmtCtxt;

supports
// PA client
TINAScsASUAPIntra::i_Access;

initial
TINAScsPAIntra::i_Initial;

};

#endif // TINAObjASUAP_ODL

1.2 TINAObjPA
/** TINAObjPA.odl */
/** */
/** Provider Agent */
/** */
/** Author: Patrick Farley (BT) */
/** Reviwers: Carlo Licciardi (CSELT) */
/** Creation date: August 25th, 1997 */

#ifndef TINAObjPA_ODL
#define TINAObjPA_ODL

#include "TINAProviderInitial.idl"
#include "TINAProviderAccess.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINACommonTypes.idl"
#include "TINAUserInitial.idl"
#include "TINAUserAccess.idl"
#include "TINAScsPAIntra.idl"

Service Component Specification Computational Model and Dynamics
Version 1.0b , January19,1998.

138

#include "TINAScsASUAPIntra.idl"
#include "TINAScsSSUAPIntra.idl"

object TINAObjPA {
requires

/** asUAP */
TINAScsASUAPIntra::i_Access,

/** ssUAP */
TINAScsSSUAPIntra::i_AccessInitialise,

/** IA */
TINAProviderInitial::i_ProviderInitial,
TINAProviderInitial::i_ProviderAuthenticate,

/** UA */
TINAProviderAccess::i_ProviderNamedAccess,
TINAProviderAccess::i_ProviderAnonAccess,
TINAScsNamedUAIntra::i_AccountingPull,
TINAProviderAccess::i_DiscoverServicesIterator;

supports
TINAScsPAIntra::i_Init, /** Initial interface */

/** asUAP client */
TINAScsPAIntra::i_Initial,
TINAScsPAIntra::i_Access, /* also ssUAP as client */
TINAProviderInitial::i_ProviderAuthenticate,
TINAScsPAIntra::i_AccountingPull,

/** UA client defined in Ret-RP */
TINAUserInitial::i_UserInitial,
TINAUserAccess::i_UserAccess,
TINAUserAccess::i_UserInvite,
TINAUserAccess::i_UserTerminal,
TINAUserAccess::i_UserAccessSessionInfo,
TINAUserAccess::i_UserSessionInfo;

initial
TINAScsPAIntra::i_Init;

};

#endif /** TINAObjPA_ODL */

1.3 TINAObjIA
/** TINAObjIA.odl */
/** */
/** Inital Agent */
/** */
/** Author: Martin yates (BT) */
/** Reviwers: Carlo Licciardi (CSELT) */
/** Creation date: August 25th, 1997 */
/** Modified by Koki NAKASHIRO */
/** date:97-11-10 */
/** adding two includes. */
/** NamedUA, ProviderInitial */

#ifndef TINAObjIA_ODL
#define TINAObjIA_ODL

#include "TINAAccessCommonTypes.idl"
#include "TINACommonTypes.idl"
#include "TINAScsNamedUAIntra.idl"
#include "TINAProviderInitial.idl"

object TINAObjIA {

Computational Model and Dynamics Service Component Specification
Version 1.0b , January19,1998

139

requires
TINASCSNamedUAIntra::i_Initial;

supports
TINAProviderInitial::i_ProviderAuthenticate,
TINAProviderInitial::i_ProviderInitial;

initial
TINASCSNamedUAIntra::i_Initial;

};

#endif /** TINAObjIA_ODL **/

1.4 TINAObjNamedUA
/** TINAObjNamedUA.odl */
/** */
/** Named User Agent */
/** */
/** Author: Chelo Abarca (Alcatel) */
/** Carlo Licciardi (CSELT) */
/** Creation date: August 25th, 1997 */
/** Reviewed: September 9th */

#ifndef TINAObjNamedUA_odl
#define TINAObjNamedUA_odl

/** #include "TINAScsCommonTypes.idl" */
/** #include "TINAScsAccessCommonTypes.idl" */
/** #include "TINAScsSubCommonTypes.idl" */
/** #include "TINAScsSF.idl" */
#include "TINAScsNamedUAIntra.idl"
#include "TINAProviderAccess.idl"

object TINAObjNamedUA {
requires

/** PA server */
TINAUserAccess::i_UserInvite,
TINAUserAccess::i_UserAccess,
TINAUserAccess::i_UserTerminal,
TINAUserAccess::i_UserAccessSessionInfo,
TINAUserAccess::i_UserSessionInfo,

/** SSM server */
TINAScsSSMIntra::i_Join,

/** SF server */
TINAScsSF::i_SSCreate,
TINAScsSF::i_SSManage,
TINAScsSF::i_Resume,

/** Sub server */
TINAScsSubscriberInfoAccess::i_SubscriberInfoQuery;

supports
TINAScsNamedUAIntra::i_Initial, /** IA client */
TINAScsNamedUAIntra::i_SessionInfo, /** USM client */
TINAScsNamedUAIntra::i_InvitationDelivery, /** SSM and PeerA clients */
TINAScsNamedUAIntra::i_AccountingPull, /** asUAP and PA client */
TINAScsNamedUAIntra::i_AccountingPush, /** SSM and USM clients */
TINAScsNamedUAIntra::i_Initial,
TINAScsNamedUAIntra::i_ServiceProfileCustomization,
TINAScsNamedUAIntra::i_UsrProfileManagement,

/** PA client */
TINAProviderAccess::i_DiscoverServicesIterator,
TINAProviderAccess::i_ProviderAccess,
TINAProviderAccess::i_ProviderAccessGetInterfaces,
TINAProviderAccess::i_ProviderAccessInterfaces,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January19,1998.

140

TINAProviderAccess::i_ProviderAccessRegisterInterfaces,
TINAProviderAccess::i_ProviderNamedAccess,

TINAScsNamedUAIntra::i_SubscriptionNotify; /** Sub client */

initial
TINAScsNamedUAIntra::i_Init;

};

#endif

1.5 TINAObjSub
//
// File TINAObjSub.odl
// It describes the Subscription Management Component
//

#ifndef TINAOBJSUB_ODL
#define TINAOBJSUB_ODL

#include "TINAScsSubInitial.idl"// Main interfaces: Initial, Subscribe
// and Notify

#include "TINAScsSubscriberInfoAccess.idl"
// Interfaces related to subscriber information mgt:
// Subscriber, UAQueryInfo

#include "TINAScsServiceContractInfoAccess.idl"
// Interfaces related to service contract management.

// missing module
// #include "TINAScsServiceLCMgmt.idl"
#include "TINAScsNamedUAIntra.idl"

// Subscription Management component

object TINAObjSub{
behavior
requires
// SLCM

TINAScsServiceLCMgmt::i_ServiceQuery,
// UA client

TINAScsNamedUAIntra::i_SubscriptionNotify;

supports
// All clients

TINAScsSubInitial::i_InitialAccess,
// UA client

TINAScsSubscriberInfoAccess::i_SubscriberInfoQuery,
// SSMols (or management application)

TINAScsSubInitial::i_Subscribe,
TINAScsSubscriberInfoAccess::i_SubscriberInfoMgmt,
TINAScsServiceContractInfoAccess::i_ServiceContractInfoMgmt,

// SLCM
TINAScsSubInitial::i_ServiceNotify;

initial
TINAScsSubInitial::i_InitialAccess;

};

#endif

Computational Model and Dynamics Service Component Specification
Version 1.0b , January19,1998

141

1.6 TINAObjSSMols
// File: TINAObjSSMols.odl

//

// Service Session Manager specific for the online subscription

// management service.

//

// Author: Juan C Garcia (Telefonica)

// Creation date: October 21st, 1997

//

// Revision by Koki NAKASHIRO(HITACHI)

// date:97-11-10

// some syntax check(miner change)

//

// Last modification date: November 10th, 1997

#ifndef TINAObjSSMols_ODL

#define TINAObjSSMols_ODL

#include "TINAScsSSMInit.idl"

#include "TINAScsSSMIntra.idl"

#include "TINAScsUSMIntra.idl"

#include "TINAScsSF.idl"

#include "TINAScsNamedUAIntra.idl"

#include "TINAScsSSMProviderBasicUsage.idl"

#include "TINAScsSubscriptionService.idl"

#include "TINAPartyBasicExtUsage.idl"

object TINAObjSSMols {

requires

// from Ret on ssUAP

TINAPartyBasicExtUsage::i_PartyBasicExtReq, /** add "Req" OK? **/

// UA server

TINAScsNamedUAIntra::i_AccountingPush,

// anonUA server

// TINAScsAnonUA::i_AccountingPush, /** AnonUA? where? **/

// SF server

TINAScsSF::i_SSEvents, /** Event -> Events **/

TINAScsSF::i_SSManage;

supports

// Ret - UAP client

TINAProviderBasicUsage::i_ProviderBasicReq,

// Ret - Subscription Service Specific interface

TINAScsSubscriptionService::i_ProviderOlsSi,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January19,1998.

142

// UA client

TINAScsUSMIntra::i_SessionCtrl, /** SSM->USM **/

// SF client

TINAScsSSMInit::i_Init,

TINAScsSSMIntra::i_AccountingPushMgmt,

// SSM Client resume

TINAScsSSMIntra::i_Resume;

initial

TINAScsSSMInit::i_Init;

};

#endif // TINAObjSSMols_ODL

1.7 TINAObjSLCM
//
// File : TINAObjSLCM.odl
// Decription : Service LifeCycle Management object
// Authors : Hiroshi Kamata
//
// Log
// 9-25-97 v0.1 Initial Draft by Hiroshi Kamata

#ifndef TINAObjSLCM_ODL
#define TINAObjSLCM_ODL

// missing module
// #include "TINAScsServiceLCMgmt.idl"

#include "TINAScsSF.idl"

// Service LifeCycle Mangement group object
object TINAObjSLCM {
behavior

"To be provided." ;

requires
// I'd like to change the name to i_SLCMgmt
// sinse it includes management, not only for initialization

// SF
TINAScsSF::i_Init,
// Sub
TINAScsSubInitial::i_ServiceNotify;

supports
// Interface for Service Type management
TINAScsServiceLCMgmt::i_TypeMgmt,

//old...TINAScsServiceLCMgmt::i_SessionInstanceMgmt,
//sorry. for the consistency to the SCS document.
TINAScsServiceLCMgmt::i_InstanceMgmt,

// Interface for Service Deployment/Withdrawal management
TINAScsServiceLCMgmt::i_DeploymentMgmt,

// Query interface for information required to subscription
TINAScsServiceLCMgmt::i_ServiceQuery;

initial

Computational Model and Dynamics Service Component Specification
Version 1.0b , January19,1998

143

//TINAScsServiceLCMgmt::i_Init;
TINAScsSF::i_Init;

};

#endif // TINAObjSLCM_ODL

1.8 TINAObjSF
// File TINAObjSF.odl
// Authors: Carlo Licciardi
// Last update: 9/22/97

#ifndef TINAObjSF_ODL
#define TINAObjSF_ODL

#include "TINAScsSF.idl"
#include "TINAScsSSMInit.idl"
#include "TINAScsSSMIntra.idl"
#include "TINAScsUSMInit.idl"
#include "TINAScsUSMIntra.idl"
// Service Factory Object

object TINAObjSF {
behavior
requires
// SSM

TINAScsSSMInit::i_Init,
TINAScsSSMIntra::i_Resume,
TINAScsSSMIntra::i_AccountingPushMgmt,

// USM
TINAScsUSMInit::i_Init,
TINAScsUSMIntra::i_Resume;

// PeerUSM
// TINAScsPeerUSMInit::i_Init,
// TINAScsPeerUSMIntra::i_Resume,
// CompUSM
// TINAScsCompUSMInit::i_Init,
// TINAScsCompUSMIntra::i_Resume;
supports

TINAScsSF::i_SSCreate,
TINAScsSF::i_SSManage,
TINAScsSF::i_Init,
TINAScsSF::i_Resume,
TINAScsSF::i_SSEvents;

initial
TINAScsSF::i_Init;

};

#endif

1.9 TINAObjSSM
// File: TINAObjSSM.odl
//
// Service Session Manager
//
// Author: Per Fly Hansen (Tele Danmark)
// Creation date: August 21st, 1997
// Modification date: September 24thd, 1997
//
// by Koki NAKASHIRO (HITACHI)
// Last Modification date:12 November 1997

#ifndef TINAObjSSM_ODL
#define TINAObjSSM_ODL

#include "TINAScsSSMInit.idl"

Service Component Specification Computational Model and Dynamics
Version 1.0b , January19,1998.

144

#include "TINAScsSSMIntra.idl"
#include "TINAScsSSMProviderBasicUsage.idl"
#include "TINAScsSSMProviderControlSRUsage.idl"
#include "TINAScsSSMProviderMultipartyUsage.idl"
#include "TINAScsSSMProviderPaSBUsage.idl"
#include "TINAScsSSMProviderVotingUsage.idl"

#include "TINAScsUSMIntra.idl"
#include "TINAScsUSMPartyBasicExtUsage.idl"
#include "TINAScsUSMPartyControlSRUsage.idl"
#include "TINAScsUSMPartyMultipartyIndUsage.idl"
#include "TINAScsUSMPartyMultipartyUsage.idl"
#include "TINAScsUSMPartyVotingUsage.idl"
#include "TINAScsSF.idl"

#include "TINAScsNamedUAIntra.idl"

object TINAObjSSM {
requires

// namedUA server
TINAScsNamedUAIntra::i_InvitationDelivery, /* IntraNamedUA -> */
TINAScsNamedUAIntra::i_AccountingPush, /* NamedUAIntra */

// anonUA server
// TINAScsAnonUA::i_AccountingPush,

// (specified for PeerA which is not yet defined)
// TINAScsPeerA::i_InvitationDelivery,
// TINAScsPeerA::i_AccountingPush,

// SF server
TINAScsSF::i_SSEvent,
TINAScsSF::i_SSManage,
TINAScsSF::i_SSCreate,

// USM Server
TINAScsUSMPartyBasicExtUsage::i_PartyBasicExtReq,
TINAScsUSMPartyBasicExtUsage::i_PartyGetInterfaces,
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInd,
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInfo,
TINAScsUSMPartyMultipartyIndUsage::i_PartyMultipartyInd,
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyExe,
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyInfo,
TINAScsUSMPartyVotingUsage::i_PartyVotingInfo,
TINAScsUSMIntra::i_Resume,
TINAScsUSMIntra::i_AccountingPush,
// stream binding on USM
TINAScsUSMPartyPaSBIndUsage::i_PartyPaSBInd,
TINAScsUSMPartyPaSBUsage::i_GeneralStreamInfo,
TINAScsUSMPartyPaSBUsage::i_PartyGeneralStreamInfo,
TINAScsUSMPartyPaSBUsage::i_PartyPaSBExe,
TINAScsUSMPartyPaSBUsage::i_PartyPaSBInfo;

supports
// USM client (eventually PeerUSM, CompUSM)
TINAScsSSMProviderBasicUsage::i_ProviderGetInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderRegisterInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderBasicReq,
TINAScsSSMProviderControlSRUsage::i_ProviderControlSRReq,
TINAScsSSMProviderMultipartyUsage::i_ProviderMultipartyReq,
TINAScsSSMProviderVotingUsage::i_ProviderVotingReq,

// stream binding
TINAScsSSMProviderPaSBUsage::i_ProviderPaSBReq,

// UA (named+anon), PeerA client
TINAScsSSMIntra::i_Join,

// SF client
TINAScsSSMInit::i_Init,

Computational Model and Dynamics Service Component Specification
Version 1.0b , January19,1998

145

TINAScsSSMIntra::i_Resume,

// USM or SF,
TINAScsSSMIntra::i_AccountingPushMgmt,

//CSM client
TINAScsSSMIntra::i_AccountingPush;

// CompUSM, PeerUSM ...
//
initial

TINAScsSSMInit::i_Init;

};

#endif // TINAObjSSM_ODL

1.10 TINAObjSSUAP
// FILE: TINAObjSSUAP.odl
//
// VERSION: 1
// DATE 21 August 97
//
// ODL for service session User APplication
// for the TINA- SCS
//
// COMMENTS:
// This is incomplete refer to the IDL file for proper definitions.
//
// MODIFICATIONS:
// Revision 1.0.1 97-09-29
// Changed on 29 September 97 to accomodate new naming conventions,
// remove unwanted SB interfaces
//
// Revision 1.0.2 97-11-10 by Koki NAKASHIRO, Carlo Alberto Licciardi
// update to new SCS naming scheme and module structure
// fixing inconsistency idl, odl, html files.
// (add new includes, move definitions to other file, etc.)

#ifndef _SSUAP_ODL
#define _SSUAP_ODL

#include "TINAProviderAccess.idl"
#include "TINAPartyBasicExtUsage.idl"
#include "TINAPartyMultipartyUsage.idl"
#include "TINAPartyMultipartyIndUsage.idl"
#include "TINAPartyVotingUsage.idl"
#include "TINAPartyControlSRUsage.idl"
#include "TINAScsSSUAPIntra.idl"
#include "TINAPartyPaSBUsage.idl"
#include "TINAPartyPaSBIndUsage.idl"

object TINAObjSSUAP {
requires

// PA server
TINAScsPAIntra::i_Access,

// Ret USM server
TINAProviderBasicUsage::i_ProviderBasicReq,
TINAProviderMultipartyUsage::i_ProviderMultipartyReq,
TINAProviderVotingUsage::i_ProviderVotingReq,
TINAProviderControlSRUsage::i_ProviderControlSRReq,
TINAProviderPaSBUsage::i_ProviderPaSBReq;

supports
// Ret - USM client

TINAPartyBasicExtUsage::i_PartyBasicExtReq, /* Req added */
TINAPartyMultipartyUsage::i_PartyMultipartyExe,
TINAPartyMultipartyUsage::i_PartyMultipartyInfo,
TINAPartyMultipartyIndUsage::i_PartyMultipartyInd,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January19,1998.

146

TINAPartyVotingUsage::i_PartyVotingInfo,
TINAPartyControlSRUsage::i_PartyControlSRInd, /* SR added */
TINAPartyControlSRUsage::i_PartyControlSRInfo, /* SR added */
TINAPartyPaSBUsage::i_PartyPaSBExe,
TINAPartyPaSBUsage::i_PartyPaSBInfo,
TINAPartyPaSBIndUsage::i_PartyPaSBInd,

// PA client
TINAScsSSUAPIntra::i_AccessInitialise;

initial
TINAScsSSUAPIntra::i_AccessInitialise;

};

#endif //_SSUAP_ODL

1.11 TINAObjUSM
// FILE: TINAObjUSM.odl
//
// VERSION: 1.02
// DATE 21 August 97
//
// ODL for Usage Sesion Manager
// for the TINA- SCS
//
// COMMENTS:
// This is incomplete refer to the IDL file for proper definitions.
//
// MODIFICATIONS:
// Revision 1.0.1 97-9-4 by Takeo Hamada
// i_usmMgmtCtxt has been added to object USM.
// Revision 1.0.2 97-9-4 by Martin Yates
// corrections to revisions in 1.0.1, extra comments, syntactic corrections
// Revision 1.0.3 97-09-29 by Martin Yates
// update to new SCS naming scheme and module structure
//
// Revision 1.0.4 97-11-10 by Koki NAKASHIRO, Carlo Alberto Licciardi
// update to new SCS naming scheme and module structure
// fixing inconsistency idl, odl, html files.
// (add new includes, move definitions to other file, etc.)
// What do we do to TINAScsUSMExtMngt...???

#ifndef _USM_ODL
#define _USM_ODL

#include "TINAScsUSMIntra.idl"
#include "TINAScsUSMPartyBasicExtUsage.idl"
#include "TINAScsUSMPartyMultipartyIndUsage.idl"
#include "TINAScsUSMPartyMultipartyUsage.idl"
#include "TINAScsUSMPartyPaSBIndUsage.idl"
#include "TINAScsUSMPartyPaSBUsage.idl"
#include "TINAScsUSMPartyVotingUsage.idl"
#include "TINAScsUSMPartyControlSRUsage.idl"
#include "TINAScsUSMInit.idl"
#include "TINAProviderBasicUsage.idl"
#include "TINAProviderMultipartyUsage.idl"
#include "TINAProviderVotingUsage.idl"
#include "TINAProviderControlSRUsage.idl"
#include "TINAProviderPaSBUsage.idl"
#include "TINAPartyPaSBIndUsage.idl"
//#include "TINAScsUSMExtMngt.idl"

object TINAObjUSM {
behavior

// Represents one particpant in a service session.
// Executes session and service specific control commands from UAP
// Indicates and informs UAP of service session activity
// Maintains and issues accounting information for its particpant

Computational Model and Dynamics Service Component Specification
Version 1.0b , January19,1998

147

requires
//from Ret on ssUAP
TINAPartyBasicExtUsage::i_PartyBasicExt,
TINAPartyMultipartyUsage::i_PartyMultipartyExe,
TINAPartyMultipartyUsage::i_PartyMultipartyInfo,
TINAPartyMultipartyUsage::i_PartyMultipartyInd,
TINAPartyVotingUsage::i_PartyVotingInfo,
TINAPartyControlSRUsage::i_PartyControlSRInd, /** insert SR **/
TINAPartyControlSRUsage::i_PartyControlSRInfo,/** insert SR **/
// stream binding on ssUAP
TINAPartyPaSBIndUsage::i_PartyPaSBInd,
TINAPartyPaSBUsage::i_PartyPaSBExe,
TINAPartyPaSBUsage::i_GeneralStreamInfo,
TINAPartyPaSBUsage::i_PartyGeneralStreamInfo,
TINAPartyPaSBUsage::i_PartyPaSBInfo,

// UA server
TINAScsNamedUAIntra::i_AccountingPush,
TINAScsNamedUAIntra::i_SessionInfo,

// SSM server
TINAScsSSMProviderBasicUsage::i_ProviderGetInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderRegisterInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderInterfaces,
TINAScsSSMProviderBasicUsage::i_ProviderBasicReq,
TINAScsSSMProviderControlSRUsage::i_ProviderControlSRReq,
TINAScsSSMProviderMultipartyUsage::i_ProviderMultipartyReq,

/** Req --> Usage ok? **/
TINAScsSSMProviderPaSBUsage::i_ProviderPaSBReq,
TINAScsSSMProviderVotingUsage::i_ProviderVotingReq,
TINAScsSSMIntra::i_AccountingPushMgmt,
// stream binding on SSM. Need to verify that this remains consistent
// with ret streams evolution. Currently based on Ret0.7
TINAScsSSMProviderPaSBUsage::i_ProviderPaSBReq;

supports
// Ret - UAP client
TINAProviderBasicUsage::i_ProviderBasicReq,
TINAProviderMultipartyUsage::i_ProviderMultipartyReq,
TINAProviderVotingUsage::i_ProviderVotingReq,
TINAProviderControlSRUsage::i_ProviderControlSRReq,

/* SR added */
TINAProviderPaSBUsage::i_ProviderPaSBReq,

// Non Ret - UAP Client (change ExtMgmt -> Intra)
TINAScsUSMIntra::i_MgmtCtxt,

// UA client
TINAScsUSMIntra::i_SessionCtrl,
TINAScsUSMIntra::i_AccountingPushMgmt,

// SF client
TINAScsUSMInit::i_Init,

// SSM Client resume
TINAScsUSMIntra::i_Resume,

// SSM Client accounting
TINAScsUSMIntra::i_AccountingPush,

// SSM Client usage
TINAScsUSMPartyBasicExtUsage::i_PartyBasicExtReq,
TINAScsUSMPartyBasicExtUsage::i_PartyGetInterfaces,
TINAScsUSMPartyMultipartyIndUsage::i_PartyMultipartyInd,
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyExe,
TINAScsUSMPartyMultipartyUsage::i_PartyMultipartyInfo,
TINAScsUSMPartyVotingUsage::i_PartyVotingInfo,
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInd,
TINAScsUSMPartyControlSRUsage::i_PartyControlSRInfo,
// stream binding interfaces may require some changes from Ret
// when Ret streams are stable

Service Component Specification Computational Model and Dynamics
Version 1.0b , January19,1998.

148

TINAScsUSMPartyPaSBIndUsage::i_PartyPaSBInd,
TINAScsUSMPartyPaSBUsage::i_PartyPaSBExe,
TINAScsUSMPartyPaSBUsage::i_PartyPaSBInfo,
TINAScsUSMPartyPaSBUsage::i_GeneralStreamInfo, /** add **/
TINAScsUSMPartyPaSBUsage::i_PartyGeneralStreamInfo; /** add **/

initial
TINAScsUSMInit::i_Init;

};

#endif // _USM_ODL

1.12 TINAObjAmcLadder
#ifndef _TINAScsAmcLadder_odl_
#define _TINAScsAmcLadder_odl__

//
// File Name: TINAObjAmcLadder.odl
//
// Decription: accounting ladder element
// A ladder element is an object that participates in a chain
// of objects that receive, (optionally) generates and sends
// accounting events.
//
// Revision History:
// 9-03-97 v0.21 by Juan C. Garcia
// 9-25-97 v0.3 by Takeo Hamada
// with new naming scheme
//

#include "TINAScsAmcObject.idl"

object TINAObjAmcLadder {
behavior
/**

* A ladder element is an object that participates in a chain
* of objects that receive, (optionally) generates and sends
* accounting events.
**/

requires
TINAScsAmcObject::i_AmcLadderElement;

supports
// Interface for accounting control
// (start/stop/setNotifDestination/...)
TINAScsAmcObject::i_AccObjectManagement,
// Interface to receive events.
TINAScsAmcObject::i_AmcLadderElement;

initial
TINAScsAmcObject::i_AccObjectManagement;

};

#endif

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

149

Annex 2. IDL-specs

This section gives the current IDL specifications for the interfaces and operations described in
previous sections.

2.1 TINAScsMgmtCtxt
#ifndef _TINAScsMgmtCtxt_idl_
#define _TINAScsMgmtCtxt_idl_

//
// File Name: TINAScsMgmtCtxt.idl
// Decription: definitions for management context
// Comments:
// Revision Histroy:
// 8-30-97 v0.1 by Takeo Hamada
// 9-04-97 v0.11 by Takeo Hamada
// i_usmMgmtCtxt is moved to USM.odl
// 9-10-97 v0.2 by Takeo Hamada
// passed hidl compiler
// 9-17-97 v0.25 by Takeo Hamada
// module structure revised, passed hidl
// compiler.
// 9-25-97 v0.30 by Takeo Hamada
// with new naming scheme
//

#ifdef debug
#include "PLATyToolsFix.idl"
#else
#include "CosTrading/CosTrading.idl"
#endif
#include "Security.idl"

module TINAScsMgmtCtxt {

//
// Caution: we assume that a structure for ToM and its associated
// service template are defined somewhere else.
//

typedef string t_ToMID; // temporary fix

/**
*
* Management Context definition.
*
* @member ctxtype F,C,A,P,S context type.
* @member props we assume that management context is
* represented by a list of property-value
* pairs. For example, an accounting management
* context may have properties such as tariffId,
* billing options, recovery options, etc.
* The set of properties (management schema) will be
* defined separately in respective management
* architecture document.
* @member proof proof of origin, proof of receipt, which
* proves both parties agreed on the content.
* it is assumed that MgmtCtxts are negotiated
* between User and GCCM. A proof is attached
* at the conclusion of negotiation.
* @member tom ID of ToM, from which this MgmtCtxt may be
* derived. When no such ToM exists, the value
* should be NULL.
**/

struct t_MgmtCtxt {

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

150

string<8> ctxtype; // F,C,A,P,S context type

CosTrading::PropertySeq props;
// we assume that management context is
// represented by a list of property-value
// pairs. For example, an accounting management
// context may have properties such as tariffId,
// billing options, recovery options, etc.
// The set of properties (management schema) will be
// defined separately in respective management
// architecture document.

Security::Opaque proof;
// proof of origin, proof of receipt, which
// proves both parties agreed on the content.
// it is assumed that MgmtCtxts are negotiated
// between User and GCCM. A proof is attached
// at the conclusion of negotiation.

t_ToMID tom;
// ID of ToM, from which this MgmtCtxt may be
// derived. When no such ToM exists, the value
// should be NULL.

};

typedef sequence <t_MgmtCtxt> t_MgmtCtxtList;

/**
* Management context ID:
* a reference to a consistent (submittable) set of
* management contexts (t_MgmtCtxtList), which
* can be bound to a service session in question.
**/

typedef string t_MgmtCtxtID;

exception e_usmMgmtCtxt {
enum t_usmMgmtCtxt_error {

cannotBind,
cannotRebind,
cannotUnbind,
inconsistentMgmtContext,
mgmtContextinUse

} error;
string reason;

};

//
// following interface is commented out, since it is already
// a part of USM.odl (Rev. 1.0.1, 9-04-97).
//
// //
// // No component is identified yet, to which the following
// // interface is to be attached. Possibly USM.
// //
//
// interface i_usmMgmtCtxt {
// // bindList: binds a list of management context to service
// // session.
// boolean bindList(
// in t_MgmtCtxtList contexts
//) raises (e_usmMgmtCtxt);
// // bindID: binds a list of management context referenced
// // by ID to service session.
// boolean bindID(
// in t_MgmtCtxtID contexts
//) raises (e_usmMgmtCtxt);
//
// // unbindList: unbinds a list of management context to service
// // session.
// boolean unbindList(
// in t_MgmtCtxtList contexts
//) raises (e_usmMgmtCtxt);
// // unbindID: unbinds a list of management context referenced

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

151

// // by ID to service session.
// boolean unbindID(
// in t_MgmtCtxtID contexts
//) raises (e_usmMgmtCtxt);
//
// // rebindList: rebinds a list of management context to service
// // session.
// boolean rebindList(
// in t_MgmtCtxtList contexts
//) raises (e_usmMgmtCtxt);
// // rebindID: rebinds a list of management context referenced
// // by ID to service session.
// boolean rebindID(
// in t_MgmtCtxtID contexts
//) raises (e_usmMgmtCtxt);
// };
};

#endif

2.2 TINAScsCommonTypes
// FILE: TINAScsCommonTypes.idl
//
// VERSION: 1
// DATE 25 September 97
//
// IDL for Common Types used in TINA Service Component Specs
// that are not found in Ret
//
// AUTHOR: Martin Yates
//
// COMMENTS:
//
// MODIFICATIONS:
//
//
//

#ifndef _TINAScsCommonTypes_IDL
#define _TINAScsCommonTypes_IDL

#include "TINACommonTypes.idl"

/** Contains common types in the service components specification
that are not defined in Ret.

**/
module TINAScsCommonTypes {

enum t_UserIdErrorCode {
userIdUnknown

};

exception e_UserIdError{
t_UserIdErrorCode UserIdError;

};

enum t_IdentifierErrorCode {
GlobalSessionIdUnknown,
PartyIdUnknown

};

exception e_IdentifierError {
t_IdentifierErrorCode IdError;

};

enum t_PartyIdListOptions {
OnlyListedIds, // use all PartId in list and no others
FirstListedId, // use the first PartyId in List and ignore others

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

152

AllIdsIgnoreList // ignore the list and use all PartyIds known
};

struct t_PartyIdListHandler {
TINACommonTypes::t_PartyIdList forPartIds;
t_PartyIdListOptions handlerOption;

};

enum t_PartyIdListErrorCode {
NullList,
InvalidPartyIds

};

exception e_PartyIdListError {
t_PartyIdListErrorCode listErrorCode;

};

enum t_PartySessionErrorCode {
UnknownError,
OpNotSupported

};

exception e_PartySessionError {
t_PartySessionErrorCode partySErrorCode;

};

enum t_ProviderSessionErrorCode {
UnknownUsageError,
UsageNotAllowed,
UsageNotAccepted,
UsageOpNotSupported,
PartySuspended

};

exception e_ProviderSessionError {
t_ProviderSessionErrorCode provSErrorCode;

};

enum t_PartyIdErrorCode {
invalidPartyId

};

exception e_PartyIdError {
t_PartyIdErrorCode idErrorCode;

};

enum t_PartyTypeErrorCode {
invalidPartyType

};

exception e_PartyTypeError {
t_PartyTypeErrorCode typeErrorCode;

};

}; // TINAScsCommonTypes

#endif //_TINAScsCommonTypes_IDL

2.3 TINAScsAmcCommon
#ifndef _TINAScsAmcCommon_idl_
#define _TINAScsAmcCommon_idl_

//
// We assume the following types are defined as
// common definitions for TINA component specs.
//
// TINACommonTypes::t_UserId

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

153

// TINACommonTypes::t_SessionId
//

// # include "NCS_common.idl" - not needed yet
#include "TINACommonTypes.idl"
#include "Security.idl"

//
// File Name: TINAScsAmcCommon.idl
// Decription: common definitions for accounting
// management in NCS
// Comments:
// Original VITAL inputs were provided by
// George Pavlou, UCL, UK.
// Revision Histroy:
// 8-1-97 v0.1 by Takeo Hamada
// 8-27-97 v0.2 by Takeo Hamada
// 8-30-97 v0.21 by Takeo Hamada
// 9-03-97 v0.22 by Takeo Hamada
// added t_ServiceTransactionId
// 9-10-97 v0.23 by Takeo Hamada
// passed hidl compiler
// 9-17-97 v0.25 by Takeo Hamada
// module struct ure revised, passed hidl
// compiler.
// 9-25-97 v0.3 by Takeo Hamada
// with new naming scheme.
//

module TINAScsAmcCommon {

/**
*
* Type of DST corrections.
*
* @member None not on dst
* @member USA USA
* @member AUST Australia
* @member WET Western Europe
* @member EET Eastern Europe
* @member CAN Canada
* @member UK UK and Eire
* @member RUM Rumania
* @member TUR Turkey
* @member AUSTLT Australia with shift in 1986
*
**/

enum t_amcDsttype {
None, // not on dst
USA, // USA
AUST, // Australia
WET, // Western Europe
MET, // Middle Europe
EET, // Eastern Europe
CAN, // Canada
UK, // UK and Eire
RUM, // Rumania
TUR, // Turkey
AUSTLT // Australia with shift in 1986

};

typedef unsigned short ushort;
typedef unsigned short ulong;

/**
*
* Accounting time stamp.
*
* @member tm_usec microseconds (0...999)
* @member tm_sec seconds (0...59)

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

154

* @member tm_min minutes (0...59)
* @member tm_hour hour (0...23)
* @member tm_mday day of month (1...31)
* @member tm_mon month (1...12)
* @member tm_year year
* @member tm_wday day of the week (0...6)
* @member tm_yday day of the year (1...366)
*
**/

struct t_DateTime {
// it should contain time resolution up to micro sec.,
// yy/mm/dd/hh/mm/ss forms, timezone.
ushort tm_usec; // microseconds (0...999)
ushort tm_sec; // seconds (0...59)
ushort tm_min; // minutes (0...59)
ushort tm_hour; // hour (0...23)
ushort tm_mday; // day of month (1...31)
ushort tm_mon; // month (1...12)
ulong tm_year;
ushort tm_wday; // day of the week (0...6)
ushort tm_yday; // day of the year (1...366)

string tm_zone;
short tz_minuteswest; // minutes west of Greenwich
t_amcDsttype tz_dsttime; // type of dst correction

};

/**
* Accounting measurement time duration.
*
* Time duration = tv_usec + 1.0e-6 * tv_usec [sec]
**/

struct t_Timeval {
long tv_sec; // in sec.
long tv_usec; // in microsec.

};

enum amc_TimePeriod {
usec, // microsecond
msec, // millisecond
sec,
min,
hour,
half_day,
day,
three_days,
week,
half_month,
month,
three_months,
half_year,
year,
three_years

};

struct t_fromTo {
t_DateTime from;
t_DateTime to;

};

/**
* Unit of measurement
**/

enum amc_UnitType {
// number of bits
bits,
Kbits, // Kilo = 2^10
Mbits, // Mega = 2^20

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

155

Gbits, // Gita = 2^30
Tbits, // Tera = 2^40
Pbits, // Penta = 2^50

// bit per second
bps,
Kbps,
Mbps,
Gbps,
Tbps,
Pbps,

// number of bytes
bytes,
Kbytes,
Mbytes,
Gbytes,
Tbytes,
Pbytes,

// byte per second
Byps,
KByps,
MByps,
GByps,
TByps,
PByps,

// number of ATM cells
cells,
Kcells,
Mcells,
Gcells,
Tcells,
Pcells,

// cell per second
cps,
Kcps,
Mcps,
Gcps,
Tcps,
Pcps

};

/**
* Accounting event type.
*/

enum t_AccountingEventType {
// essential accounting events on Stream Binding
bindingSB,
unbindingSB,
measurementSB,

// non-essential accounting events on
// Stream Flow Connection
doneSFC,
undoneSFC,
measurementSFC,

// Network Flow Connection
doneNFC,
undoneNFC,
measurementNFC,

// Terminal Flow Connection
doneTFC,
undoneTFC,
measurementTFC,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

156

// Trail
doneTrail,
undoneTrail,
measurementTrail,

// Subnetwork Connection
doneSNC,
undoneSNC,
measurementSNC,

// Link Connection
doneLC,
undoneLC,
measurementLC,

// Tandem Connection
doneTC,
undoneTC,
measurementTC

};

/**
* Accounting measurement type.
**/

enum t_AccountingMeasurementType {
differential_1, // differential measurement form 1
differential_2, // differential measurement form 2
regular // continuous, regular measurement

};

/**
* Accounting event definition.
**/

union t_amcMdata switch (t_AccountingMeasurementType) {
case differential_1: t_Timeval tval;
case differential_2: t_fromTo fromTo;
case regular: t_DateTime time;

};

struct t_amcMeasurement {
t_DateTime timestamp;
t_AccountingMeasurementType amcMtype;
t_amcMdata measured;
amc_UnitType utype;
long uvalue;

};

typedef sequence <t_amcMeasurement> t_amcMeasurementList;

struct t_AccountingEvent {
TINACommonTypes::t_UserId userId;
TINACommonTypes::t_SessionId sessionId;
t_amcMeasurementList measured;
Security::Opaque proof; // proof of origin attached by the

// originator of the event, when
// necessary.

};

typedef sequence <t_AccountingEvent> t_AccountingEventList;

/**
* Tariff struct ure definition.
*
* Details of the interface which admits accessing tariff
* struct ure is yet to be defined. This id is used by
* SSM, and is resolved such that the SSM can derive
* necessary tariffing information to calculate bills.
* For more details, see TINAScsAmcTariff.idl.
**/

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

157

typedef string t_TariffId;

/**
* Service transaction definition.
*
* Service transaction is an information object , as such
* it only carries Id to distinguish one from the other.
* It purpose is to give use specific service management,
* when management context of one user has to be distinguished
* from others. For example, an SSM needs to distinguish
* notification interface s of USM, when its billing information
* is to be sent on-line, with which the user (ServiceTransaction)
* is associated.
**/

typedef string t_ServiceTransactionId;

};

#endif

2.4 TINAScsAmcObject
#ifndef _TINAScsAmcObject_idl_
#define _TINAScsAmcObject_idl_

#include "CosEventComm.idl"
#include "UMLogManager.idl"
#include "TINAScsMgmtCtxt.idl"
#include "TINAScsAmc.idl"

//
// File Name: TINAScsAmcObject.idl
// Decription: accounable object in NCS
// Revision Histroy:
// 8-1-97 v0.1 by Takeo Hamada
// 8-26-97 v0.2 by Takeo Hamada
// 8-30-97 v0.21 by Takeo Hamada
// 9-03-97 v0.21 by Juan C. Garcia
// inheritance from i_AccountableObject removed
// in i_AmcLadderElement definition
// 9-03-97 v0.22 by Takeo Hamada
// generic Pull and Push interface s added.
// 9-10-97 v0.23 by Takeo Hamada
// passed hidl compiler
// 9-17-97 v0.25 by Takeo Hamada
// module struct ure revised, passed hidl
// compiler.
// 9-25-97 v0.3 by Takeo Hamada
// with new naming scheme
// 10-16-97 v0.4 by Takeo Hamada
// userId added to getUserLogEntries
//

module TINAScsAmcObject {

enum t_AmcObject_error {
cannotStart,
cannotStop,
cannotSuspend,
cannotResume,
cannotSetState,
unknownState,
cannotSetAccountingCycle,
accountingCycleTooShort,
cannotSuspendNotification,
cannotResumeNotification,
cannotFlushNotification,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

158

cannotSetVerbosityLevel,
cannotSetNotificationDestination,
unknownNotificationDestination,
invalidSessionId,
invalidServiceTransactionId,
cannotResetNotificationDestination,
cannotResetAllNotificationDestination

};

exception e_AmcObject {
t_AmcObject_error error;
string reason;

};

interface i_AccObjectManagement {
/**

* mimimum value of accounting cycle settable
* by set_accounting_cycle
**/

readonly attribute TINAScsAmcCommon::t_Timeval minimum_cycle;

// control operations
boolean start() raises (e_AmcObject);
boolean stop() raises (e_AmcObject);
boolean suspend() raises (e_AmcObject);
boolean resume() raises (e_AmcObject);
boolean set_state(

in any acc_object_state // service specific.
) raises (e_AmcObject);
boolean set_accounting_cycle (

in TINAScsAmcCommon::t_Timeval cycle
) raises (e_AmcObject);

// notification control operations
boolean suspend_notification() raises (e_AmcObject);
boolean resume_notification() raises (e_AmcObject);
/**

* flush all the events in the internal queue
* to the notification destination. This
* operation may be necessary before the
* object is taken out of event management
* ladder and subsequently destroyed.
**/

boolean flush_notification() raises (e_AmcObject);
boolean set_verbosity_level(

in long level
) raises (e_AmcObject);

/**
* set destination of accounting events to be
* notified, adding the destination to an
* internal notification destination list.
* Note that it is possible that a ladder
* element may send its events to multiple
* destinations, e. g. an SSM can send its
* events to multiple USMs.
**/

boolean set_Notification_Destination(
in Object destination,

// destination interface
in TINACommonTypes::t_SessionId sessionId,

// Session ID, to which the ladder belongs to.
in TINAScsAmcCommon::t_ServiceTransactionId serviceTransactionId

// This argument is optional, set NULL when it
// is not used. When it is set, however, it
// specifies which service transaction the
// destination interface is associated with.

) raises (e_AmcObject);

/**
* reset destination of accounting events to be

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

159

* notified. The destination is removed from the
* notification recipient list.
**/

boolean reset_Notification_Desination(
in Object destination

) raises (e_AmcObject);
/**

* reset destinations, with which sessionId is associated.
*/

boolean reset_Notification_sessionID(
in TINACommonTypes::t_SessionId sessionId

) raises (e_AmcObject);
/**

* reset destinations, with which serviceTransactionId
* is associated.
**/

boolean reset_Notification_serviceTransactionID(
in TINAScsAmcCommon::t_ServiceTransactionId serviceTransactionId

) raises (e_AmcObject);

/**
* reset all the destination of accounting events,
* and the destination list becomes empty.
**/

boolean reset_all_Notification_Desination(
) raises (e_AmcObject);

};

/**
* element of event management ladder :
* an accountable object with operations with
* CosEventComm::PushConsumer interface .
**/

interface i_AmcLadderElement : CosEventComm::PushConsumer {
// maintenance operations, if necessary.

};

/**
* generic Pull interface for components with Pull
* functionality (e.g. namedUA, SSM)
**/

interface i_AccountingPull {
/**

* same as i_nameduaBillingLog::getUserLogEntries
**/

boolean GetUserLogEntries(
in TINACommonTypes::t_UserId userId,
in TINAScsAmcCommon::t_DateTime from,
in TINAScsAmcCommon::t_DateTime to,
out TINAScsAmc::t_BillingEventList events

) raises (UMLogManager::e_UMLogOperation);

/**
* same as i_nameduaBillingLog::getSessionLogEntries
**/

boolean GetSessionLogEntries(
in TINACommonTypes::t_SessionId sessionId,
out TINAScsAmc::t_BillingEventList events

) raises (UMLogManager::e_UMLogOperation);
};

/**
* generic Pull interface for components with Push
* functionality (e.g. namedUA)
**/

interface i_AccountingPush : TINAScsAmcObject::i_AmcLadderElement {
/**

* same as i_nameduaBillingLog::store
**/

// boolean StoreBillingEvent(
// in t_BillingEvent event

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

160

//) raises (UMLogManager::e_UMLogOperation);
boolean StoreBillingEventList(

in TINAScsAmc::t_BillingEventList events
) raises (UMLogManager::e_UMLogOperation);

/**
* same as i_nameduaBillingLog::remove
**/

// boolean RemoveBillingEvent(
// in t_BillingEvent event
//) raises (UMLogManager::e_UMLogOperation);

boolean RemoveBillingEventList(
in TINAScsAmc::t_BillingEventList events

) raises (UMLogManager::e_UMLogOperation);

/**
* same as i_nameduaBillingLog::removeUserLogEntries
**/

boolean RemoveUserLogEntries(
in TINAScsAmcCommon::t_DateTime from,
in TINAScsAmcCommon::t_DateTime to

) raises (UMLogManager::e_UMLogOperation);
};

};

#endif

2.5 TINAScsAmc
#ifndef _TINAScsAmc_idl_
#define _TINAScsAmc_idl_

//
// accounting management common definitions
// are included from corresponding NCS spec.
//

#include "TINACommonTypes.idl"
#include "TINAScsAmcCommon.idl"
#include "TINAScsMgmtCtxt.idl"

//
// File Name: TINAScsAmc.idl
// Decription: common definitions for accounting
// management in SCS
// Comments:
// VITAL inputs were provided by
// George Pavlou, UCL, UK.
// Revision Histroy:
// 8-11-97 v0.1 by Takeo Hamada
// 8-26-97 v0.2 by Takeo Hamada
// 8-30-97 v0.3 by Takeo Hamada
// 9-10-97 v0.31 by Takeo Hamada
// passed hidl compiler
// 9-17-97 v0.35 by Takeo Hamada
// module struct ure revised, passed hidl
// compiler.
// 9-25-97 v0.37 by Takeo Hamada
// with new naming scheme
//

module TINAScsAmc {

//
// Billing Unit : currencies in the world
//

/**
* international currency acronym should be used.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

161

**/
typedef string <16> t_BillingUnit;

// Examples of currency acronym
// Ref. http://www.oanda.com, 164 currencies in the world
//
// major TINA currencies in the world
//
// AUD : Australian Dollar
// BEF : Belgian Franc
// GBP : British Pound
// CAD : Canadian Dollar
// CLP : Chilean Peso
// CNY : Chinese Yuan Renminbi
// DKK : Danish Krone
// DYD : Disney Dollar
// NLG : Dutch Guilder
// DEM : Deutsche Mark
// ECU : ECU
// FIM : Finnish Markka
// FRF : French Franc
// GRD : Greek Drachma
// ITL : Italian Lira
// JPY : Japanese Yen
// KRW : Korean Won
// MYR : Malaysian Ringgit
// NOK : Norwegian Kroner
// PTE : Portuguese Escudo
// SUR : Russian Rouble
// ESP : Spanish Peseta
// SEK : Swedish Krona
// CHF : Swiss Franc
// USD : US Dollar
//
// less known international currencies
//
// AFA : Afghanistan Afghani
// ALL : Albanian Lek
// DZD : Algerian Dinar
// INR : Indian Rupee
// ILS : Israeli New Shekel
// XAU : Gold (oz.)
// PGK : Papua New Guinea Kina
// XPT : Platinum (oz.)
// VND : Vietnamese Dong
// etc.
//

/**
* Billing Status : status of billing information
*
* @member inProcess service session is on-going.
* @member terrminated user is out of the service session,
* but service transaction not concluded.
* @member final correlation with PM done, service transaction
* concluded.
**/

enum t_BillingStatus {
inProcess, // service session is on-going
terminated, // user is out of the service session,

// but service transaction not concluded
final // correlation with PM done, service transaction

// concluded
};

//
// Billing Event Type
//

enum t_BillingEventType {
// per session billing event types

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

162

differential, // differential billing form
normal, // normal billing for a period

// periodic billing event types, which can be used
// as reponses to billing query
hourly,
daily,
weekly,
monthly,
bi_monthly,
yearly

};

/**
* Billing Event definition
*
* @member userId left blank when billing event
* is not per user.
* @member sessionId left blank when billing event
* is not per session.
* @member tariffId Id of tariff, from which billing
* info. is calculated.
* @member mgmtctxtId Management Context Id to which
* this service transaction
* follows
**/

struct t_BillingMeasurement {
TINACommonTypes::t_UserId userId;

// left blank when billing event
// is not per user

TINACommonTypes::t_SessionId sessionId;
// left blank when billing event
// is not per session

TINAScsAmcCommon::t_TariffId tariffId;
// Id of tariff, from which billing
// info. is calculated

TINAScsMgmtCtxt::t_MgmtCtxtID mgmtctxtId;
// Management Context Id to which
// this service transaction
// follows

TINAScsAmcCommon::t_DateTime time;
t_BillingStatus status;
t_BillingEventType eventType;
union eventData switch (t_BillingEventType) {
case differential: TINAScsAmcCommon::t_Timeval tval;
case normal: TINAScsAmcCommon::t_fromTo fromTo_normal;
case hourly: TINAScsAmcCommon::t_fromTo fromTo_hourly;
case daily: TINAScsAmcCommon::t_fromTo fromTo_daily;
case weekly: TINAScsAmcCommon::t_fromTo fromTo_weekly;
case monthly: TINAScsAmcCommon::t_fromTo fromTo_monthly;
case bi_monthly: TINAScsAmcCommon::t_fromTo fromTo_bi_monthly;
case yearly: TINAScsAmcCommon::t_fromTo fromTo_yearly;
} event_data;
t_BillingUnit billingUnit;
double uvalue; // is there any decimal arithmetic

// format?
// the following solution is too ambiguous.
// long uvalueA; // uvalue above decimal point
// long uvalueB; // uvalue below decimal point

};

typedef sequence <t_BillingMeasurement> t_BillingSequence;

/**
* Billing event definition.
*
* @member time issue date of billing statement.
* @member seq billing event sequence .
* @member proof proof of origin attached by the
* originator of the event, when
* necessary.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

163

**/
struct t_BillingEvent {

TINAScsAmcCommon::t_DateTime time;
// issue date of billing statement

t_BillingSequence seq;
Security::Opaque proof;

// proof of origin attached by the
// originator of the event, when
// necessary.

};

typedef sequence <t_BillingEvent> t_BillingEventList;

};

#endif

2.6 TINAScsAmcTariff
#ifndef _TINAScsAmcTariff_idl_
#define _TINAScsAmcTariff_idl_

#ifdef debug
#include “PLATyToolsFix.idl”
#else
#include “CosTrading/CosTrading.idl”
#endif
#include “TINAScsAmc.idl”

//
// File Name: TINAScsAmcTariff.idl
// Decription: tariff definitions for SCS accounting
// Comments:
// Revision Histroy:
// 11-09-97 v0.1 by Takeo Hamada
//

//
// Warning : The following tariff structure is given
// more as an example; Arbitrary tariff structure can
// be provided by Retailer, as far as tariffId (a string)
// can be resolved to a tariff structure, from which
// Billing info. can be calculated.
//
// In a later stage of SCS development, however, federation
// and composition will be considered, where common tariff
// structure will be necessary, to generate composed tariffing
// structure to the end-user as a part of a management context.
//

//
// Tariff structure
//
// Description: i_TariffStructure provides information on the
// tariff structure, which gives sufficient information on the
// pricing information Retailer/Communication Service Provider
// will be charging to the user, upon the completion of the
// service transaction.
//
// A tariff structure is expressed by the following formula.
// d, t represent amount of data and time, respectively.
// ___
// \
// charg e = A + / (B(QoS) * t + C(QoS) * d)

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

164

// ---
// over SFEPs
//
// A : a fixed service access charge. It could be included as
// a part of subscription contract (e. g. monthly flat rate).
// Therefore it is possible tha t A = 0, when the tariff
// represents only the usage part. This fixed charge covers
// basic access to Ret reference point and associated kTN
// usage.
//
// B : per SFEP/per time charge. Charging rate B is a
// function of QoS schema to be used for SFEP and its
// stream binding.
//
// C : per SFEP/per data charge. Charging rate C is a
// function of QoS.
//

module TINAScsAmcTariff {

enum t_FixedChargeType {
perAccessSession,
perServiceSession,
hourlyFlat,
dailyFlat,
weeklyFlat,
bi_weeklyFlat,
monthlyFlat,
two_montlyFlat,
three_montlyFlat,
half_yearlyFlat,
yearlyFlat,
two_yearlyFlat

};

enum t_Tariff_error {
e_nonEffectiveQosSchema,
e_priceStructureNotFound,
e_tariffStructureNotAvailable

};

exception e_Tariff {
t_Tariff_error error;
string reason;

};

struct t_TariffPricing {
// fixed charge corresponds to A
double a;
t_FixedChargeType fixedChargeType;

// per time charge corresponds to B
double b;
// measurement time period : sec, min, etc.
TINAScsAmcCommon::amc_TimePeriod perTime;

// per data charge coresponds to C
double c;
// measurement data unit : Kbytes, Mbytes, etc.
TINAScsAmcCommon::amc_UnitType perData;

// monetary unit of pricing info. e.g. USD
TINAScsAmc::t_BillingUnit punit;

};

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

165

typedef sequence <t_TariffPricing> t_TariffPricingSet;

interface i_TariffStructure {
boolean tariff_structure(

in CosTrading::PropertySeq qos_schema,
// name-value pairs which describes QoS schema
// the list may also contain protocol name such
// as RSVP.

out t_TariffPricing tprice // pricing info.
) raises (e_Tariff);

};
};

#endif

2.7 TINAScsASUAPIntra
/* TINAScsASUAPIntra.idl
**
** Access Session User Application
**
** Author: Patrick Farley (BT)
** Reviewer: Carlo Licciardi (CSELT)
** Creation date: September 5th, 1997
** Review: Sept. 10th
*/

#ifndef TINAScsASUAPIntra_IDL
#define TINAScsASUAPIntra_IDL

#include "TINACommonTypes.idl"
#include "TINAUserAccess.idl"
#include "TINAAccessCommonTypes.idl"

module TINAScsASUAPIntra
{
/* draft YUCK, and is shared with ssUAP, so should be defined elsewhere. */
interface i_Init
{
}; /* interface i_Init */

/* draft */
interface i_Access {

void cancelAccessSession(
in TINAUserAccess::t_CancelAccessSessionProperties options

);

void inviteUser (
in TINAAccessCommonTypes::t_SessionInvitation invitation,
out TINACommonTypes::t_InvitationReply reply

);

void cancelInviteUser (
in TINAAccessCommonTypes::t_InvitationId id

) raises (
TINAAccessCommonTypes::e_InvitationError

);

oneway void newSessionInfo (
in TINAAccessCommonTypes::t_SessionInfo session

);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

166

oneway void endSessionInfo (
in TINACommonTypes::t_SessionId sessionId

);

oneway void endMyParticipationInfo (
in TINACommonTypes::t_SessionId sessionId

);

oneway void suspendSessionInfo (
in TINACommonTypes::t_SessionId sessionId

);

oneway void suspendMyParticipationInfo (
in TINACommonTypes::t_SessionId sessionId

);

oneway void resumeSessionInfo (
in TINAAccessCommonTypes::t_SessionInfo session

);

oneway void resumeMyParticipationInfo (
in TINAAccessCommonTypes::t_SessionInfo session

);

oneway void joinSessionInfo (
in TINAAccessCommonTypes::t_SessionInfo session

);

}; /* interface i_Access */

}; /* module TINAScsASUAPIntra */

#endif /* TINAScsASUAPIntra_IDL */

2.8 TINAScsPAIntra
/* TINAScsPAIntra.idl
**
** Provider Agent
**
** Author: Patrick Farley (BT)
** Reviwers: Carlo Licciardi (CSELT)
** Creation date: August 25th, 1997
*/

#ifndef TINAScsPAIntra_IDL
#define TINAScsPAIntra_IDL

#include "TINAProviderInitial.idl"
#include "TINAProviderAccess.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINACommonTypes.idl"
#include "TINAUserInitial.idl"
#include "TINAScsAmcObject.idl"

module TINAScsPAIntra
{

struct t_UserCtxtNameASId {
TINACommonTypes::t_UserCtxtName name;
TINAAccessCommonTypes::t_AccessSessionId accessSession;

};

typedef sequence <t_UserCtxtNameASId> t_UserCtxtNameASIdList;

typedef TINACommonTypes::t_PropertyList t_ProviderProperties;

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

167

enum t_ContactNotPossibleErrorCode { /* draft */
InvalidProviderId

};

exception e_ContactNotPossible { /* draft */
t_ContactNotPossibleErrorCode errorCode;

};

exception e_ProviderPropertiesError {
TINACommonTypes::t_PropertyErrorStruct propertyError;

};

enum t_InvitationsOutsideAccessSessionErrorCode {
InvitationIRNotAvailableForUserCtxt

};

exception e_InvitationsOutsideAccessSessionError {
t_InvitationsOutsideAccessSessionErrorCode errorCode;
TINACommonTypes::t_UserCtxtName ctxtName;

};

interface i_Init /* inherit from a common i_Init interface ? */
{

/* YUCK no idea what goes in here yet */

};

interface i_Initial {

void contactProvider (/* draft */
in TINAUserInitial::t_ProviderId providerId,
in t_ProviderProperties providerProperties

) raises (
e_ContactNotPossible,
e_ProviderPropertiesError

);

void requestNamedAccess (
in TINACommonTypes::t_UserId userId,
in TINACommonTypes::t_UserProperties userProperties,
out Object PAaccessIR,
out TINAAccessCommonTypes::t_AccessSessionId asId

) raises (
TINAProviderInitial::e_AccessNotPossible,
TINAAccessCommonTypes::e_UserPropertiesError

);

void requestAnonymousAccess (
in TINACommonTypes::t_UserProperties userProperties,
out Object PAaccessIR,
out TINAAccessCommonTypes::t_AccessSessionId asId

) raises (
TINAProviderInitial::e_AccessNotPossible,
TINAAccessCommonTypes::e_UserPropertiesError

);

}; /* interface iInitial */

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

168

interface i_Access {

void registerInterface (
in TINACommonTypes::t_InterfaceStruct itf,
out TINACommonTypes::t_InterfaceIndex index

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_RegisterError

);

void registerInterfaces (
inout TINACommonTypes::t_RegisterInterfaceList itfs

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_RegisterError

);

// register interfaces which will be accessible
// outside the access session.

void registerInterfaceOutsideAccessSession (
in TINACommonTypes::t_InterfaceStruct itf,
out TINACommonTypes::t_InterfaceIndex index

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_RegisterError

);

void registerInterfacesOutsideAccessSession (
inout TINACommonTypes::t_RegisterInterfaceList itfs

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_RegisterError

);

void listRegisteredInterfaces (
in TINAAccessCommonTypes::t_SpecifiedAccessSession as,
out TINACommonTypes::t_RegisterInterfaceList itfs

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_SpecifiedAccessSessionError,
TINACommonTypes::e_ListError

);

void unregisterInterface (
in TINACommonTypes::t_InterfaceIndex index

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_UnregisterError

);

void unregisterInterfaces (
in TINACommonTypes::t_InterfaceIndexList indexes

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_UnregisterError

);

void getUserCtxtNames (
in TINAProviderAccess::t_SpecifiedUserCtxt ctxt,
out TINACommonTypes::t_UserCtxtNameList userCtxts

) raises (

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

169

TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_UserCtxtError,
TINACommonTypes::e_ListError

);

void getUserCtxtNamesAccessSessions (
in TINAAccessCommonTypes::t_SpecifiedAccessSession as,
out t_UserCtxtNameASIdList userCtxts

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_SpecifiedAccessSessionError,
TINACommonTypes::e_ListError

);

void listAccessSessions (
out TINAAccessCommonTypes::t_AccessSessionList asList

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_ListError

);

void endAccessSession(
in TINAAccessCommonTypes::t_SpecifiedAccessSession as,
in TINAProviderAccess::t_EndAccessSessionOption option

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_SpecifiedAccessSessionError,
TINAProviderAccess::e_EndAccessSessionError

);

void getUserInfo(
out TINAAccessCommonTypes::t_UserInfo userInfo

) raises (
TINAAccessCommonTypes::e_AccessError

);

void listSubscribedServices (
in TINAProviderAccess::t_SubscribedServiceProperties desiredProperties,
out TINAAccessCommonTypes::t_ServiceList services

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

void discoverServices(
in TINAProviderAccess::t_DiscoverServiceProperties desiredProperties,
in unsigned long howMany,
out TINAAccessCommonTypes::t_ServiceList services,
out Object iteratorIR /* type: i_DiscoverServicesIterator */

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

void listServiceSessions (
in TINAAccessCommonTypes::t_SpecifiedAccessSession as,
in TINAProviderAccess::t_SessionSearchProperties desiredProperties,
out TINAAccessCommonTypes::t_SessionList sessions

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_SpecifiedAccessSessionError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

170

void getSessionModels (
in TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_SessionModelList sessionModels

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINACommonTypes::e_ListError

);

void getSessionInterfaceTypes (
in TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_InterfaceTypeList itfTypes

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINACommonTypes::e_ListError

);

void getSessionInterface (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_InterfaceTypeName itfType,
out TINACommonTypes::t_InterfaceStruct itf

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINACommonTypes::e_InterfacesError

);

void getSessionInterfaces (
in TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_InterfaceList itfs

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINACommonTypes::e_ListError

);

void listSessionInvitations (
out TINAAccessCommonTypes::t_InvitationList invitations

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_ListError

);

void listSessionAnnouncements (
in TINAProviderAccess::t_AnnouncementSearchProperties desiredProperties,
out TINACommonTypes::t_AnnouncementList announcements

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

void startService (
in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINAProviderAccess::t_ApplicationInfo app,
in TINACommonTypes::t_SessionModelReq sessionModelReq,
in TINAProviderAccess::t_StartServiceUAProperties uaProperties,
in TINAProviderAccess::t_StartServiceSSProperties ssProperties,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_ServiceError,
TINAProviderAccess::e_ApplicationInfoError,
TINACommonTypes::e_SessionModelError,
TINAProviderAccess::e_StartServiceUAPropertyError,
TINAProviderAccess::e_StartServiceSSPropertyError

);

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

171

/* draft */
void startServiceWithUAP (

in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINAProviderAccess::t_ApplicationInfo app

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_ServiceError,
TINAProviderAccess::e_ApplicationInfoError

);

void endSession (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError

);

void endMyParticipation (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError

);

void suspendSession (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError

);

void suspendMyParticipation (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError

);

void resumeSession (
in TINACommonTypes::t_SessionId sessionId,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

void resumeMyParticipation (
in TINACommonTypes::t_SessionId sessionId,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

void joinSessionWithInvitation (
in TINAAccessCommonTypes::t_InvitationId invitationId,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINAAccessCommonTypes::e_InvitationError,
TINAProviderAccess::e_ApplicationInfoError

);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

172

void joinSessionWithAnnouncement (
in TINAAccessCommonTypes::t_AnnouncementId announcementId,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_AnnouncementError,
TINAProviderAccess::e_ApplicationInfoError

);

void replyToInvitation (
in TINAAccessCommonTypes::t_InvitationId invitationId,
in TINACommonTypes::t_InvitationReply reply

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_InvitationError,
TINACommonTypes::e_InvitationReplyError

);

void receiveInvitationsOutsideAccessSession (
in TINAProviderAccess::t_SpecifiedUserCtxt ctxt

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_UserCtxtError,
e_InvitationsOutsideAccessSessionError

);

}; /* interface i_paAccess */

/* draft */
interface i_AccountingPull : TINAScsAmcObject::i_AccountingPull
/* YUCK not yet defined. */
{
};

};
#endif /* PA_IDL */

2.9 TINAScsNamedUAIntra
// TINAScsNamedUAIntra.idl
//
// Named User Agent
//
// Author: Chelo Abarca (Alcatel)
// Carlo Licciardi (CSELT)
// Creation date: August 25th, 1997
// Reviewed: September 9th
// Reviewed: November 10th by Koki NAKASHIRO(HITACHI)

#ifndef TINAScsNamedUAIntra_IDL
#define TINAScsNamedUAIntra_IDL

#include "TINACommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINASubCommonTypes.idl"
#include "TINAScsSF.idl"
#include "TINAScsAmcObject.idl"
#include "TINAScsCommonTypes.idl" /** by Koki **/

module TINAScsNamedUAIntra {

/**

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

173

This interface allows its clients to get a reference of interface *i_ProviderNamedA
ccess that is

necessary for access session interaction to take *place.
**/

interface i_Initial {
exception e_setupFailure
{

string reason;
};

/**
This operation allows its clients to get a reference of interface *i_ProviderNamedA

ccess for an access
session and the access session identifiers.
**/

void setupAccessSession (
in TINAAccessCommonTypes::t_UserInfo userinfo,
out TINAAccessCommonTypes::t_AccessSessionId asId,
out TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out string sIOR

) raises (
e_setupFailure

);

}; // i_Initial

/**
This interface allows its clients to give the namedUA the information necessary to

keep an
updated list of sessions the corresponding user is participating in and the status

of both
the session and the user's participation.
**/

interface i_SessionInfo {

/**
It allows its clients to notify the namedUA of the suspension of the user's partici

pation in a
service session, and provide it with a reference to an interface of a SF that will

be used for
resuming the participation and the relevant accounting information for the suspende

d service session.
**/
void participationSuspended (

in TINAScsSF::t_GlobalSessionId globalSessionId,
in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes::t_InterfaceList resumeIR,
in any AccountingInfo

)
raises (

TINAScsCommonTypes::e_IdentifierError
);

/**
It allows its clients to notify the namedUA of the end of the user's participation

in a
service session, and provide it with the relevant accounting information for the en

ded service session.
**/

void participationEnded (
in TINAScsSF::t_GlobalSessionId globalSessionId,
in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes:: t_InterfaceList resumeIR,
in any AccountingInfo

)
raises (

TINAScsCommonTypes::e_IdentifierError

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

174

);

/**
It allows its clients to notify the namedUA of the suspension of a service session

where the
user was taking part, and provide it with a reference to an interface of a SF that

will be used
for resuming the service session and the relevant accounting information for the en

ded service session.
**/
void sessionSuspended (

in TINAScsSF::t_GlobalSessionId globalSessionId,
in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes:: t_InterfaceList resumeIR,
in any AccountingInfo

)
raises (

TINAScsCommonTypes::e_IdentifierError
);

/**
It allows its clients to notify the namedUA of the suspension of a service session

where the
user was taking part, and provide it with a reference to an interface of a SF that

will be used
for resuming the service session and the relevant accounting information for the en

ded service session.
**/

void sessionEnded (
in TINAScsSF::t_GlobalSessionId globalSessionId,
in TINACommonTypes::t_PartyId partyId,
in any AccountingInfo

)
raises (

TINAScsCommonTypes::e_IdentifierError
);

/**
It allows its clients to notify the namedUA that a previously suspended service ses

sion,
where the user was taking part, has been resumed.
**/
void sessionResumed (

in TINACommonTypes::t_PartyId partyId,
in TINAScsSF::t_GlobalSessionId GlobalSessionId

)
raises (

TINAScsCommonTypes::e_IdentifierError
);

}; //i_SessionInfo

/**
This interface allows its clients to send invitations to the namedUA's user or canc

el them.
**/

interface i_InvitationDelivery {

/**
It allows its clients to send an invitation to the service session to the namedUA's

corresponding user. An identifier for the service the user is being invited to join
a

session of, as well as the name of the inviting party, the purpose of the session,
and the reason for the invitation, are included in the invocation to allow for diff

erent
invitation screening policies. An invitation identifier unique for this user and pr

ovider is
given as well.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

175

**/

void invite (
in TINAAccessCommonTypes::t_SessionInvitation invitation,
out TINACommonTypes::t_InvitationReply reply

) raises (
TINAScsCommonTypes::e_UserIdError

);

/**
allows its clients to cancel an invitation previously issued for reasons like the e

nd
of the service session before the invited user joins; the unique invitation identif

ier
is passed to identify the invitation to be cancelled.

**/
void cancel (

in TINACommonTypes::t_UserId userId,
in TINAAccessCommonTypes::t_InvitationId inviteId

) raises (
TINAScsCommonTypes::e_UserIdError

);

}; //i_InvitationDelivery

/**
This interface allows its clients to notify the namedUA about new, modified or with

drawn services
in the portfolio of the namedUA's corresponding user.
**/

interface i_SubscriptionNotify {

/**
It allows its clients to notify the namedUA of new services added to the user's por

tfolio,
or modifications or withdrawal of existing ones. It includes the list of services t

o which
the notification refers and their corresponding service profiles.
**/
void notify (

in TINACommonTypes::t_UserId userId,
in TINASubCommonTypes::t_subNotificationType notificationType,
in TINASubCommonTypes::t_ServiceIdList serviceList,
in TINASubCommonTypes::t_SagServiceProfileList serviceProfileList

) raises (
TINAScsCommonTypes::e_UserIdError

);

}; //i_SubscriptionNotify

/**
It allows its client to retrieve accounting information corresponding to a
time interval or to a particular user session.
**/

interface i_AccountingPull : TINAScsAmcObject::i_AccountingPull {

}; //i_AccountingPull

/**
It allows the namedUA to receive accounting events from the USM/SSM.
These events derives in accounting records that can be used for
(offline or online) billing.
**/

interface i_AccountingPush : TINAScsAmcObject::i_AccountingPush {
};

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

176

interface i_Init
{

};

/**
It allows the customization of user service profiles. The user service profile
includes a service part, describing customized service characteristics, and a servi

ce
management part, detailing the management contexts for the different management are

as (FCAPS).
**/

interface i_ServiceProfileCustomization
{

};

/**
It allows to manage the user profile. This profile contains information like:
usage context, defining the user location (and/or terminal) registration and local
context in every location (and/

or terminal), and personal configuration, like invitation
handling policies and registration schedule. The usage context allows the client to

locate the
user and know about the context (terminal type, NAP type, and available service cap

abilities) in
the current location. The personal preferences allow to model the behaviour of serv

ice components
in access and service sessions depending on certain context conditions (time, date,

location,
session owner or participants, etc).

**/

interface i_UsrProfileManagement
{

};

};

#endif // TINAScsNamedUAIntra_IDL

2.10 TINAScsServiceContractInfoAccess
//
// File: TINAScsServiceContractInfoAccess.idl
// Author: Juan C. Garcia (TINA CoreTeam - Telefonica I+D)
// Last modification: Aug 27, 97
// Contents:
//
// MODIFICATIONS:Sep. 24th 1997 by Hiroshi
// Oct. 28th 1997 by Juan C.Garcia update according to new
// SCS release.
//
// IDL INTERFACES
// _________________________ END DESCRIPTION HEADER ______________________

#ifndef TINAScsServiceContractInfoAccess_IDL
#define TINAScsServiceContractInfoAccess_IDL

#include "TINASubCommonTypes.idl"

module TINAScsServiceContractInfoAccess {

/**
* i_ServiceContractInfoMgmt
*
* Behavior:

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

177

* This interface is used to manage the information related to a
* service contract. This includes the subscription profile (service
* profile by default for all users) and a set of SAG service profiles
* (service profiles for users belonging to a specific SAG).
* It provides operations for:
* - retrieving the service template.
* - defining, modifying and retrieving service contract information.
* This information includes the associated service profiles.
**/

interface i_ServiceContractInfoMgmt {

exception e_applicationError{};
exception e_invalidContractInfo{};
exception e_invalidSubscriptionProfile{};
exception e_invalidSAGServiceProfile{

TINASubCommonTypes::t_ServiceProfileId spId;
};
exception e_unknownServiceProfile{

TINASubCommonTypes::t_ServiceProfileId spId;
};
exception e_unknownSAG{

TINASubCommonTypes::t_SagId sagId;
};
exception e_unknownSAE{

TINASubCommonTypes::t_entityId saeId;
};

/** This operation returns the template for the service.
**/

void getServiceTemplate (
out TINASubCommonTypes::t_ServiceTemplate template

) raises (e_applicationError);

/** This operation creates a service contract.
* This contract can include a set of service profiles.
**/

void defineServiceContract (
in TINASubCommonTypes::t_ServiceContract serviceContract,
out TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_invalidContractInfo,
e_invalidSubscriptionProfile,
e_invalidSAGServiceProfile);

/** This operation creates a set of service profiles.
**/

void defineServiceProfiles (
in TINASubCommonTypes::t_SubscriptionProfile subscriptionProfile,
in TINASubCommonTypes::t_SagServiceProfileList sagServiceProfiles,
out TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_invalidSubscriptionProfile,
e_invalidSAGServiceProfile);

/** This operation deletes a set of service profiles and their
* associated SAGs.
**/

void deleteServiceProfiles (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_unknownServiceProfile);

/** This operation returns the list of service profiles identifiers
**/

void listServiceProfiles (
out TINASubCommonTypes::t_ServiceProfileIdList spIdList

)

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

178

raises (e_applicationError);

/** This operation returns the service contract information.
* If a (list of) SAG(s) is specified it returns the set of
* SAG service profile for that(those) SAG(s).
**/

void getServiceContractInfo (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList,
out TINASubCommonTypes::t_ServiceContract serviceContract

)
raises (e_applicationError,

e_unknownServiceProfile);

/** This operation assigns a service profile to a list of SAGs and
* SAEs.
**/

void assignServiceProfile (
in TINASubCommonTypes::t_ServiceProfileId spId,
in TINASubCommonTypes::t_SagIdList sagIdList,
in TINASubCommonTypes::t_entityIdList saeIdList

)
raises (e_applicationError,

e_unknownSAG,
e_unknownSAE,
e_unknownServiceProfile);

/** This operation removes a service profile assignment to a list
* of SAGs and SAEs.
**/

void removeServiceProfile (
in TINASubCommonTypes::t_ServiceProfileId spId,
in TINASubCommonTypes::t_SagIdList sagIdList,
in TINASubCommonTypes::t_entityIdList saeIdList

)
raises (e_applicationError,

e_unknownSAG,
e_unknownSAE,
e_unknownServiceProfile);

/** This operation activates a set of service profiles
**/

void activateServiceProfiles (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_unknownServiceProfile);

/** This operation deactivates a set of service profiles
**/

void deactivateServiceProfiles (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_unknownServiceProfile);

}; // Interface i_ServiceContractInfoMgmt

/**
* i_ServiceContractInfoQuery
*
* Behavior:
* This interface is used to retrieve the service profiles related to the
* service contract.
* It is used by the Subscriber Manager (SubM).
**/

interface i_ServiceContractInfoQuery {

exception e_applicationError{};
exception e_unknownServiceProfile{

TINASubCommonTypes::t_ServiceProfileId spId;

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

179

};

/** This operation returns the service profiles associated to
* the service contract.
* If a (list of) SAG(s) is specified it returns the set of
* SAG service profile for that(those) SAG(s).
**/

void getServiceProfiles (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList,
out TINASubCommonTypes::t_ServiceProfileList serviceProfileList

)
raises (e_applicationError,

e_unknownServiceProfile);

}; // Interface i_ServiceContractInfoQuery

};

#endif // TINAScsServiceContractInfoAccess_IDL

2.11 TINAScsServiceContractMgmt
//
// File: TINAScsServiceContractMgmt.idl
// Author: Juan C. Garcia (TINA CoreTeam - Telefonica I+D)
// Last modification: Aug 27, 97
// Contents:
//
// MODIFICATIONS:Sep. 24th 1997 by Hiroshi
//
// IDL INTERFACES
// _________________________ END DESCRIPTION HEADER ______________________

#ifndef TINAScsServiceContractMgmt_IDL
#define TINAScsServiceContractMgmt_IDL

#include "TINASubCommonTypes.idl"

/**
* Module Service Contract Management.
*
**/

module TINAScsServiceContractMgmt {

/**
* Interface: i_ServiceContractLCMgmt
*
* Behavior:
* It allows the lifecycle management of service contracts .
* It is used by the Subscription Coordinator (SCoo).
**/

interface i_ServiceContractLCManagement {

// TBD
void createServiceContracts ();

// TBD
void deleteServiceContracts ();

// TBD
void listServiceContracts ();

}; // Interface i_ServiceContractLCManagement

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

180

};

#endif // TINAScsServiceContractMgmt_IDL

2.12 TINASubCommonTypes
//
// File TINASubCommonTypes.idl
// Author: Juan C. Garcia
// Inputs: - previous TINA-C specifications (March, Oct '95).
// - VITAL V2 specifications.
// - TINA Service Architecture 5.0.
// - TINA Ret-RP Specifications.
// Contents:
// This file include common definitions required by the subscription
// magement component and its clients.
// @see TINACommonTypes
// @see TINAAccessCommonTypes
// History: Modified on 9/29/97 Juan C. Garcia (t_ServiceProfile definition)
// Modified on 10/27/97 Juan C. Garcia
// according to SCS document.
//

#ifndef TINASUBCOMMONTYPES_IDL
#define TINASUBCOMMONTYPES_IDL

//
// This file provides definitions that are common to the service architecture.
//
#include "TINAAccessCommonTypes.idl"

/**
* Module with common types definitions for subscription management.
**/

module TINASubCommonTypes {

/**
* List of Service Identifiers.
**/

typedef sequence <TINAAccessCommonTypes::t_ServiceId> t_ServiceIdList;

/**
* Service Types
**/

typedef string t_ServiceType;

/**
* Terminal Type: Just an example.
**/

enum t_TermType {UndefinedTermType,PersonalComputer, WorkStation, TVset, Videotelephone, Ce
llularphone, PBX, VideoServer, VideoBridge, Telephone, G4Fax};

/**
* NAP type: used to determine the instantation of available QoS.
**/

enum t_NapType {UndefinedNapType,NapTypeFixed, NapTypeWireless};

/**
* List of NAPs
**/

typedef sequence <TINAAccessCommonTypes::t_NAPId> t_NAPIdList;

/**
*Terminal presentation technology. This is just an example
**/

enum t_PresentationSupport { UndefinedPresSupp,X11R6, WINDOWS95, MGEG };

/**
* The Account Number represents the Subscriber identifier.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

181

**/
typedef string t_AccountNumber;
typedef sequence <t_AccountNumber> t_SubscriberIdList;

// Types required for SAG management (through i_subSMSubscriber).
//
/**

* Users, terminals and NAPs are considered (subscription) entities
**/

enum t_entityType {user, terminal, nap};

/**
* Entity Id allows to identity uniquely an entity inside the retailer
* domain.
**/

union t_entityId switch (t_entityType) {
case user: TINACommonTypes::t_UserId userId;
case terminal: TINAAccessCommonTypes::t_TerminalId terminalId;
case nap: TINAAccessCommonTypes::t_NAPId napId;

};
typedef sequence <t_entityId> t_entityIdList;

/**
* An entity is characterized by its identifier and name and a set
* of properties.
**/

struct t_Entity {
t_entityId entityId;
string entityName;
TINACommonTypes::t_PropertyList properties;

};
/**

* List of entities.
**/

typedef sequence <t_Entity> t_EntityList;

/**
* The SAE is characterized by an identifier, a name and a set of properties
**/

struct t_Sae {
t_entityId entityId;
string entityName;
TINACommonTypes::t_PropertyList properties; // like password

};

/**
* The SAG identifier identifies a SAG uniquely inside the retailer domain.
**/

typedef short t_SagId;
/**

* List of SAG Ids.
**/

typedef sequence <t_SagId> t_SagIdList;
/**

* A SAG is characterized by its identifier, a textual description of the
* group and the list of entities composing it.
* The identifier is the same as the one for SAG Service profile corresponding
* to that SAG.
**/

struct t_Sag {
t_SagId sagId;
string sagDescription;
t_entityIdList entityList;

};
/**

* List of SAGs.
**/

typedef sequence <t_Sag> t_SagList;

// Subscriber Information:
/**

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

182

* Time and Date.
**/

struct t_DateTime {
string date;
string time;

};
/**

* Textual identification of a person. For example, name, address and
* position.
**/

typedef string t_Person;
/**

* Indicates the date and time an authorization expires on and the
* person who granted it.
**/

struct t_AuthLimit {
t_DateTime limitDate;
string authority;

}; // Shouldn't this be per service contract?

/**
* A subscriber is identified by its account number and characterized by
* name, address, monthly charge, payment record, credit information,
* date which its subscription expires on, the list of subscribed services
* and the list of defined SAGs.
**/

struct t_Subscriber {
t_AccountNumber accountNumber;
TINACommonTypes::t_UserId subscriberName;
t_Person identificationInfo;
t_Person billingContactPoint;
string RatePlan;
any paymentRecord;
any credit;

};

/**
* List of Subscribers.
**/

typedef sequence <t_Subscriber> t_SubscriberList;

/**
* This struct ure contains information about the minimal required configuration
* of a service. This is used to specify a configuration for a particular
* service session
**/

struct t_RequiredConfiguration {
t_TermType termType;
t_NapType nap_type;
t_PresentationSupport presentation_support;
TINACommonTypes::t_PropertyList others; // to be determined.

};

/**
* Service access rights.
**/

enum t_AccessRight {create,join,be_invited};
/**

* List of possible service access rights.
**/

typedef sequence <t_AccessRight> t_AccessRightList;

/**
**/

// struct t_ServiceInfo {
// TINAAccessCommonTypes::t_ServiceId serviceTypeId;
// t_RequiredConfiguration reqConf;
// t_AccessRightList accessRightList;
//};
// typedef sequence <t_ServiceInfo> t_ServiceInfoList;

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

183

/**
* Service Parameter name.
**/

typedef string t_ParameterName;

/**
* Service Parameter configurability.
**/

enum t_ParameterConfigurability {
FIXED_BY_PROVIDER, CONFIGURABLE_BY_SUBSCRIBER, CUSTOMIZABLE_BY_USER

};

/**
* Service Parameter value.
**/

typedef any t_ParameterValue;

/**
* Service Parameters definition:
**/

struct t_Parameter {
t_ParameterName name;
t_ParameterConfigurability configurability;
t_ParameterValue value;

};
/**

* Service Parameter list:
**/

typedef sequence <t_Parameter> t_ParameterList;

/**
* Service Description: this type is used to describe a specific
* service. It is used for the description of service types, service
* instances and service profiles.
* An example of service common params could be:
* parameterName = ACCESS RIGHTS
* configurability = CONFIGURABLE_BY_SUBSCRIBER
* parameterValue = {join, be_invited}
*
* parameterName = REQUIRED TERMINAL TYPE
* configurability = FIXED_BY_PROVIDER
* parameterValue = {PersonalComputer, WorkStation}
*
* parameterName = REQUIRED PRESENTATION SUPPORT
* configurability = FIXED_BY_PROVIDER
* parameterValue = {WINDOWS 95, X11R6}
*
* An example of service specific params could be:
* parameterName = MAX NUMBER OF PARTIES IN SESSION
* configurability = FIXED_BY_PROVIDER
* parameterValue = 20
*
* parameterName = TIME LIMIT FOR SUSPENDED SESSIONS
* configurability = CONFIGURABLE_BY_SUBSCRIBER
* parameterValu e = 1 WEEK
*
* parameterName = AUTOMATIC POSITIVE ANSWER TO VOTINGS
* configurability = CUSTOMIZABLE_BY_USER
* parameterValue = YES
*
* The list of parameter names and value types that is common to
* all services will be defined in a separate file:
* TINAServiceCommonParameters.idl
*
* The list of parameter names and value types specific to particular
* service will be defined in a separate file:
* TINAServiceSpecificParameters.idl
*
**/

struct t_ServiceDescription {
TINAAccessCommonTypes::t_ServiceId serviceId;

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

184

TINAAccessCommonTypes::t_UserServiceName serviceName;
t_ParameterList serviceCommonParams;
t_ParameterList serviceSpecificParams;

};

/**
* t_serviceTemplate: It describes a service instance.
**/

struct t_ServiceTemplate {
TINAAccessCommonTypes::t_ServiceId serviceInstanceId;
TINAAccessCommonTypes::t_UserServiceName serviceInstanceName;
t_ServiceIdList requiredServices;
t_ServiceDescription serviceDescription;

};
typedef sequence <t_ServiceTemplate> t_ServiceTemplateList;

/**
* t_ServiceProfile: It describes a service customization.
**/

typedef string t_ServiceProfileId;
typedef sequence <t_ServiceProfileId> t_ServiceProfileIdList;
struct t_ServiceProfile {

t_ServiceProfileId spId;
t_ServiceDescription serviceDescription;

};
typedef sequence <t_ServiceProfile> t_ServiceProfileList;

/**
* Service Profile for a SAG.
**/

typedef t_ServiceProfile t_SagServiceProfile;

/**
* Service Profile by default in a Service Contract.
**/

typedef t_ServiceProfile t_SubscriptionProfile;

/**
* List of SAG Service Profiles
**/

typedef sequence <t_SagServiceProfile> t_SagServiceProfileList;

/**
* Service Contract: Describes the relationship of a subscriber with the
* provider for the provision of a service.
**/

struct t_ServiceContract {
TINAAccessCommonTypes::t_ServiceId serviceId;
t_AccountNumber accountNumber;
short maxNumOfServiceProfiles;
t_DateTime actualStart;
t_DateTime requestedStart;
t_Person requester;
t_Person technicalContactPoint;
t_AuthLimit authorityLimit;
t_SubscriptionProfile subscriptionProfile;
t_SagServiceProfileList sagServiceProfileList;

};

/**
* Notification Type, used in "i_SubscriptionNotify::notify"
**/

enum t_subNotificationType {NEW_SERVICES,PROFILE_MODIFIED,SERVICES_WITHDRAWN};

/**
* Notification Type, used in "i_ServiceNotify::notify"
**/

enum t_slcmNotificationType {NEW_SERVICE,TEMPLATE_MODIFIED,SERVICE_WITHDRAWN};

};

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

185

#endif // File TINASubCommonTypes.idl

2.13 TINAScsSubInitial
//
// File: TINAScsSubscriberInitial.idl
// Author: Juan C. Garcia (TINA CoreTeam - Telefonica I+D)
// Last modification: Aug 27, 97
// Contents:
// This file describes the main interface s in the subscription component:
// - Initial: allows clients to get their access interface s.
// - Subscribe: allows customers to subscribe to the retailer and
// contract services.
// - Notify: allows SLCM to notify SUB about new services available in
// the network or modifications
// in the existing ones.
//
// MODIFICATIONS:Sep. 24th 1997 by Hiroshi
//
// IDL INTERFACES
// _________________________ END DESCRIPTION HEADER ______________________

#ifndef TINAScsSUBInitial_IDL
#define TINAScsSUBInitial_IDL

#include "TINASubCommonTypes.idl"

/** Module TINA Subscription Initial
**/
module TINAScsSubInitial {

/**
* Interface: i_InitialAccess
*
* Behavior:
* This interface allows the SUB client to retrieve the
* appropiate interface s for subscription management.
* Depending on the client type it returns:
* - If client=UA -> i_SubscriberInfoQuery
* - If client=SSMols -> i_Subscribe

**/

interface i_InitialAccess
{
enum t_ErrorType { UnknownEntityId, InvalidClientType, InvalidTerminalConfig};
exception e_initError{

t_ErrorType errorType;
};
exception e_unknownEntityId{ };
exception e_applicationError{};

enum t_ClientType { UA, SM, SLCM };

/**
* It allows the client to get the appropiate interface s to access the
* Subscription component. These interface s may exist before this
* operation is invoked or may be created on demand. This will
* depend on the implementation criteria.
**/

void init (
in TINASubCommonTypes::t_entityId entityId,
in t_ClientType clientType,
in TINAAccessCommonTypes::t_TerminalConfig termConfiguration,
out TINACommonTypes::t_InterfaceList subInterfaceList

) raises (e_initError,
e_applicationError);

/**
* It allows the client to inform the server that he will no longer use the

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

186

* interface s. If convenient, the server will release the resources (delete interfa
ce s

* or object s) that were allocated or assigned in the init operation.
**/

void terminate (
in TINASubCommonTypes::t_entityId entityId,
in t_ClientType clientType,
in TINACommonTypes::t_InterfaceList subInterfaceList

)
raises (e_unknownEntityId,

e_applicationError);
}; // Interface i_InitialAccess

/**
* Interface: i_Subscribe
*
* Behavior:

**/

interface i_Subscribe {

exception e_unknownServiceId{
TINAAccessCommonTypes::t_ServiceId serviceId;

};
exception e_unknownSubscriber{

TINASubCommonTypes::t_AccountNumber subscriberId;
};
exception e_invalidSearchCriteria{};
exception e_notSubscribedService{

TINAAccessCommonTypes::t_ServiceId serviceId;
};
exception e_applicationError{};
exception e_invalidSubscriberInfo{};
exception e_invalidServiceId{};

/** This operation returns the list of subscribers matching a
* search criteria (ALL to retrieve all the subscribers).
* It can only be used by an authorized user (retailer operator)
* If a service Id is specified other than the NULL one (0), only
* subscribers to the specified service are returned.
* Note: the way to express the search criteria is to be defined.
* SQL-like statements will be used. Parameters to use in the search are TBD.
**/

void listSubscribers (
in string searchCriteria,
in TINAAccessCommonTypes::t_ServiceId serviceId,
out TINASubCommonTypes::t_SubscriberIdList subscriberList

)
raises (e_unknownServiceId,

e_invalidSearchCriteria,
e_applicationError);

/** This operation returns the subscription management interface
* references for a specific subscriber. If a service id list is
* given, only the service contract management interface s for those
* services are returned. The subscriber information management
* interface (i_subSMSubscribe) is always returned.
**/

void getReferences (
in TINASubCommonTypes::t_AccountNumber subscriber,
in TINASubCommonTypes::t_ServiceIdList serviceList,
out TINACommonTypes::t_InterfaceList interface List

) raises (e_unknownSubscriber,
e_notSubscribedService,
e_applicationError);

/** This operation returns the list of services available for
* subscription and use.
**/

void listServices (

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

187

out TINAAccessCommonTypes::t_ServiceList serviceList
) raises (e_applicationError);

/** This operation creates a subscription for a new customer.
* The initial list of services the subscriber wants to contract
* can be specified.
* It returns:
* - a unique identifier for the subscriber.
* - an interface for subscriber information management.
* - a list of service contract management interface s, one for
* each of the services initially contracted.
* These two last items are included in the t_InterfaceList struct ure.
**/

void subscribe (
in TINASubCommonTypes::t_Subscriber subscriberInfo,
in TINASubCommonTypes::t_ServiceIdList serviceList,
out TINASubCommonTypes::t_AccountNumber subscriberId,
out TINACommonTypes::t_InterfaceList interface List

) raises (e_invalidSubscriberInfo,
e_unknownServiceId,
e_applicationError);

/** This operation creates a (set of) new service contract(s) for
* an existing customer.
* A list of services the subscriber wants to contract
* is specified.
* It returns a list of service contract management interface s,
* one for each of the services requested.
**/

void contractService (
in TINASubCommonTypes::t_AccountNumber subscriberId,
in TINASubCommonTypes::t_ServiceIdList serviceList,
out TINACommonTypes::t_InterfaceList interface List

) raises (e_unknownSubscriber,
e_unknownServiceId,
e_applicationError);

/** This operation withdraws a subscription or a list of service
* contracts .
* The list of services the subscriber wants to unsubscribe
* is an input parameter. If this list is empty, that means
* the withdrawal of all the services, and thus the subscription.
**/

void unsubscribe (
in TINASubCommonTypes::t_AccountNumber subscriberId,
in TINASubCommonTypes::t_ServiceIdList serviceList

) raises (e_unknownSubscriber,
e_unknownServiceId,
e_applicationError);

}; // Interface i_Subscribe

/**
* Interface: i_ServiceNotify
*
* Behavior: It is used by the SLCM to notify Sub about new services
* deployed and available for subscription and use or about changes
* (/withdrawals) of already deployed ones.

**/

interface i_ServiceNotify {

/** It indicates a change in the services available for subscription
* and use.
**/

void notify ();

}; // Interface i_ServiceNotify

};

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

188

#endif // TINAScsSUBInitial_IDL

2.14 TINAScsSubscriberInfoAccess
//
// File: TINAScsSubscriberInfoAccess.idl
// Author: Juan C. Garcia (TINA CoreTeam - Telefonica I+D)
// Last modification: Aug 27, 97
// Contents:
// This file describes the interface s corresponding to subscriber
// information management:
// - UA Query Info: allows clients to get their access interface s.
// - Subscriber: allows customers to query and update subscriber information.
//
// MODIFICATIONS:
// Sep. 24th 1997 by Hiroshi
// Sep. 29th 1997 by Juan C. Garcia (subscriber Id added as parameter in
// subscriber management operations)
// Oct 28th 1997 by Juan C. Garcia made consistent with SCS release (28/10)
//
// IDL INTERFACES
// _________________________ END DESCRIPTION HEADER ______________________

#ifndef TINAScsSubscriberInfoAccess_IDL
#define TINAScsSubscriberInfoAccess_IDL

#include "TINASubCommonTypes.idl"

/**
* Module TINA Subscriber Information Access

**/
module TINAScsSubscriberInfoAccess {

/**
* i_SubscriberInfoMgmt
*
* Behavior:
* This interface allows the management of the information related
* to a particular subscriber.
* This interface can be used either by the subscriber or by
* the retailer operator on behalf of the subscriber.
* It provides operations for:
* - creating and deleting entities.
* - creating SAGs.
* - assigning/removing entities to/from a SAG.
* - listing entities and SAGs corresponding to that subscriber.
* - querying and modifying the subscriber information.

**/

interface i_SubscriberInfoMgmt {

enum t_errorType { NameTooLong, AddressTooLong };
exception e_invalidSubscriberInfo{

t_errorType errorType;
};
exception e_unknownSubscriber{

TINASubCommonTypes::t_AccountNumber subscriberId;
};
exception e_applicationError{};
exception e_invalidEntityInfo{};
exception e_unknownSAE{

TINASubCommonTypes::t_entityId entityId;
};
exception e_unknownSAG{

TINASubCommonTypes::t_SagId sagId;
};
exception e_invalidSAG{

TINASubCommonTypes::t_SagId sagId;

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

189

};

/** This operation creates a set of entities. If the client does
* not specify an identifier for an entity or the specified identifier
* coincides with an existing one, Sub generates and returns an
* identifier for that entity. In other case , it returns the same
* identifier that has received.

**/
void createSAEs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_EntityList entityList,
out TINASubCommonTypes::t_entityIdList entityIdList

) raises (e_applicationError,
e_unknownSubscriber,
e_invalidEntityInfo);

/** This operation deletes a set of entities. The entity is
* removed from all the SAGs it could be assigned to and then
* deleted.

**/
void deleteSAEs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_entityIdList entityList
) raises (e_applicationError,

e_unknownSubscriber,
e_unknownSAE);

/** This operation creates a set of SAGs. If the identifier for a
* SAG is not provided or matches an already existing one, Sub
* generates a new one and returns it. If this is not the case ,
* it returns the one received.

**/
void createSAGs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_SagList sagList,
out TINASubCommonTypes::t_SagIdList sagIdList

) raises (e_applicationError,
e_unknownSubscriber,
e_invalidSAG,
e_unknownSAG);

/** This operation deletes a SAG. The entities belonging to
* that SAG are not deleted.

**/
void deleteSAGs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_SagIdList sagIdList
) raises (e_applicationError,

e_unknownSubscriber,
e_unknownSAG);

/** This operation assigns a list of entities to a SAG.
**/
void assignSAEs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_entityIdList entityList,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

190

in TINASubCommonTypes::t_SagId sagId
) raises (e_unknownSAE,

e_unknownSAG,
e_unknownSubscriber,
e_applicationError);

/** This operation removes a list of entities from a SAG.
**/
void removeSAEs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_entityIdList entityList,
in TINASubCommonTypes::t_SagId sagId

) raises (e_unknownSAE,
e_unknownSAG,
e_unknownSubscriber,
e_applicationError);

/** This operation returns the list of entities assigned to a SAG.
* If a SAG is not specified, it returns all the entities for that
* subscriber.

**/
void listSAEs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_SagId sagId,
out TINASubCommonTypes::t_entityIdList entityList

) raises (e_unknownSAG,
e_unknownSubscriber,
e_applicationError);

/** This operation returns the list of SAGs for that subscriber.
**/
void listSAGs (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

out TINASubCommonTypes::t_SagIdList sagIdList
) raises (e_applicationError,

e_unknownSubscriber);

/** This operation returns the information about a specific subscriber
**/
void getSubscriberInfo (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

out TINASubCommonTypes::t_Subscriber subscriberInfo
) raises (e_applicationError,

e_unknownSubscriber);

/** This operation modifies the information about a specific subscriber
* Only name and address fields are modifiable. The rest are updated
* only by Sub as a result of other operations -createSAGs,...-

**/
void setSubscriberInfo (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

in TINASubCommonTypes::t_Subscriber subscriberInfo
) raises (e_unknownSubscriber,

e_invalidSubscriberInfo,
e_applicationError);

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

191

/** This operation returns the list of services subscribed by
* a specific subscriber.

**/
void listSubscribedServices (

in TINASubCommonTypes::t_AccountNumber subscriberId,
// This parameter is optional, it should be used if the
// implementation does not consider multiple subscriber
// management interfaces (one per subscriber).

out TINAAccessCommonTypes::t_ServiceList service_list
) raises (e_applicationError,

e_unknownSubscriber);

}; // i_SubscriberInfoMgmt

/**
* i_SubscriberInfoQuery
*
* Behavior:
* This interface allows the UA to retrieve the required
* subscription information: list of subscribed services,
* list of service profiles.

**/

interface i_SubscriberInfoQuery {

enum t_UserErrorExceptionType {
UnknownUser,
userTemporarilyOutOfService

};
exception e_subUserError {

t_UserErrorExceptionType exception Type;
string additionalInformation;

};
enum t_ProfileErrorExceptionType {

ServiceNotContracted,
InvalidServiceProfile,
profileTemporarilyOutOfService

};
exception e_subProfileError {

t_ProfileErrorExceptionType exception Type;
TINAAccessCommonTypes::t_ServiceId serviceId;
string additionalInformation;

};

/** This operation returns the list of services the user is
* subscribed to and usable with the current terminal configuration.

**/
void listServices (

in TINACommonTypes::t_UserId userId,
out TINASubCommonTypes::t_ServiceIdList serviceList

)
raises (e_subUserError);

/** This operation returns the profiles corresponding to the
* specified user for the specified services

**/
void getServiceProfiles (

in TINACommonTypes::t_UserId userId,
in TINASubCommonTypes::t_ServiceIdList serviceList,
out TINASubCommonTypes::t_ServiceProfileList serviceProfileList

)
raises (e_subUserError, e_subProfileError);

/** This operation checks that the specified service profile
* matches with the subscribed (SAG) service profile and the
* current terminal configuration

**/
void checkServiceProfile (

in TINACommonTypes::t_UserId userId,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

192

in TINASubCommonTypes::t_ServiceProfile serviceProfile,
out boolean accepted

)
raises (e_subUserError, e_subProfileError);

}; // i_SubscriberInfoQuery

};

#endif // TINAScsSubscriberInfoAccess_IDL

2.15 TINAScsSubscriberMgmt
//
// File: TINASubscriberMgmt.idl
// Author: Juan C. Garcia (TINA CoreTeam - Telefonica I+D)
// Last modification: Aug 27, 97
// Contents:
//
// MODIFICATIONS:Sep. 24th 1997 by Hiroshi
//
//
// IDL INTERFACES
// _________________________ END DESCRIPTION HEADER ______________________

#ifndef TINAScsSubscriberMgmt_IDL
#define TINAScsSubscriberMgmt_IDL

#include "TINASubCommonTypes.idl"

/**
* Module Subscriber Management
**/

module TINAScsSubscriberMgmt {

/**
* Interface: i_SubscriberLCMgmt
*
* Behavior:
* It allows to manage the lifecycle of subscribers.
* It is used by the subscription coordinator (SCoo).
**/

interface i_SubscriberLCMgmt {

// TBD
void createSubscriber ();

// TBD
void deleteSubscriber ();

// TBD
void listSubscribers ();

// TBD
void listUsers ();

}; // Interface i_SubscriberLCMgmt

/**
* Interface: i_ServiceContractInfoUpdate
*
* Behavior:
* It allows to update subscriber information about
* contracted services.
* It is used by the SCM each time a new service contract is signed ,
* modified or cancelled by the subscriber.
**/

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

193

interface i_ServiceContractInfoUpdate {

// TBD
void notify ();

}; // Interface i_ServiceContractInfoUpdate

};

#endif // TINAScsSubscriberMgmt_IDL

2.16 TINAScsSubscriptionService
//
// File: TINAScsSubscriptionService.idl
// Author: Juan C. Garcia (TINA CoreTeam - Telefonica I+D)
// Last modification: Oct 27, 97
// Contents: Definition of the online subscription management
// service specific interface .
//
// MODIFICATIONS:
// Oct 28th 1997 by Juan C. Garcia made consistent with SCS release (28/10)
//
// IDL INTERFACES
// _________________________ END DESCRIPTION HEADER ______________________

#ifndef TINAScsSubscriptionService_IDL
#define TINAScsSubscriptionService_IDL

#include "TINASubCommonTypes.idl"

/**
* Module TINA Subscription Service

**/
module TINAScsSubscriptionService {

/**
* i_ProviderOlsSi
*
* Behavior:
* This interface is offered through Ret-RP to the subscription
* service specific ssUAP.
* It provides operations for:
* - subscribing to a retailer.
* - contracting services with that retailer.
* - unsubscribing and withdrawing service contracts .
* - creating and deleting entities.
* - creating SAGs.
* - assigning/removing entities to/from a SAG.
* - listing entities and SAGs corresponding to that subscriber.
* - querying and modifying the subscriber information.

**/

interface i_ProviderOlsSi {

enum t_errorType { NameTooLong, AddressTooLong, OtherErrors };
exception e_invalidSubscriberInfo{

t_errorType errorType;
};
exception e_unknownSubscriber{

TINASubCommonTypes::t_AccountNumber subscriberId;
};
exception e_applicationError{};
exception e_invalidEntityInfo{};
exception e_unknownSAE{

TINASubCommonTypes::t_entityId entityId;
};
exception e_unknownSAG{

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

194

TINASubCommonTypes::t_SagId sagId;
};
exception e_invalidSAG{

TINASubCommonTypes::t_SagId sagId;
};
exception e_invalidContractInfo{};
exception e_invalidSubscriptionProfile{};
exception e_invalidSAGServiceProfile{

TINASubCommonTypes::t_ServiceProfileId spId;
};
exception e_unknownServiceProfile{

TINASubCommonTypes::t_ServiceProfileId spId;
};
exception e_unknownServiceId{

TINAAccessCommonTypes::t_ServiceId serviceId;
};
exception e_invalidSearchCriteria{};
exception e_notSubscribedService{

TINAAccessCommonTypes::t_ServiceId serviceId;
};

/**
*
* Operations for Subscription and Service Contract handling
*
**/

/** This operation returns the list of services available for
* subscription and use.
**/

void listServices (
out TINAAccessCommonTypes::t_ServiceList serviceList

) raises (e_applicationError);

/** This operation creates a subscription for a new customer.
* The initial list of services the subscriber wants to contract
* can be specified.
* It returns:
* - a unique identifier for the subscriber.
* - a list of service templates
**/

void subscribe (
in TINASubCommonTypes::t_Subscriber subscriberInfo,
in TINASubCommonTypes::t_ServiceIdList serviceList,
out TINASubCommonTypes::t_AccountNumber subscriberId,
out TINASubCommonTypes::t_ServiceTemplateList svcTemplateList

) raises (e_invalidSubscriberInfo,
e_unknownServiceId,
e_applicationError);

/** This operation creates a (set of) new service contract(s) for
* an existing customer.
* A list of services the subscriber wants to contract
* is specified.
* It returns a list of service contract management interface s,
* one for each of the services requested.
**/

void contractService (
in TINASubCommonTypes::t_ServiceIdList serviceList,
out TINASubCommonTypes::t_ServiceTemplateList svcTemplateList

) raises (e_unknownSubscriber,
e_unknownServiceId,
e_applicationError);

/** This operation withdraws a subscription or a list of service
* contracts .
* The list of services the subscriber wants to unsubscribe
* is an input parameter. If this list is empty, that means
* the withdrawal of all the services, and thus the subscription.
**/

void unsubscribe (

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

195

in TINASubCommonTypes::t_ServiceIdList serviceList
) raises (e_unknownSubscriber,

e_unknownServiceId,
e_applicationError);

/**
*
* Operations for Subscriber Information Management.
*
**/

/** This operation creates a set of entities.
* Sub generates a unique identifier for every entity.

**/
void createSAEs (

in TINASubCommonTypes::t_EntityList entityList,
out TINASubCommonTypes::t_entityIdList entityIdList

) raises (e_applicationError,
e_invalidEntityInfo);

/** This operation deletes a set of entities. The entity is
* removed from all the SAGs it could be assigned to and then
* deleted.

**/
void deleteSAEs (

in TINASubCommonTypes::t_EntityList entityList,
in TINASubCommonTypes::t_entityIdList entityList

) raises (e_applicationError,
e_unknownSAE);

/** This operation creates a set of SAGs.
* It returns a set of unique SAG identifiers.

**/
void createSAGs (

in TINASubCommonTypes::t_SagList sagList,
out TINASubCommonTypes::t_SagIdList sagIdList

) raises (e_applicationError,
e_invalidSAG,
e_unknownSAG);

/** This operation deletes a SAG. The entities belonging to
* that SAG are not deleted.

**/
void deleteSAGs (

in TINASubCommonTypes::t_SagIdList sagIdList
) raises (e_applicationError,

e_unknownSAG);

/** This operation assigns a list of entities to a SAG.
**/
void assignSAEs (

in TINASubCommonTypes::t_entityIdList entityList,
in TINASubCommonTypes::t_SagId sagId

) raises (e_unknownSAE,
e_unknownSAG,
e_applicationError);

/** This operation removes a list of entities from a SAG.
**/
void removeSAEs (

in TINASubCommonTypes::t_entityIdList entityList,
in TINASubCommonTypes::t_SagId sagId

) raises (e_unknownSAE,
e_unknownSAG,
e_applicationError);

/** This operation returns the list of entities assigned to a SAG.
* If a SAG is not specified, it returns all the entities for that
* subscriber.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

196

**/
void listSAEs (

in TINASubCommonTypes::t_SagId sagId,
out TINASubCommonTypes::t_entityIdList entityList

) raises (e_unknownSAG,
e_applicationError);

/** This operation returns the list of SAGs for that subscriber.
**/
void listSAGs (

out TINASubCommonTypes::t_SagIdList sagIdList
) raises (e_applicationError);

/** This operation returns the information about a specific subscriber
**/
void getSubscriberInfo (

out TINASubCommonTypes::t_Subscriber subscriberInfo
) raises (e_applicationError,

e_unknownSubscriber);

/** This operation modifies the information about a specific subscriber
* Only name and address fields are modifiable. The rest are updated
* only by Sub as a result of other operations -createSAGs,...-

**/
void setSubscriberInfo (

in TINASubCommonTypes::t_Subscriber subscriberInfo
) raises (e_unknownSubscriber,

e_invalidSubscriberInfo,
e_applicationError);

/** This operation returns the list of services subscribed by
* a specific subscriber.

**/
void listSubscribedServices (

out TINAAccessCommonTypes::t_ServiceList service_list
) raises (e_applicationError,

e_unknownSubscriber);

/**
*
* Operations for Service Contract Management.
*
**/

/** This operation returns the template for the service.
**/

void getServiceTemplate (
in TINAAccessCommonTypes::t_ServiceId serviceId,
out TINASubCommonTypes::t_ServiceTemplate template

) raises (e_applicationError);

/** This operation creates a service contract.
* This contract can include a set of service profiles.
**/

void defineServiceContract (
in TINASubCommonTypes::t_ServiceContract serviceContract,
out TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_invalidContractInfo,
e_invalidSubscriptionProfile,
e_invalidSAGServiceProfile);

/** This operation creates a set of service profiles.
**/

void defineServiceProfiles (
in TINASubCommonTypes::t_SubscriptionProfile subscriptionProfile,
in TINASubCommonTypes::t_SagServiceProfileList sagServiceProfiles,
out TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

197

e_invalidSubscriptionProfile,
e_invalidSAGServiceProfile);

/** This operation deletes a set of service profiles and their
* associated SAGs.
**/

void deleteServiceProfiles (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_unknownServiceProfile);

/** This operation returns the list of service profiles identifiers
**/

void listServiceProfiles (
in TINAAccessCommonTypes::t_ServiceId serviceId,
out TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError);

/** This operation returns the service contract information.
* If a (list of) SAG(s) is specified it returns the set of
* SAG service profile for that(those) SAG(s).
**/

void getServiceContractInfo (
in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINASubCommonTypes::t_ServiceProfileIdList spIdList,
out TINASubCommonTypes::t_ServiceContract serviceContract

)
raises (e_applicationError,

e_unknownServiceProfile);

/** This operation assigns a service profile to a list of SAGs and
* SAEs.
**/

void assignServiceProfile (
in TINASubCommonTypes::t_ServiceProfileId spId,
in TINASubCommonTypes::t_SagIdList sagIdList,
in TINASubCommonTypes::t_entityIdList saeIdList

)
raises (e_applicationError,

e_unknownSAG,
e_unknownSAE,
e_unknownServiceProfile);

/** This operation removes a service profile assignment to a list
* of SAGs and SAEs.
**/

void removeServiceProfile (
in TINASubCommonTypes::t_ServiceProfileId spId,
in TINASubCommonTypes::t_SagIdList sagIdList,
in TINASubCommonTypes::t_entityIdList saeIdList

)
raises (e_applicationError,

e_unknownSAG,
e_unknownSAE,
e_unknownServiceProfile);

/** This operation activates a set of service profiles
**/

void activateServiceProfiles (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList

)
raises (e_applicationError,

e_unknownServiceProfile);

/** This operation deactivates a set of service profiles
**/

void deactivateServiceProfiles (
in TINASubCommonTypes::t_ServiceProfileIdList spIdList

)

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

198

raises (e_applicationError,
e_unknownServiceProfile);

}; // i_ProviderOlsSi

};

#endif // TINAScsSubscriptionService_IDL

2.17 TINAScsSSUAPIntra
// FILE: TINAScsSSUAPIntra.idl
//
// VERSION: 1
// DATE 21 August 97
//
// IDL for service session User APplication
// for the TINA- SCS
//
// COMMENTS:
//
// MODIFICATIONS:
//
//
//
#ifndef TINAScsSSUAPIntra_IDL
#define TINAScsSSUAPIntra_IDL

#include "TINAProviderAccess.idl"
#include "TINACommonTypes.idl"
#include "TINAAccessCommonTypes.idl"

/** Defines the interface s ADDITIONAL to Ret that are supported by the ssUAP component.
// within the domain supproting the ssUAP.
**/

module TINAScsSSUAPIntra{

/** Behaviour: Enables the PA to instruct an ssUAP in order that is can respond
// to opportunities to start, join, resume participation and resume session when
// these are initiated by the PA or by the asUAP via the PA.
**/

interface i_AccessInitialise {

/** Instructs the ssUAP to start a service of a specified type with specified
properties together with a PA interface (s) that can be used to invoke upon
the PA to progress the scenario

**/
void startServiceInit (

in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINACommonTypes::t_SessionProperties ssProperties,
in TINACommonTypes::t_InterfaceList paintfs

) raises (
TINAProviderAccess::e_ServiceError,
TINAProviderAccess::e_StartServiceSSPropertyError,
TINACommonTypes::e_InterfacesError

);

/** Instructs the ssUAP to join a session of a unique identity with specified
properties together with a PA interface (s) that can be used to invoke upon
the PA to progress the scenario

**/
void joinSessionInit (

in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINACommonTypes::t_SessionProperties ssProperties,
in TINACommonTypes::t_InterfaceList paintfs

) raises (

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

199

// these exceptions need changing
TINAProviderAccess::e_ServiceError,
TINAProviderAccess::e_StartServiceSSPropertyError,
TINACommonTypes::e_InterfacesError

);

/
** Instructs the ssUAP to resume participation in a session of a unique identity with speci
fied

properties together with a PA interface (s) that can be used to invoke upon
the PA to progress the scenario

**/
void resumeParticipationInit (

in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINACommonTypes::t_SessionProperties ssProperties,
in TINACommonTypes::t_InterfaceList paintfs

) raises (
// these exceptions need changing
TINAProviderAccess::e_ServiceError,
TINAProviderAccess::e_StartServiceSSPropertyError,
TINACommonTypes::e_InterfacesError

);

/** Instructs the ssUAP to resume a session of a unique identity with specified
properties together with a PA interface (s) that can be used to invoke upon
the PA to progress the scenario

**/
void ResumeServiceInit (

in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINACommonTypes::t_SessionProperties ssProperties,
in TINACommonTypes::t_InterfaceList paintfs

) raises (
// these exceptions need changing
TINAProviderAccess::e_ServiceError,
TINAProviderAccess::e_StartServiceSSPropertyError,
TINACommonTypes::e_InterfacesError

);

};
//i_AccessInitialise

};
// module TINAScsSSUAPIntra

#endif //TINAScsSSUAPIntra_IDL

2.18 TINAScsSF
//
// FILE: TINAScsSF.idl
//
// VERSION: 1.3
// DATE: 08/20/1997
// DESCRIPTION:
// IdL definition of SF (Service Factory)
// for TINA-C SCS.
//
// COMMENTS:compilable version, with comments in C style; new naming schema
//
// MODIFICATIONS:Sep. 20th 1997
//
//
// IDL INTERFACES
// _________________________ END DESCRIPTION HEADER ______________________

#ifndef TINAScsSF_ITF_IDL
#define TINAScsSF_ITF_IDL

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

200

#include "TINACommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAProviderAccess.idl"

/** Module TINA Service Factory
**/
module TINAScsSF
{
/**
* this is a Session id, unique for a SF
**/
typedef unsigned long t_GlobalSessionId;
//
/**
*this is a USM ID unique within a session
**/
typedef unsigned long t_UserSessionId;

// interface i_SSCreate
/**

* Behavior:
* This interface allows the UA to request for the creation of a new
* Service session and it allows the SSM to request for the creation
* of a new USM for a user who is joining the session.

**/
interface i_SSCreate
{

/** This operation creates a new SSM and USM for a specified service.
* It returns information on the newly created session (supported
* session model and FSs) and SSM/USM IDs to be used to manage the
* session
**/
void createSSession (

in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINACommonTypes::t_UserId userId,
in TINAProviderAccess::t_ApplicationInfo app,
in TINACommonTypes::t_SessionModelReq sessionModelReq,
in TINACommonTypes::t_InterfaceList uaRef,
in TINAProviderAccess::t_StartServiceSSProperties ssProperties,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo,
out t_GlobalSessionId sessionId

// out t_UserSessionId usersessionId,/ not needed?
) raises (
TINAProviderAccess::e_ServiceError,
TINAProviderAccess::e_ApplicationInfoError,
TINACommonTypes::e_SessionModelError,
TINACommonTypes::e_PropertyError

);

/** This operation creates a new USM for a specified service session
* that is managed by the SF.
* It returns information on the newly created USM (supported
* session model and FSs).
**/
void createUserSSession (

in t_GlobalSessionId sessionId,
in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes::t_InterfaceList uassmRefs,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

// out t_UserSessionId usersessionId
) raises (

TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

// the following operations will be defined in the next version of the document
// void createPeerSSession (
//);

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

201

// void createCompSSession (
//);

};

// interface i_SSManage
/**
* Behavior:
* This interface allows the SSM (or the UA) to manage a specified
* Service session and to request information on a specified Service
* Session.
**/

interface i_SSManage
{

/** This operation allows to end a Service Session. SSM and USMs are
* deleted and related resources are released.
**/
void endSSession (

in t_GlobalSessionId sessionId
) raises (

TINAProviderAccess::e_SessionError
);

/**
* This operation allows to end a User Service Session. The USM
* (identified by the usersessionId) is deleted and resources are
* released.
**/
void endUserSSession (

in t_GlobalSessionId sessionId,
in TINACommonTypes::t_PartyId partyId

//PFH in t_UserSessionId usersessionId
) raises (

TINAProviderAccess::e_SessionError
);

// the following operations will be defined in the next version of the document
// void endPeerSSession (
//);
//
// void endCompSSession (
//);

/**
* This operation allows the UA to request the list of Service session
* managed by the SF and which match desired properties
**/
void listSSessions (

in TINAProviderAccess::t_SessionSearchProperties desiredProperties,
out TINAAccessCommonTypes::t_SessionList sessions

) raises (
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

/**
* This operation returns the SSM interface references for a specified
* session
**/
void getSsmRef (

in t_GlobalSessionId sessionId,
out TINACommonTypes::t_InterfaceList ssmSession
) raises (
TINAProviderAccess::e_SessionError

);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

202

/**
* This operation allows the SSM to suspend a service session. It
* returns the Interface reference of a resume interface to be used by
* UA to resume the service session. Interfaces on USMs/SSM cannot
* be accessed until resumption.
**/
void suspendSSession (

in t_GlobalSessionId sessionId,
out TINACommonTypes::t_InterfaceList resumeItfRef

) raises (
TINAProviderAccess::e_SessionError

);

/**
* This operation allows the SSM to request to suspend the
* participation of a specified user. It returns the interface
* reference of the resume interface to be used by the UA to resume
* the participation. Interfaces on USM are disabled until
* participation resumption
**/
void suspendParticipation (

in t_GlobalSessionId sessionId,
in TINACommonTypes::t_PartyId partyId,

// PFH in t_UserSessionId usersessionId,
out TINACommonTypes::t_InterfaceList resumeItfRef

) raises (
TINAProviderAccess::e_SessionError

);
};

// interface i_Resume
/**
* Behavior:
* This interface allows the UA to resume a suspended
* Service session or to resume the participation to an active service
* session.
*
**/

interface i_Resume
{

/**
* This operation allows a UA to resume a suspended service session.
* Interfaces on SSM and USM of the requesting user are enabled.
* UAs of suspended users are informed that the session has been
* resumed.
**/
void resumeSSession (

in t_GlobalSessionId sessionId,
in t_UserSessionId usersessionId,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

/**
* This operation allows a UA to resume the participation in an active
* service session.
* Interfaces on USM of the requesting user (identified by the
* userSessionId) are enabled.
**/
void resumeParticipation (

in t_GlobalSessionId sessionId,
in TINACommonTypes::t_PartyId partyId,

// PFH in t_UserSessionId usersessionId,

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

203

in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

};

// interface i_Init
/**
* Behavior:
* This interface allows the SLCM to initialize, configure and manage the SF.
**/

interface i_Init

{
// operations' parameters will be defined at a later stage:

/** - allows the SLCM to configure the SF. **/
void configure();

/** - allows the SLCM to set Service Session **/
void setSessionInfo();

/** - allows the SLCM to get Service Session
instances information **/

void getSessionInfo();

/** - sets the state of the SF to deactivating. Future
service session creation requests will be rejected. Once ongoing
service sessions are finished, the SF passes to inactive state. **/

void deactivate();

/** - sets the state of the SF to active. In this state,
the SF can be used for service provision. **/

void activate();

/** - sets the SF state to inactive without a deactivation
phase. The SF reports the users using it about the fact and the
service sessions are ended inmediately. **/

void halt();

/** - kills the SF if it is in inactive state. **/
void delete();

};

// interface i_SSEvents
/**
* Behavior:
* This interface allows the SSM,USM, PeerUSM and CompUSM to notify SF about
* changes that occour in the Service Session.
**/

interface i_SSEvents
{

// is this operation/ interface needed??
// void notifySSModification (
// in t_GlobalSessionId sessionId,
// in TINAAccessCommonTypes::t_SessionInfo sessionInfo
//) raises (
// TINAProviderAccess::e_SessionError
//);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

204

};

};

#endif /*SF_ITF_IDL */

2.19 TINAScsSSMInit
// FILE: TINAScsSSMInit.idl
//
// IDL for Service Session Manager
//
// Author: Per Fly Hansen (Tele Danmark)
// Creation date: August 21st, 1997
// Last modification date: September 24th, 1997 /PFH
//

#ifndef TINAScsSSMInit_IDL
#define TINAScsSSMInit_IDL

#include "TINACommonTypes.idl"

module TINAScsSSMInit {

/** this ID identified uniquely for SSM and USM, managed by SF. **/
typedef unsigned long t_GlobalSessionId; // this is a Session id, unique for an SF

/** use the errorCodes as for e_PropertyError **/
exception e_initSSPropertyError {

TINACommonTypes::t_PropertyErrorStruct propertyError;
};

enum t_InitialiseSSMErrorCode {
CannotCreateInterfaces,
UnknownError

};

exception e_initSSMError {
t_InitialiseSSMErrorCode errorCode;

};

enum t_sessionSSMErrorCode {
UnknownSession,
NotAllowed,
UnknownError

};

/** used in halt and suspend operations **/
exception e_sessionSSMError {

t_sessionSSMErrorCode errorCode;
};

interface i_Init {
/** Used by SF, initialises a new Service Session, **

** returns common part of t_sessionInfo **/
void initialise (

in TINACommonTypes::t_PropertyList initProperties,
in t_GlobalSessionId sessionId,
in TINACommonTypes::t_SessionModelReq sessionModelReq,

/* Interfaces on UA and SF: */
in TINACommonTypes::t_InterfaceList infs,
out TINACommonTypes::t_PartyId partyId,
out TINACommonTypes::t_SessionModelList sessionModels,
out TINACommonTypes::t_InterfaceList initialSSMInfs

) raises (
e_initSSPropertyError,
e_initSSMError

);

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

205

/** Used by SF, halts a Service Session if allowed **/
void halt (

in t_GlobalSessionId sessionId
) raises (

e_sessionSSMError
);

/** Used by SF, suspends a Service Session if allowed **/
void suspend (

in t_GlobalSessionId sessionId
) raises (

e_sessionSSMError
);

}; // i_Init
};
#endif /* TINAScsSSMInit_IDL */

2.20 TINAScsSSMIntra
// FILE: TINAScsSSMIntra.idl
//
// IDL for Service Session Manager
//
// Author: Per Fly Hansen (Tele Danmark)
// Creation date: August 21st, 1997
// Modification date: September 3rd, 1997
//

#ifndef TINAScsSSMIntra_IDL
#define TINAScsSSMIntra_IDL

#include "TINAProviderAccess.idl"
#include "TINAScsAmcObject.idl"

module TINAScsSSMIntra {

typedef unsigned long t_GlobalSessionID; // this is a Session id, unique for an SF

interface i_Join {

void joinSessionWithInvitation (
in TINACommonTypes::t_UserName name,
in TINAAccessCommonTypes::t_InvitationId invitationId,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_InvitationError,
TINAProviderAccess::e_ApplicationInfoError

);

void joinSessionWithAnnouncement (
in TINACommonTypes::t_UserName name,
in TINAAccessCommonTypes::t_AnnouncementId announcementId,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_AnnouncementError,
TINAProviderAccess::e_ApplicationInfoError

);

void replyToInvitation (
in TINACommonTypes::t_UserName name,
in TINAAccessCommonTypes::t_InvitationId invitationId,
in TINACommonTypes::t_InvitationReply reply

) raises (
TINAAccessCommonTypes::e_AccessError,

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

206

TINAAccessCommonTypes::e_InvitationError,
TINACommonTypes::e_InvitationReplyError

);
}; // i_Join

interface i_Resume {
// This operation allows an SF to resume a suspended service session.
void resumeSession (

in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes::t_InterfaceStruct usmItfs, // i_usmResume
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

// This operation allows an SF to resume the participation of a
// given user in an active service session.
void resumeParticipation (

in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes::t_InterfaceStruct usmItfs,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);
}; // i_Resume

/** Receives accounting events pushed from CSM.
**/

interface i_AccountingPush : TINAScsAmcObject::i_AccountingPush {
//no additional operations defined

}; //i_AccountingPush

/** Controls the delivery of SSM generated accounting events push to
*accouting interface on the USM. Client UA/SF?
**/

interface i_AccountingPushMgmt: TINAScsAmcObject::i_AccObjectManagement {
// no additional operations defined

}; //i_AccountingPushMgmt

};

#endif /* TINAScsSSMIntra_IDL */

2.21 TINAScsSSMProviderBasicUsage
// File TINAScsSSMProviderBasicUsage.idl
//
// Author: Per Fly Hansen (Tele Danmark)
//
// Creation Date: September 23rd 1997
//
// Modifications:
//

#ifndef TINAScsSSMProviderBasicUsage_IDL
#define TINAScsSSMProviderBasicUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINASessionModel.idl"

module TINAScsSSMProviderBasicUsage {

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

207

interface i_ProviderGetInterfaces {

void getInterfaceTypes (
in TINACommonTypes::t_PartyId reqId,
out TINACommonTypes::t_InterfaceTypeList itfTypeList

) raises (
TINAUsageCommonTypes::e_UsageError

);

void getInterface (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_InterfaceTypeName type,
in TINACommonTypes::t_MatchProperties desiredProperties,
out TINACommonTypes::t_InterfaceStruct itf

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_PropertyError

);

void getInterfaces (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_MatchProperties desiredProperties,
out TINACommonTypes::t_InterfaceList itfList

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_PropertyError

);

}; // interface i_ProviderGetInterfaces

interface i_ProviderRegisterInterfaces {

void registerInterface (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_InterfaceStruct itf,
out TINACommonTypes::t_InterfaceIndex itfIndex

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError

);

void registerInterfaces (
in TINACommonTypes::t_PartyId reqId,
inout TINACommonTypes::t_RegisterInterfaceList itfs

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_RegisterError

);

void registerInterfaceTypes (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_InterfaceTypeList types

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError

);

void listRegisteredInterfaces (
in TINACommonTypes::t_PartyId reqId,
out TINACommonTypes::t_RegisterInterfaceList registeredItfs

) raises (
TINAUsageCommonTypes::e_UsageError

);

void unregisterInterface (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_InterfaceIndex index

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

208

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_UnregisterError

);

void unregisterInterfaces (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_InterfaceIndexList indexes

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_UnregisterError

);

}; // interface i_ProviderRegisterInterfaces

interface i_ProviderInterfaces
: i_ProviderGetInterfaces,
i_ProviderRegisterInterfaces

{
}; // interface i_ProviderInterfaces

interface i_ProviderBasicReq
: i_ProviderInterfaces,
TINASessionModel::i_SessionModel

{
void endSessionReq (

in TINACommonTypes::t_PartyId reqId,
out any accountInfo

) raises (
TINAUsageCommonTypes::e_UsageError

);

void suspendSessionReq(
in TINACommonTypes::t_PartyId reqId,
out TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_InterfaceList resumeIR,
out any accountInfo

) raises (
TINAUsageCommonTypes::e_UsageError

);

}; // interface i_ProviderBasicReq

}; // module TINAScsSSMProviderBasicUsage

#endif //TINAScsSSMProviderBasicUsage_IDL

2.22 TINAScsSSMProviderControlSRUsage
// File TINAScsSSMProviderControlSRUsage.idl
//
// Author: Per Fly Hansen (Tele Danmark)
//
// Creation Date: September 23rd 1997
//
// Modifications:
//

#ifndef TINAScsSSMProviderControlSRUsage_IDL
#define TINAScsSSMProviderControlSRUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAControlSRTypes.idl"

module TINAScsSSMProviderControlSRUsage {

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

209

interface i_ProviderControlSRReq {

void setControlReq(
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_PartyId controllerPartyId,
in TINACommonTypes::t_ElementId controlledId,
in TINAControlSRTypes::t_ControlDescription control

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_PartyError

);

}; // interface i_ControlSRReq

}; // module TINAScsSSMProviderControlSRUsage

#endif //TINAScsSSMProviderControlSRUsage_IDL

2.23 TINAScsSSMProviderMultipartyUsage
// File TINAScsSSMProviderMultipartyUsage.idl
//
// Author: Per Fly Hansen (Tele Danmark)
//
// Creation Date: September 23rd 1997
//
// Modifications:
//

#ifndef TINAScsSSMProviderMultiPartyUsage_IDL
#define TINAScsSSMProviderMultiPartyUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAScsCommonTypes.idl"

module TINAScsSSMProviderMultipartyUsage {

interface i_ProviderMultipartyReq {

void listParties (
in TINACommonTypes::t_PartyId reqId,
out TINACommonTypes::t_PartyIdList partyIdList

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINAScsCommonTypes::e_PartyIdError

);

void listPartiesWithDetails (
in TINACommonTypes::t_PartyId reqId,
out TINAUsageCommonTypes::t_PartyDetailsList partyDetailsList

) raises (
TINAScsCommonTypes::e_ProviderSessionError

);

void getPartyDetails (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_PartyId partyId,
out TINAUsageCommonTypes::t_PartyDetailsList partyDetailsList

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINAScsCommonTypes::e_PartyIdError

);

void getMyPartyDetails (
in TINACommonTypes::t_PartyId reqId,
out TINAUsageCommonTypes::t_PartyDetails myDetails

) raises (

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

210

TINAScsCommonTypes::e_ProviderSessionError,
TINAScsCommonTypes::e_PartyIdError

);

void modifyPartyTypeReq (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_PartyId partyId,
in TINAUsageCommonTypes::t_PartyType newType

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINAScsCommonTypes::e_PartyIdError,
TINAScsCommonTypes::e_PartyTypeError

);

void endMyParticipationReq (
in TINACommonTypes::t_PartyId reqId,
out any AccountingInfo

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINAScsCommonTypes::e_PartyIdError

);

/** Cannot be used by a requester to end the requestor's participation
**/
void endPartyReq (

in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_PartyId endPartyId

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINAScsCommonTypes::e_PartyIdError

);

void suspendMyParticipationReq (
in TINACommonTypes::t_PartyId reqId,
out TINACommonTypes::t_InterfaceList resumeIR,
out any AccountingInfo

) raises (
TINAScsCommonTypes::e_PartyIdError,
TINAScsCommonTypes::e_ProviderSessionError

);

/** suspendPartyReq() cannot be used to suspend my particpation
because it cannot return a resume interface reference
**/

void suspendPartyReq (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_PartyId suspendPartyId

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINAScsCommonTypes::e_PartyIdError

);

void inviteUserReq (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_UserDetails invitedUser,
out TINAUsageCommonTypes::t_InvitationId invitationId,
out TINACommonTypes::t_InvitationReply reply

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINACommonTypes::e_UserDetailsError

);

void announceSessionReq (
in TINACommonTypes::t_PartyId reqId,
in TINACommonTypes::t_AnnouncementProperties announcement

) raises (
TINAScsCommonTypes::e_ProviderSessionError,
TINAUsageCommonTypes::e_AnnouncementError

);

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

211

}; // interface i_ProviderMultipartyReq

}; // module TINAScsSSMProviderMultipartyUsage

#endif // TINAScsSSMProviderMultiPartyUsage_IDL

2.24 TINAScsSSMProviderPaSBUsage
// File: TINAScsSSMProviderPaSBUsage.idl
//
// So far just a copy from RP0.7 /Per
//
// Author: Per Fly Hansen (Tele Danmark)
//
// Creation Date: September 23rd 1997
//
// Modifications:
//

#ifndef TINAScsSSMProviderPaSBUsage_IDL
#define TINAScsSSMProviderPaSBUsage_IDL

// DESCRIPTION:
// TINA Participant Oriented Stream Binding Feature Set
// Provider Module
//
// Interfaces and types needed to support the participant
// oriented stream binding feature set for providers.

#include "TINAPaSBTypes.idl"

module TINAScsSSMProviderPaSBUsage {

enum t_PaSBSetupErrors
{

PaSBSetup_InvalidSBId, // Unknown SB
PaSBSetup_InvalidSBOp, // Invalid op for this SB
PaSBSetup_UnknownSBType, // Unknown stream binding type
PaSBSetup_UnknownMediaType, // Unknown media type
PaSBSetup_IncompatibleParameters, // Incompatible params:

// E.g. media type and sb type, media params with media type
PaSBSetup_InvalidParticipantId, // Unknown participant
PaSBSetup_UnknownParticipantType, // Unknown type of participant
PaSBSetup_SuspendedParticipant, // Suspended participant
PaSBSetup_UnknownCritieria, // Unknown criterion
PaSBSetup_InvalidCriteria, // Not valid for this SB
PaSBSetup_UnsupportedCritieria, // Not supported by session
PaSBSetup_CriteriaNotMet, // Success criteria not met
PaSBSetup_CommsNotAvailable, // Supporting communications

// not available
PaSBSetup_InsuffisicentBandwidth, // Not enough bandwidth
PaSBSetup_QoSCannotBeMet, // QoS requirements not met
PaSBSetup_InsufficientResources, // No resources for connection
PaSBSetup_NoPathFound, // Could not connect points
PaSBSetup_UnknownSFEP, // Given SFEP not known
PaSBSetup_UnknownRFEP // No supporting RFEP

};

// Exception on sb creation, addion of participants, type modifications
exception e_PaSBSetupError

{
t_PaSBSetupErrors errorCode; // Error
TINACommonTypes::t_ElementId problemEl; // Element causing problem

// Valid for appropriate error codes, e.g. Invalid particpant
// Invalid SB (returns given SBId), invalid participant type

};

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

212

enum t_PaSBOperationErrors
{

PaSBOper_InvalidSBId, // Unknown SB
PaSBOper_InvalidSBOp, // Invalid op for this SB
PaSBOper_InvalidParticipantId, // Unknown participant
PaSBOper_SuspendedParticipant, // Suspended participant
PaSBOper_CriteriaNotMet, // Success criteria not met
PaSBOper_CommsNotAvailable, // Supporting communications
PaSBOper_InsufficientResources, // No resources for activation
PaSBOper_CommunicationFailure // Comms unable to meet request

};

// Exception on state change ops (delete, activate, deactivate)
exception e_PaSBOperationError

{
t_PaSBOperationErrors errorCode; // Error
TINACommonTypes::t_ElementId problemEl; // Element causing problem

// Valid for appropriate error codes, e.g. Invalid particpant
// Invalid SB (returns given SBId)

};

enum t_PaSBQueryErrors
{

PaSBQuery_InvalidSBId, // Unknown SB
PaSBQuery_InvalidSBOp, // Invalid op for this SB
PaSBQuery_InvalidElementId, // Unknown element:

// sfep or pariticpant
PaSBQuery_UnknownMediaType, // Unknown media type
PaSBQuery_IncompatibleParameters, // Incompatible params:
PaSBQuery_SuspendedParticipant // Suspended participant

};

// Exception on query type operations
exception e_PaSBQueryError

{
t_PaSBQueryErrors errorCode; // Error
TINACommonTypes::t_ElementId problemEl; // Element causing problem

// Valid for appropriate error codes, e.g. Invalid particpant
// Invalid SB (returns given SBId)

};

// Exception on asynchronous handling of operation
exception e_NoSynchronousReqResp

{
TINAStreamCommonTypes::t_RequestId reqId; // Request Identifier for later response

};

// DESCRIPTION:
// i_ProviderPaSBReq interface
// The participant oriented stream binding request interface
// Allows session parties to create a stream binding, modify
// its configuration, remove the stream binding, and make general
// queries on stream bindings.
//
// This interface supports a participant oriented stream binding
// model. As a result, operations are generally in terms of:
// stream binding type
// media types
// participants (session members who have a relation with the SB)
// stream binding identifiers (subsequent operations from creation)
// AUTHOR:
// Stephanie Hogg
// CREATION DATE:
// 20/08/97
// UPDATES:
//

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

213

// # include "PaSBCommonTypes.idl"
// # include "PaSBProviderErrorTypes.idl"

interface i_ProviderPaSBReq
{

// This interface provides control for all stream bindings
// to which the requester has access.

// Establish a stream binding, in terms of type, media, & participants
void addProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBType reqType,//

type identifier: overall type
in TINASBCommSCommonTypes::t_MediaDescList media,// Media of assoc flow

// additional overall type info,&/or implicit flow types
// Eg. SB type = multimedia, flow types = video, audio
// Additional flow type parameters, such as:
// QoS: service level qos related to media types
// Eg. for audio: CD, FM stereo, AM, phone, mobile

in TINAPaSBTypes::t_ParticipantDescList reqMembers,
// List of participants, each participant described by:
// id, type, control SR, and role (source/sink/etc.),
// media parameters modifying overal media requirements
// success & recovery criteria
// initial administrative state state

in TINAStreamCommonTypes::t_SFEPServDescList requesterSIs,
// Optional: if 0 SFEPs, requester is not participating

in TINAStreamCommonTypes::t_SBSuccessCriteria criteria,
// What is necessary for this operation to succeed?

in TINAStreamCommonTypes::t_SBRecover recActions,
// Actions on failure to recover stream binding
// Success of recovery criteria

in boolean wait, // wait for reply flag: true = wait
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBSetupError, e_NoSynchronousReqResp);

// Remove a stream binding
void deleteProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean wait, // wait for reply flag: true = wait
out TINAStreamCommonTypes::t_SBBindState status)//

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBOperationError, e_NoSynchronousReqResp);

// Add participants to a stream binding
void addParticipantsProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAPaSBTypes::t_ParticipantDescList reqMembers, //

List of participants
in TINAStreamCommonTypes::t_SFEPServDescList requesterSIs, //

Optional requester SFEPs
in boolean wait, // wait for reply flag: true = wait
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBSetupError, e_NoSynchronousReqResp);

// Remove participants from a stream binding
void deleteParticipantsProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all, // All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers,

// list of participants to be removed, valid all=false
in boolean wait, // wait for reply flag: true = wait
out TINAStreamCommonTypes::t_SBBindState status) //

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

214

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBOperationError, e_NoSynchronousReqResp);

// Activate participants in a stream binding/ activate implicit
// flows specified by type
void activateParticipantsProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all, // All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers,

// list of members to be activated, valid if all=false
in boolean allFlows, // All sub types or listed sub types?
in TINASBCommSCommonTypes::t_MediaDescList reqFlows,

// Media types to be activated, valid allFlows = false
in boolean wait, // wait for reply flag: true = wait
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBOperationError, e_NoSynchronousReqResp);

// Deactivate participants in a stream binding/ deactivate implicit
// flows specified by type
void deactiviateParticipantsProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all, // All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers,

// list of members to be deactivated, valid all=false
in boolean allFlows, // All sub types or listed sub types?
in TINASBCommSCommonTypes::t_MediaDescList reqFlows,

// Media types to be deactivated, valid allFlows=false
in boolean wait, // wait for reply flag: true = wait
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBOperationError, e_NoSynchronousReqResp);

// Modify the stream binding by adding, modifying, or removing
// media for the overall stream binding or specified participants
void modifyParticipantsProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all,// All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers,//

// list of participants modify, valid if all=false
in TINASBCommSCommonTypes::t_MediaDescList newTypes,// Media types to add
in TINASBCommSCommonTypes::t_MediaDescList oldTypes, //

Media types to be removed
in TINASBCommSCommonTypes::t_MediaChangeDescList modTypes,//

Media types to modify
in TINAStreamCommonTypes::t_SFEPServDescList requesterSIs, //

Optional requester SFEPs
in boolean wait, // wait for reply flag: true = wait
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBSetupError, e_NoSynchronousReqResp);

// Modify the recovery and participation criteria
void modifyCritieriaProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAStreamCommonTypes::t_SBSuccessCriteria criteria,// For SB
in TINAStreamCommonTypes::t_SBRecover recActions, //

Actions recover stream binding
in TINAPaSBTypes::t_PCriteriaList newPCriteria)

// List of participants with their new criteria
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBSetupError);

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

215

// Notify the stream binding of a single participants relation to
// the stream binding. (Not sure if needed...)
void notifyProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAStreamCommonTypes::t_SFEPServDescList myStatus)
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBQueryError);

// Allows a SB member to withdraw SFEPs (or SIs) from a stream binding
// this causes the rerunning of the binding algorithm
void withdrawSFEPsProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINASBCommSCommonTypes::t_SFEPNameList fepList, //

SFEPs to withdraw (local only)
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBSetupError, e_NoSynchronousReqResp);

// Allows a SB member to register new SFEPs with a stream binding
// this causes the rerunning of the binding algorithm
void registerSFEPsProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAStreamCommonTypes::t_SFEPServDescList fepList,//

SFEPs to register with SB
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBSetupError, e_NoSynchronousReqResp);

// Rebind: allows a SB to rebind if external session factors
// affecting stream binding membership have occurred.
void rebindProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbI, // Stream binding id
out TINAStreamCommonTypes::t_SBBindState status) //

Details of stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBSetupError, e_NoSynchronousReqResp);

// List stream bindings in the service session
void listProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in boolean all, // All stream bindings?: set true if all
in TINACommonTypes::t_ElementIdList particpants,

// List stream bindings with these participants
out TINAStreamCommonTypes::t_SBIdList sbList) // List of SB ids
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBQueryError);

// Get information on a particular stream binding
void getInfoProviderPaSBReq(

in TINACommonTypes::t_PartyId reqId, // Requesters id
in TINAStreamCommonTypes::t_SBId sbId, // Stream binding id
out TINAPaSBTypes::t_SBDesc thisSB) // Description of a stream binding
raises (TINAUsageCommonTypes::e_UsageError,

e_PaSBQueryError);
};

};

#endif // TINAScsSSMProviderPaSBUsage_IDL

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

216

2.25 TINAScsSSMProviderVotingUsage
// FILE: TINAScsSSMProviderVotingUsage.idl
//
// IDL for Service Session Manager
//
// Author: Per Fly Hansen (Tele Danmark)
// Creation date: September 23rd, 1997
// Modification date: September 23rd, 1997
//

#ifndef TINAScsSSMProviderVotingUsage_IDL
#define TINAScsSSMProviderVotingUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"

module TINAScsSSMProviderVotingUsage {

enum t_VoteResponse {
NoVote,
Agree,
Disagree,
Abstain

};

typedef short t_VoteValue; // use is Service dependant
// could be used to weight the response,
// but effect is service dependant

struct t_Vote {
t_VoteResponse response;
t_VoteValue value; // may be ignored

};

enum t_VoteErrorCode {
UnknownVoteError,
VoteTooLate

};

exception e_VoteError {
t_VoteErrorCode errorCode;

};

interface i_ProviderVotingReq {

void voteReq(
in TINACommonTypes::t_PartyId reqId,
in TINAUsageCommonTypes::t_IndId indId,
in t_Vote vote

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_IndError,
e_VoteError

);
}; // interface i_VotingReq

};
#endif /* TINAScsSSMProviderVotingReq_IDL */

2.26 TINAScsUSMInit
// FILE: TINAScsUSMInit.idl
//
// VERSION: 1
// DATE 21 August 97
//
// IDL for Usage Sesion Manager
// for the TINA- SCS
//

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

217

// AUTHOR: Martin Yates
//
// COMMENTS:
//
// MODIFICATIONS: PFH Sep. 24th 97
//
//
//

#ifndef TINAScsUSMInit_IDL
#define TINAScsUSMInit_IDL

#include "TINACommonTypes.idl"
// # include "TINAUsageCommonTypes.idl" //PFH
// # include "TINAAccessCommonTypes.idl" //PFH

module TINAScsUSMInit{

/** properties to be interpreted by the USM, when initialising a service
* defined Property names:
* None defined at present
**/

typedef TINACommonTypes::t_PropertyList t_InitialSSProperties;

exception e_InitSSPropertyError {
// use the errorCodes as for e_PropertyError
TINACommonTypes::t_PropertyErrorStruct propertyError;

};

enum t_InitialiseUSMErrorCode {
CannotCreateInterfaces,
BindtoSSMFailed,
initializeUnknownError

};

exception e_InitUSMError {
t_InitialiseUSMErrorCode errorCode;

};

interface i_Init {

/
** Initialises the USM with session and service properties and return IRs that are newly in
stantiated

**/
void initialise(

in t_InitialSSProperties initProperties,
in TINACommonTypes::t_PartyId partyId, //PFH

/* Interfaces on UA and SSM: */ //PFH
in TINACommonTypes::t_InterfaceList infs, //PFH
out TINACommonTypes::t_InterfaceList initialUSMInfs,
out TINACommonTypes::t_ParticipantSecretId secretId //PFH

) raises (
e_InitSSPropertyError,
e_InitUSMError

);

}; //i_Init

}; //module TINAScsUSMInit

#endif // TINAScsUSMInit_IDL

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

218

2.27 TINAScsUSMIntra
// FILE: TINAScsUSMIntra.idl
//
// VERSION: 1
// DATE 21 August 97
//
// IDL for Usage Sesion Manager
// for the TINA- SCS
//
// AUTHOR: Martin Yates
//
// COMMENTS:
//
// MODIFICATIONS:
//
//
//

#ifndef TINAScsUSMIntra_IDL
#define TINAScsUSMIntra_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAProviderAccess.idl"
#include "TINAScsAmcObject.idl"
#include "TINAScsMgmtCtxt.idl"

/**
* This module defines a subset of USM interface s internal to the domain
* supporting the USM. but which are not specified in Ret feature sets or
* their equivalents between the USM and SSM.
* Interfaces here include : Accounting, Management Context, Resume, Session Contol
**/

module TINAScsUSMIntra{

// t_InitialSSProperties properties:
// properties to be interpreted by the USM, when initialising a service
// defined Property names:
// None defined at present
typedef TINACommonTypes::t_PropertyList t_InitialSSProperties;

exception e_initSSPropertyError {
// use the errorCodes as for e_PropertyError
TINACommonTypes::t_PropertyErrorStruct propertyError;

};

exception e_StartServiceSSPropertyError {
// use the errorCodes as for e_PropertyError
TINACommonTypes::t_PropertyErrorStruct propertyError;

};

enum t_SessionControlErrorCode {
PartyIdInvalid,
SessionIdInvalid,
PartyDeniedAuthority,
ControlUnavailable,
SecurityContextNotSatisfied,
sessionUnknownError

};

exception e_SessionControlError {
t_SessionControlErrorCode errorCode;

};

enum t_InitialiseUSMErrorCode {

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

219

CannotCreateInterfaces,
BindtoSSMFailed,
initializeUnknownError

};

exception e_initUSMError {
t_InitialiseUSMErrorCode errorCode;

};

//INTERFACE DEFINITIONS START HERE

/** Session control of the participation and session lifecycle, typical client UA.
**/

interface i_SessionCtrl {

/
** Ends the entire session for all participants, requires authorisation. When

successful results in Ret interface s of the USM becoming invalid.
**/

void endSession (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes:: t_PartyId Party_Id,
out any accountInfo

) raises (
e_SessionControlError

);

/** Ends only the participation of the party represented by the USM. When
sucessful results in Ret interface s of the USM becoming invalid

**/

void endMyParticipation (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes:: t_PartyId Party_Id,
out any accountInfo

) raises (
e_SessionControlError

);

/
** Suspends the entire session for all all participants. When sucsessful results

in Ret interface s of the USM becoming invalid and a new IR capable of
resuming participation.

**/

void suspendSession (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes:: t_PartyId Party_Id,
out TINACommonTypes::t_InterfaceList resumeItfRef,
out any accountInfo

) raises (
e_SessionControlError

);

/
**Suspends the participation of the party represented by the USM. When sucsessful results

in Ret interface s of the USM becoming invalid and a new IR capable of
resuming participation.

**/

void suspendMyParticipation (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes:: t_PartyId Party_Id,
out TINACommonTypes::t_InterfaceList resumeItfRef,
out any accountInfo

) raises (
e_SessionControlError

);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

220

}; //i_SessionCtrl

/** Initialises the USM with session and service properties and return its
* interface references when newly instantiated. Client is SF.
**/

/** Allows the SSM to fully resume a suspended service session by resuming the USMs
**/

interface i_Resume {

/
**Resumes the USM after the entire session has been suspended and is called

ONLY on the USM representing the user that has issued the resume request.
The other USM in the session are reactivated by using sessionResuming()
**/

void resumeSession (
in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes::t_SessionId userSessionId,
in TINACommonTypes::t_InterfaceStruct ssmItfs,
in TINAProviderAccess::t_ApplicationInfo app

) raises (
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

void sessionResumed (
in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes::t_SessionId userSessionId,
in TINACommonTypes::t_InterfaceStruct usmItfs,
in TINAProviderAccess::t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

/
** Resume participation of a specific party in an active service session.

**/

void resumeMyParticipation (
in TINACommonTypes::t_PartyId partyId,
in TINACommonTypes::t_SessionId userSessionId,
in TINACommonTypes::t_InterfaceStruct ssmItfs,
in TINAProviderAccess::t_ApplicationInfo app

)
raises (

TINAProviderAccess::e_SessionError,
TINAProviderAccess::e_ApplicationInfoError

);

}; // i_Resume

/** Receives of accounting events pushed from SSM. The USM forms a part of
accounting management ladder in the retailer domain.

**/

interface i_AccountingPush : TINAScsAmcObject :: i_AmcLadderElement {
//no additional operations defined

}; //i_AccountingPush

/** Controls the delivery of USM generated accounting events push to
*accouting interface on the UA. Client UA
**/

interface i_AccountingPushMgmt: TINAScsAmcObject :: i_AccObjectManagement {
// no additional operations defined

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

221

}; //i_AccountingPushMgmt

/** added by Revision 1.0.1
* The interface is immature and scenarios that show how the interface s is used
* in the context of session wide components has not yet been determined.
* Treat with caution.
**/

interface i_MgmtCtxt {

/** bind the component to a context for the session which comprises the
* list of management contexts and their respective properties and values
* session explicity passed in the operation.
**/
boolean bindList (

in TINAScsMgmtCtxt::t_MgmtCtxtList contexts
) raises (

TINAScsMgmtCtxt::e_usmMgmtCtxt
);

/
** bind the component to a context for the session which is identified by an ID

* which resolves elsewhere to a list of management contexts.
**/
boolean bindID (

in TINAScsMgmtCtxt::t_MgmtCtxtID contexts
) raises (

TINAScsMgmtCtxt::e_usmMgmtCtxt
);

/** unbind the component to a context for the session which comprises the
* list of management contexts and their respective properties and val

ues
* session explicity passed in the operation.
**/

boolean unbindList (
in TINAScsMgmtCtxt::t_MgmtCtxtList contexts

) raises (
TINAScsMgmtCtxt::e_usmMgmtCtxt

);

/
** unbind the component to a context for the session which is identified by an ID

* which resolves elsewhere to a list of management contexts.
**/

boolean unbindID (
in TINAScsMgmtCtxt::t_MgmtCtxtID contexts

) raises (
TINAScsMgmtCtxt::e_usmMgmtCtxt

);

/
** REbind the component to a previously used context for the session which comprises the

* list of management contexts and their respective properties and val
ues

* session explicity passed in the operation.
**/
boolean rebindList (

in TINAScsMgmtCtxt::t_MgmtCtxtList contexts
) raises (

TINAScsMgmtCtxt::e_usmMgmtCtxt
);

/
** Rebind the component to a previously used context for the session which is identified by

an ID

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

222

* which resolves elsewhere to a list of management contexts.
**/
boolean rebindID(

in TINAScsMgmtCtxt::t_MgmtCtxtID contexts
) raises (

TINAScsMgmtCtxt::e_usmMgmtCtxt
);

}; // i_MgmtCtxt

}; //module TINAScsUSMIntra

#endif // TINAScsUSMIntra_IDL

2.28 TINAScsUSMPartyBasicExtUsage
// FILE: TINAScsUSMPartyBasicExtUsage.idl
//
// VERSION: 1
// DATE 21 August 97
//
// IDL for Usage Sesion Manager
// for the TINA- SCS
//
// AUTHOR: Martin Yates
//
// COMMENTS:
//
// MODIFICATIONS:
//
//
//

#ifndef TINAScsUSMPartyBasicExtUsage_IDL
#define TINAScsUSMPartyBasicExtUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAPartyBasicExtUsage.idl"

/**
* This module defines interface s supported by the USM and typically used by the SSM
* component. The interface s are used when the USM/
ssUAP also support the PartyBasicExtUsage
* Feature set across Ret.
**/

module TINAScsUSMPartyBasicExtUsage{

interface i_PartyBasicExtReq {
};

// YUCK not sure about next one
interface i_PartyGetInterfaces {
};

};

//module TINAScsUSMPartyBasicExtUsage_IDL

#endif // TINAScsUSMPartyBasicExtUsage

2.29 TINAScsUSMPartyControlSRUsage
// FILE: TINAScsUSMPartyControlSRUsage.idl
//
// VERSION: 1

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

223

// DATE 21 August 97
//
// IDL for Usage Sesion Manager
// for the TINA- SCS
//
// AUTHOR: Martin Yates
//
// COMMENTS:
//
// MODIFICATIONS:
//
//
//

#ifndef TINAScsUSMPartyControlSRUsage_IDL
#define TINAScsUSMPartyControlSRUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAPartyControlSRUsage.idl"
#include "TINAControlSRTypes.idl"
#include "TINAScsCommonTypes.idl"

/**
* This module defines interface s supported by the USM and typically used by the SSM
* component. The interface s are most likely to be used when the USM/
ssUAP also support
* the PartyControlSRUsage feature set across Ret.
**/

module TINAScsUSMPartyControlSRUsage{

interface i_PartyControlSRInd {

void setControlInd (
in TINAScsCommonTypes::t_PartyIdListHandler partyIdList,
in TINAUsageCommonTypes::t_IndId indId,
in TINAControlSRTypes::t_ControlInfo controlInfo

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError,
TINAScsCommonTypes::e_PartyIdListError

);

};

interface i_PartyControlSRInfo {

oneway void setControlInfo (
in TINAScsCommonTypes::t_PartyIdListHandler partyIdList,
in TINAControlSRTypes::t_ControlInfo controlInfo

) raises (
TINAScsCommonTypes::e_PartyIdListError

);

};

}; //module TINAScsUSMPartyControlSRUsage

#endif // TINAScsUSMPartyControlSRUsage_IDL

2.30 TINAScsUSMPartyMultipartyIndUsage
// FILE: TINAScsUSMPartyMultipartyIndUsage.idl
//
// VERSION: 1
// DATE 21 August 97

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

224

//
// IDL for Usage Sesion Manager
// for the TINA- SCS
//
// AUTHOR: Martin Yates
//
// COMMENTS:
//
// MODIFICATIONS:
//
//
//

#ifndef TINAScsUSMPartyMultipartyIndUsage_IDL
#define TINAScsUSMPartyMultipartyIndUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAPartyMultipartyUsage.idl"
#include "TINAPartyMultipartyIndUsage.idl"
#include "TINAScsCommonTypes.idl"

/**
* This module defines interface s supported by the USM and typically used by the SSM
* component. The interface s are most likely to be used when the USM/
ssUAP also support
* the PartyMultipartyIndUsage feature set across Ret.
**/

module TINAScsUSMPartyMultipartyIndUsage{

interface i_PartyMultipartyInd{

void operationCancelled (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_IndError

);

void modifyPartyTypeInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId, /** originating party **/
in TINAUsageCommonTypes::t_PartyDetails partyDetails

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError

);

void endSessionInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId /** originating party **/

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError

);

void endPartyInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

225

in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId, /** originating party **/
in TINACommonTypes::t_PartyId partyId

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError

);

void suspendSessionInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId /** originating party **/

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError

);

void resumeSessionInd(
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId /** originating party resuming**/

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError

);

void suspendPartyInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId, /** originating party **/
in TINACommonTypes::t_PartyId partyId

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError

);

void resumePartyInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId partyId /** originating party resuming**/

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError

);

void joinSessionInd (

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIds **/

in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId, /

** originating party **/
in TINACommonTypes::t_UserDetails userDetails

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError,
TINACommonTypes::e_UserDetailsError

);

void inviteUserInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_UserDetails userDetails,
in TINACommonTypes::t_PartyId reqPartyId /

** originating party **/
) raises (

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

226

TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError,
TINACommonTypes::e_UserDetailsError

);

void announceSessionInd (
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId, /

** originating party **/
in TINACommonTypes::t_AnnouncementProperties announcement

) raises (
TINAScsCommonTypes::e_PartyIdListError,
TINAUsageCommonTypes::e_PartyError,
TINAUsageCommonTypes::e_AnnouncementError

);

}; //i_PartyMultipartyInd

}; //module TINAScsUSMPartyMultipartyIndUsage

#endif // TINAScsUSMPartyMultipartyIndUsage_IDL

2.31 TINAScsUSMPartyMultipartyUsage
/** FILE: TINAScsUSMPartyMultipartyUsage.idl */
/** */
/** VERSION: 1 */
/** DATE 21 August 97 */
/** */
/** IDL for Usage Sesion Manager */
/** for the TINA- SCS */
/** */
/** AUTHOR: Martin Yates */
/** */
/** COMMENTS: */
/** */
/** MODIFICATIONS: */
/** */
/** */
/** */

#ifndef TINAScsUSMPartyMultipartyUsage_IDL
#define TINAScsUSMPartyMultipartyUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAScsCommonTypes.idl"

/**
* This module defines interface s supported by the USM and typically used by the SSM
* component. The interface s are most likely to be used when the USM/
ssUAP also support
* the PartyMultipartyIndUsage feature set across Ret.
**/

module TINAScsUSMPartyMultipartyUsage {

interface i_PartyMultipartyExe {

/
** In the following operations strictly the excetion need only be invalid Party_id **/

void modifyPartyTypeExe (
in TINAUsageCommonTypes:: t_PartyType newType

) raises (

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

227

TINAUsageCommonTypes:: e_PartyError, /
** error in modification request **/

TINAScsCommonTypes:: e_PartySessionError
);

void endSessionExe (
in TINACommonTypes:: t_PartyId partyId

) raises (
TINAScsCommonTypes:: e_PartyIdError,
TINAScsCommonTypes:: e_PartySessionError

);

void endPartyExe (
in TINACommonTypes:: t_PartyId partyId

) raises (
TINAScsCommonTypes:: e_PartyIdError,
TINAScsCommonTypes:: e_PartySessionError

);

void suspendSessionExe (
in TINACommonTypes:: t_PartyId partyId,
in TINACommonTypes:: t_InterfaceList resumeIR

) raises (
TINAScsCommonTypes:: e_PartyIdError,
TINAScsCommonTypes:: e_PartySessionError

);

void suspendPartyExe (
in TINACommonTypes:: t_PartyId partyId,
in TINACommonTypes:: t_InterfaceList resumeIR

) raises (
TINAScsCommonTypes:: e_PartyIdError,
TINAScsCommonTypes:: e_PartySessionError

);

}; /** interface i_PartyMultipartyExe **/

/** The following mirror Ret but have been changed to raise user defined exception s,
because the interactions between SSM and USM are more critical than those across Re

t -
which sere defined as oneway operations. The operations have been designed so that
a single 'USM' could handle multiple parties (PD_USSs) if it were implemented this

way.
This was considered less restictive on implementation options.

**/

interface i_PartyMultipartyInfo {

void modifyPartyTypeInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINACommonTypes:: t_PartyId partyId

) raises (
TINAScsCommonTypes:: e_PartyIdListError,
TINAUsageCommonTypes:: e_PartyError

);

void endPartyInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINACommonTypes:: t_PartyId partyId

) raises (
TINAScsCommonTypes:: e_PartyIdListError,
TINAUsageCommonTypes:: e_PartyError

);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

228

void suspendPartyInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINACommonTypes:: t_PartyId partyId

) raises (
TINAScsCommonTypes:: e_PartyIdListError,
TINAUsageCommonTypes:: e_PartyError

);

void resumePartyInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINACommonTypes:: t_PartyId partyId

) raises (
TINAScsCommonTypes:: e_PartyIdListError,
TINAUsageCommonTypes:: e_PartyError

);

void joinSessionInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes:: t_PartyDetails partyDetails,
in TINACommonTypes:: t_UserDetails userDetails

) raises (
TINAScsCommonTypes:: e_PartyIdListError,
TINAUsageCommonTypes:: e_PartyError,
TINACommonTypes:: e_UserDetailsError

);

void inviteUserInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINACommonTypes:: t_UserDetails userDetails,
in TINAUsageCommonTypes:: t_InvitationId invitationId

) raises (
TINAScsCommonTypes:: e_PartyIdListError,
TINACommonTypes:: e_UserDetailsError

);

void inviteReplyInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINAUsageCommonTypes:: t_InvitationId invitationId,
in TINACommonTypes:: t_InvitationReply reply

) raises (
TINAScsCommonTypes:: e_PartyIdListError

);

void announceSessionInfo (
in TINAScsCommonTypes:: t_PartyIdListHandler indPartyList, /

** target partyIds **/
in TINACommonTypes:: t_AnnouncementProperties announcement

) raises (
TINAScsCommonTypes:: e_PartyIdListError,
TINAUsageCommonTypes:: e_AnnouncementError

);

}; /** interface i_PartyMultipartyInfo */

}; /** module TINAScsUSMPartyMultipartyUsage */

#endif /** TINAScsUSMPartyMultipartyUsage_IDL */

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

229

2.32 TINAScsUSMPartyPaSBIndUsage
#ifndef TINAScsUSMPartyPaSBIndUsage_IDL_
#define TINAScsUSMPartyPaSBIndUsage_IDL_

// FILE:
// TINAScsUSMPartyPaSBIndUsage.idl
// DESCRIPTION:
// TINA Participant Oriented Stream Binding with Indications
// Feature Set Party Module
//
// Interfaces and types needed to support the participant
// oriented stream binding extended feature set for users.
// This extended feature set supports indications.
// Note: no extra interface s need be supported by the provider.
// AUTHOR:
// Stephanie Hogg
// Koki NAKASHIRO, Carlo Licciardi
// CREATION DATE:
// 06/11/97
// UPDATES:
//

#include "TINAUsageCommonTypes.idl"
#include "TINAPaSBTypes.idl"
#include "TINAPartyPaSBIndUsage.idl"
#include "TINAScsCommonTypes.idl"

module TINAScsUSMPartyPaSBIndUsage {

// DESCRIPTION:
// i_PartyPaSBInd interface
// The participant oriented stream binding indication interface
// Allows the stream binding to provider to report requested
// operations to stream members.
// If using the session graph model, this should be all parties
// who have an ownership control relatin with the stream binding

// # include "PaSBCommonTypes.idl"
// # include "TINAUsageCommonTypes.idl"
// # include "PaSBIndErrorTypes.idl"

interface i_PartyPaSBInd
{

// Request to establish a stream binding
void addPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
// Indication Id: used in voting to identify
// what is being voted on (i.e. this op)

in TINAStreamCommonTypes::t_RequestId reqId,
// Request Id: identifies responses to op

in TINAStreamCommonTypes::t_SBType reqType,//
type identifier: overall type

in TINASBCommSCommonTypes::t_MediaDescList media,//
Overall media of assoc flow

in TINAPaSBTypes::t_ParticipantIdList reqMembers,
// List of participants, each participant described

in TINAStreamCommonTypes::t_SBSuccessCriteria criteria,
// What is necessary for this operation to succeed?

in TINAStreamCommonTypes::t_SBRecover recActions)
// Actions on failure to recover stream binding
// Success of recovery criteria

raises (TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

230

// Request to remove a stream binding
void deletePartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId) // stream binding id
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

// Request to add participants to a stream binding
void addParticipantsPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAPaSBTypes::t_ParticipantIdList reqMembers) // alt: id list

// List of participants, each participant described
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

// Request to remove participants from a stream binding
void deleteParticipantsPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all, // All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers)
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

// Request to activate by participants (and opt. implicit flows)
void activateParticipantsPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all, // All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers,

// list of members to activate, valid if all=false
in boolean allFlows, // All sub types or listed sub types?
in TINASBCommSCommonTypes::t_MediaDescList reqFlows)

// Media types to activate, valid if allFlows=false
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

// Request to deactivate by participants (and opt. implicit flows)
void deactiviateParticipantsPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all,// All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers,

// list of members to deactivate, valid if all=false
in boolean allFlows, // All sub types or listed sub types?
in TINASBCommSCommonTypes::t_MediaDescList reqFlows)

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

231

// Media types to deactivate, valid if allFlows=false
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

// Request to modify participation
void modifyParticipantsPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in boolean all,// All participants or listed participants?
in TINAPaSBTypes::t_ParticipantIdList reqMembers,//

// list of participants to modify, valid if all=false
in TINASBCommSCommonTypes::t_MediaDescList newTypes,//

Flow types to add or modify
in TINASBCommSCommonTypes::t_MediaDescList oldTypes, //

Media types to be removed
in TINASBCommSCommonTypes::t_MediaChangeDescList modTypes)//

Media types to modify
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

// Modify the recovery and participation criteria
void modifyCritieriaPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAStreamCommonTypes::t_SBSuccessCriteria criteria,// For SB
in TINAStreamCommonTypes::t_SBRecover recActions, //

Actions recover stream binding
in TINAPaSBTypes::t_PCriteriaList newPCriteria)

// List of participants with their new criteria
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

// Request from a participant to withdraw SFEPs from SB
void withdrawSFEPsPartyPaSBInd(

in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /
** target partyIDs **/

in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINASBCommSCommonTypes::t_SFEPNameList fepList) //

SFEPs to withdraw (local only)
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

void registerSFEPsPartyPaSBInd(// Allows a particpant register SFEPs
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

** target partyIDs **/
in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAStreamCommonTypes::t_SFEPServDescList fepList)//

SFEPs to register with SB
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

void rebindPaSBFSInd(
in TINAScsCommonTypes::t_PartyIdListHandler indPartyList, /

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

232

** target partyIDs **/
in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbI) // Stream binding id
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAUsageCommonTypes::e_IndError,
TINAPartyPaSBIndUsage:: e_PaSBIndError,
TINAScsCommonTypes::e_PartyIdListError);

};

};

#endif
// _TINA_PARTY_PASB_IND_FS_IDL_

2.33 TINAScsUSMPartyPaSBUsage
#ifndef TINAScsUSMPartyPaSBUsage_IDL_
#define TINAScsUSMPartyPaSBUsage_IDL_

// FILE:
// TINAScsUSMPartyPaSBUsage.idl
// DESCRIPTION:
// TINA Participant Oriented Stream Binding Feature Set
// Party Module
//
// Interfaces and types needed to support the participant
// oriented stream binding feature set for users.
// AUTHOR:
// Stephanie Hogg
// Koki NAKASHIRO, Carlo Licciardi
// CREATION DATE:
// 06/11/97
// UPDATES:
//

#include "TINAPaSBTypes.idl"
#include "TINAPartyPaSBUsage.idl"
#include "TINAScsCommonTypes.idl"

module TINAScsUSMPartyPaSBUsage {

// # include "PaSBCommonTypes.idl"
// # include "PaSBPartyErrorTypes.idl" $$s001$$

// DESCRIPTION:
// Participant oriented stream binding party error types
// The error codes and exception types associated with the
// party part of the normal particiapant oriented stream binding.

// # include "StreamCommonTypes.idl"

// DESCRIPTION:
// i_PartyPaSBExe interface
// The participant oriented stream binding exe interface
// Makes exe requests on stream binding members.
// The set of exe requests is simpler than the full set of
// stream binding requests as the same set of exes can support
// a number of request operations.
//
// The exe interface allows a provider to request a session member
// join - become a stream binding member
// leave - end participation in the stream binding
// modify - modify participation i.e. change MediaTypes supported
// modify criteria - modify their local success and recover criteria

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

233

// # include "PaSBCommonTypes.idl"
// # include "PaSBPartyErrorTypes.idl"

interface i_PartyPaSBExe
{

// This interface stream binding responses and notifications to
// parties or resources which are partipants in a stream binding

// Join: Request to a participant to join the SBFS and
// return supporting SI reference and information
void joinPartyPaSBExe(

in TINACommonTypes::t_PartyId partyId, /** target partyId **/
in TINAStreamCommonTypes::t_SBId sbId, // ID stream binding to join
in TINAStreamCommonTypes::t_SBType reqType,// Overall type
in TINASBCommSCommonTypes::t_MediaDescList media,// Overall req of flows
in TINAPaSBTypes::t_ParticipantIdList others,// other members id
in TINAPaSBTypes::t_ParticipantDesc reqParticipation,

// Specification of required participation
// for this session member

in TINAStreamCommonTypes::t_RequestId reqId,//
op id used for later info ops.

out TINAStreamCommonTypes::t_SFEPServDescList participantSIs)
// Description of type: include SI ref and
// description, deviation from requested type

raises (TINAUsageCommonTypes::e_PartyDomainError,
TINAPartyPaSBUsage::e_PaSBPartySetupError,
TINAScsCommonTypes::e_PartyIdError);

// Leave: Request to a participant to leave the SBFS
void leavePartyPaSBExe(

in TINACommonTypes::t_PartyId partyId, /** target partyId **/
in TINAStreamCommonTypes::t_SBId sbId, // ID stream binding to leave
in TINAStreamCommonTypes::t_RequestId reqId) //

op id used for later info ops.
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAPartyPaSBUsage::e_PaSBPartyExeError,
TINAScsCommonTypes::e_PartyIdError);

// Modify: Request to a change participation, including QoS,
// Supported media types (large scale changes)
void modifyPartyPaSBExe(

in TINACommonTypes::t_PartyId partyId, /** target partyId **/
in TINAStreamCommonTypes::t_SBId sbId, // ID stream binding
in TINASBCommSCommonTypes::t_MediaDescList newTypes, //

Media types to add or modify
in TINASBCommSCommonTypes::t_MediaDescList oldTypes, //

Media types to be removed
in TINASBCommSCommonTypes::t_MediaChangeDescList modTypes,//

Media types to modify
in TINAStreamCommonTypes::t_RequestId reqId,//

op id used for later info ops.
out TINAStreamCommonTypes::t_SFEPServDescList participantSIs) //

New participation info
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAPartyPaSBUsage::e_PaSBPartySetupError,
TINAScsCommonTypes::e_PartyIdError);

// Change administrative status (i.e. activate/deactivate
void changeStatePartyPaSBExe(

in TINACommonTypes::t_PartyId partyId, /** target partyId **/
in TINAStreamCommonTypes::t_SBId sbId, // ID stream binding
in TINASBCommSCommonTypes::t_AdministrativeState state, //

New state for participant
in boolean allFlows, // All sub types or listed sub types?
in TINASBCommSCommonTypes::t_MediaDescList reqFlows,

// Media types to be deactivated, valid allFlows=false
in TINAStreamCommonTypes::t_RequestId reqId)//

op id used for later info ops.
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAPartyPaSBUsage::e_PaSBPartyExeError,
TINAScsCommonTypes::e_PartyIdError);

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

234

// Change participation criteria (success and recovery)
void modifyCriteriaPartyPaSBExe(

in TINACommonTypes::t_PartyId partyId, /** target partyId **/
in TINAStreamCommonTypes::t_SBId sbId, // ID stream binding
in TINAPaSBTypes::t_ParticipantCriteria newPCriteria)
raises (TINAUsageCommonTypes::e_PartyDomainError,

TINAPartyPaSBUsage::e_PaSBPartySetupError,
TINAScsCommonTypes::e_PartyIdError);

};

// # include "i_PartyPaSBInfo.idl" $$s001$$

// i_PartyPaSBInfo interface
// The participant oriented stream binding information interface
// Allows status reports on a synchronous operations,
// the distribution of SIs (in a very simple way),
// the informs on the widthdrawals of SIs (and other elements)
// and the notification of communication errors
/// Based on the general stream interface .
// AUTHOR:
// Stephanie Hogg
// CREATION DATE:
// 20/08/97
// UPDATES:
//

// # include "i_GeneralStreamInfo.idl"

// DESCRIPTION:
// i_GeneralStreamInfo interface
// A general stream information interface
// Allows status reports on a synchronous operations,
// the distribution of SIs (in a very simple way),
// the informs on the widthdrawals of SIs (and other elements)
// and the notification of communication errors
// AUTHOR:
// Stephanie Hogg
// CREATION DATE:
// 20/08/97
// UPDATES:
//

// # include "StreamCommonTypes.idl"

interface i_GeneralStreamInfo {

// Report unexpected error with binding during normal operations
oneway void notifyGSInfo(

in TINASBCommSCommonTypes::t_Notification event);

// Update on error
oneway void notifyUpdateGSInfo(

in TINASBCommSCommonTypes::t_NotifyIdentifier changedEvent,// identifier
in TINASBCommSCommonTypes::t_StatusInfo eventChange); //

Changed parameters

// cancellation of previous error:
// for those notification for which this is relevent
oneway void notifyCancelGSInfo(

in TINASBCommSCommonTypes::t_NotifyIdentifier changedEvent);
};

interface i_PartyGeneralStreamInfo : i_GeneralStreamInfo {

// Confirms success of an asynchronous operation
// identified by reqId
oneway void confirmPartyGSInfo(

in TINAScsCommonTypes::t_PartyIdListHandler infoPartyList, /
** target partyIDs **/

in TINAStreamCommonTypes::t_RequestId reqId,

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

235

in TINAStreamCommonTypes::t_RequestType reqType,
in TINAStreamCommonTypes::t_SBBindState info);

// Reports failure of an asynchronous operation
// identified by reqId
oneway void failurePartyGSInfo(

in TINAScsCommonTypes::t_PartyIdListHandler infoPartyList, /
** target partyIDs **/

in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_RequestType reqType,
in TINAStreamCommonTypes::t_FailureCode error, // cause of failure
in boolean additionalInfo, // Additional info flag
in TINAStreamCommonTypes::t_ReqProblem reqProblem);

// Elements causing problem (optional)
// Only valid if additional info flag set

// Distributes SIs to SB members
// SIs group SFEPs and identify the associated participant
// this a useful way of distributing SFEP data
oneway void SIDistribPartyGSInfo(

in TINAScsCommonTypes::t_PartyIdListHandler infoPartyList, /
** target partyIDs **/

in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SIDescList newSIs);
// This allows participants to know which SIs are available
// and who they belong to.

// Distributes SFEPs to SB members
// Alternative to the above: could be useful if SI is already known
oneway void SFEPDistribPartyGSInfo(

in TINAScsCommonTypes::t_PartyIdListHandler infoPartyList, /
** target partyIDs **/

in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SFEPServDescList newSFEPs);
// This allows participants to know which SFEPS are available

// Notify withdrawal of elements to an SB
// Elements could be SFEPs, SIs, SFCs, SB members
oneway void notifyWithdrawnElementsPartyGSInfo(

in TINAScsCommonTypes::t_PartyIdListHandler infoPartyList, /
** target partyIDs **/

in TINAStreamCommonTypes::t_SBId sbId,
in TINACommonTypes::t_ElementIdList gone);

};

interface i_PartyPaSBInfo : i_GeneralStreamInfo
{

// No additional operations or attributes
// Identified (at least not yet...)

};

};

#endif
// _TINA_PARTY_PASB_FS_IDL_

2.34 TINAScsUSMPartyVotingUsage
// FILE: TINAScsUSMPartyVotingUsage.idl
//
// VERSION: 1
// DATE 21 August 97
//
// IDL for Usage Sesion Manager
// for the TINA- SCS
//
// AUTHOR: Martin Yates
//

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

236

// COMMENTS:
//
// MODIFICATIONS:
//
//
//

#ifndef TINAScsUSMPartyVotingUsage_IDL
#define TINAScsUSMPartyVotingUsage_IDL

#include "TINACommonTypes.idl"
#include "TINAUsageCommonTypes.idl"
#include "TINAAccessCommonTypes.idl"
#include "TINAPartyVotingUsage.idl"

/**
* This module defines interface s supported by the USM and typically used by the SSM
* component. The interface s are most likely to be used when the USM/
ssUAP also support
* the PartyVotingUsage feature set across Ret.
**/

module TINAScsUSMPartyVotingUsage{

interface i_PartyVotingInfo {
};

}; //module TINAScsUSMPartyVotingUsage

#endif // TINAScsUSMPartyVotingUsage_IDL

2.35 PLATyToolsFix
#ifndef PLATyToolsFix
#define PLATyToolsFix

//
// to get around problem of nested module s in
// RP0.7/TINACommonTypes.idl
//

module CosTrading {
typedef string Istring;
typedef Istring PropertyName;
typedef sequence <PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {

PropertyName name;
PropertyValue value;

};
typedef sequence <Property> PropertySeq;

enum HowManyProps {none, some, all};
union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;
};

}; // module CosTrading

//
// to get around problem of nested module s in
// RP0.7/streams/TINASBComSCommonTypes.idl
//

module m_STATE {

enum t_OperationalState { /* single-valued and read-only */
Disabled, /

* resource totally inoperable and unable to provide service to the users */

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

237

Enabled /* resource partially or fully operable and available for use */
};

enum t_UsageState { /* single-valued and read-write */
/* Not all values are applicable to every class of managed object */
Idle, /* resource not currently in use */
Active, /* resource in use and with sufficient spare operating capacity */
Busy, /* resource in use but no spare operating capacity */
Reserved /* resource reserved. This is NOT an ISO state */

};

enum t_AdministrativeState { /* single-valued and read-write */
/* Not all values are applicable to every class of managed object */
Locked, /* prohibited from performing services for its users */
ShuttingDown, /* permitted to existing instances of use only */
Unlocked /* permitted to perform services for its users.

This is independent of its inherent operability */
};

struct t_ManagementState {
t_OperationalState operationalState; // $$s004$$
t_UsageState usageState; // $$s004$$
t_AdministrativeState administrativeState; // $$s004$$

};

/* 1.2. Status Attributes (qualify the state attribute) -------- */

enum AlarmStatus { /* set-valued and read-write */
UnderRepair, /* resource currently being repaired */
Critical, /* some critical alarms have not yet been cleared */
Major, /* some major alarms have not yet been cleared */
Minor, /* some minor alarms have not yet been cleared */
AlarmOutstanding /* see additional attributes */

};

enum ProceduralStatus { /* set-valued and read-write */
InitializationRequired, /* the resource requires

initialization to be invoked by the manager */
NotInitialized, /* the resource initializes ifself autonomously */
Initializing, /* initialization procedure not yet completed */
Reporting, /* the resource is notifying the results of an

operation. Its operational state is Enabled */
Terminating /* the resource is in termination phase */

};

enum AvailabilityStatus { /* set-valued and read-only */
InTest, /* the resource is undergoing a test procedure */
Failed, /* the resource has an internal fault.

Its operational state is Disabled */
PowerOff, /* the resource is not powered on.

Its operational state is Disabled */
OffLine, /* the resource requires to be placed on-line.

Its operational state is Disabled */
OffDuty, // $$s004$$

/* the resource has been made inactive internally.
Its operational state is Disabled or Enabled */

Dependency, /* the resource cannot operate because some other
resource on which it depends is unavailable.
Its operational state is Disabled */

Degraded, /* but its operational state is Enabled */
NotInstalled, /* the resource represented by the managed

object is not present or is incomplete.
Its operational state is Disabled */

LogFull /* log full condition (see Rec. X.735) */
};

enum ControlStatus { /* set-valued and read-write */
SubjectToTest, /* available for users, but tests may be

conducted on it */
PartOfServicesLocked, /* administrative state = Unlocked */
ReservedFortest, /* administrative state = Locked */

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

238

Suspended /* administrative state = Unlocked */
};

enum StandByStatus { /* set-valued and read-only */
/* its value is only meaningful when the back-up relationship

role exists (see Rec. X.732) */
HotStandBy, /* Not providing service, but operating in synchronism

with the resource that is to be backed-up */
ColdStandBy, /* Not providing service. Take-over

requires some initialization activity */
ProvidingService /* */

};

/* From ETSI/NA4, Network Level View: ServiceState ------------- */
/* ServiceState values are defined as a combination of OperationalState,

UsageState, AdministrativeState, AvailabilityStatus and ControlStatus */

enum ServiceState {
Planned,
InServiceAssignedBusy,
InServiceAssignedActive,
InServiceReserved,
InServiceSpare,
UnavailableFaultyAssigned,
UnavailableFaultyReserved,
UnavailableFaultySpare,
UnavailableLockedAssigned,
UnavailableLockedReserved,
UnavailableLockedSpare,
UnderTestAssigned,
UnderTestReserved,
UnderTestSpare,
CeasingShuttingDown,
CeasingShutDown,
Decommissioned

};

}; // module m_STATE

#endif

2.36 Security
#ifndef _security_idl_

#define _security_idl_

//

// File Name: Security.idl

// Decription: definitions for security components .

// Revision Histroy:

// 9-17-97 v0.1 by Takeo Hamada

// 9-18-97 v0.2 by Takeo Hamada

// module struct ure revised, passed hidl

// compiler.

//

#ifdef debug

module Security {

typedef sequence <octet > Opaque;

// same as Security::Opaque, CORBA security 15-76.

};

#endif

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

239

#endif

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

240

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

241

Annex 3. Subscription Information Model

The subscription management information model contains all the information required to handle end-
users, subscribers and subscription life cycle. It is closely related to service life cycle management
as consumers are subscribed to services that are deployed and operational.

The model is divided in several fragments:

• Subscription Information Model: represents the entities and relationships required to
manage subscriptions, subscribers and end-users in a retailer domain.

• Subscription Business model: representing the relationships between retailers, subscrib-
ers and end-users.

• Service Profile model: representing the relationship between service life-cycle manage-
ment information objects (service description and service template), subscription man-
agement information objects (subscription profile and SAG service profile) and user cus-
tomization information objects (user service profile). It gives an idea on the process fol-
lowed to define the user service profile that will be applied to a particular service session.

The model includes the following main entities:

• Subscriber: It represents an entity (a person or organization) that signs a contract with the
retailer for the provision of a (set of) service(s). This class contains all the information re-
lated to the subscriber that is independent from the services it is subscribed to. It includes
subscriber identification, address, contact points, etc.

• Subscription Assignment Group (SAG): It represents a group of users, terminals or NAPs
(Network Access Points) associated to, and defined by, a subscriber who share a com-
mon service profile (the SAG service profile).

• Subscription Contract: It represents the agreement for the provision of a service to a sub-
scriber. It describes the terms of the agreement. This class does not describe service spe-
cific information but the conditions of the contract for the provision of the given service.
This can include payment mode, bank account information, etc.

• Service Description: It represents the service specification produced by a standardization
body, industrial forum or group of companies. It described a particular service type.

• Service Template: It describes the generic information and behavioral characteristics of a
service instance (of a specific service type) as offered by a service provider. The descrip-
tion is done following the service description corresponding to the implemented service
type.

• Subscription Service Profile: It represents the tailoring of a Service Template to the spe-
cific requirements and needs of a subscriber.

• SAG Service Profile: It is a customization of a subscription profile for a SAG.

• Service Contract: It describes the terms of the provision of a specific service to a subscrib-
er. It collects the subscription and SAG service profiles, defining the agreed service char-
acteristics, the generic ones for the provider and the specific ones for each SAG, respec-
tively.

3.1 Subscription Business Model
Figure 3-1 is a part of the business model representing the relationships between the stakeholders
involved in a subscription, namely subscribers, retailers and end-users.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

P242

A Subscriber may sign Subscription Contracts with a number of Retailers. These contracts represent
the service independent part of the agreement (v.g., payment mode, subscription period, etc.). Of
course, subscribers sign a subscription contract with a retailer to receive one or more Services. For
each of the subscribed services, the retailer may allow the subscriber to set a number of conditions
(service characteristics), that compose the Service Contract. The service contract details the terms
of the provision of a specific service to a particular subscriber. A number of entities -Users, Terminals
or NAPs- can be associated to a subscriber. If a subscriber does not want to grant the same service
characteristics to all these entities, he can group them in different Subscription Assignment Groups,
each one with a different service profile (SAGServiceProfile). By default, at least one SAG including
all the users (terminals or NAPs) is considered for each subscriber.

3.2 Subscription Management Information Model
This model represents the information required to handle subscriptions, subscribers and end-users
in a retailer domain.

Figure 3-2 represents mainly the relationship between a service and a subscriber, described in terms
of a number of service profiles (service template, subscription profile and SAG service profile).

Retailer

Subscriber Service

SubscriptionAssignmentGroup

Terminal NetworkAccessPointUser

SubscriptionContract

ServiceContract

1+

1+

1+

1+

1+

Figure 3-1. Subscription Business Model

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

243

A Subscriber subscribes to a number of Services; at least one to be considered as such. The agreed
Service Contract defines the conditions of the service provision for each of the service subscriptions.
A Service Template describes the characteristics of the Service provided by the retailer. The retailer
may give the subscriber the option to select specific service parameters to apply to all its associated
entities1 -Subscription Profile- or to a group of them -SAG Service Profile-, reducing the alternatives
(restricts) given in the service template. These profiles are the main part of the service contract.

A set of entities, Users, Terminals or NAPs, can be associated to a subscriber. The subscriber may
not want to grant all of them with the same service characteristics (or privileges). For this reason, the
subscriber can group them in a set of Subscription Assignment Groups (SAG) and assign a particular
profile (SAG Service Profile) to each group.

3.3 Service Profile Definition
This diagram represents the relationship between the different profiles used in the service
architecture. A service profile is used to describe the characteristics of the provision of a service to a
customer.

The ones on top of the hierarchy describes the characteristics associated to a service type (Service
Description) and the ones related to a specific service instance2 (Service Template). Both are
handled by the Service LifeCycle Management component and are part of the service type
management functionality.

1. Users, terminals or network access points.

2. By service instance we mean a particular implementation of a service type by a service provider.

ServiceSubscriber

SubscriptionAssignmentGroup

Terminal NetworkAccessPoint User

ServiceTemplate

SAGServiceProfile

SubscriptionProfile

ServiceContract

subscribe

1+

describes

restricts

restricts

1+

1+

Figure 3-2. Subscription Management Information Model

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

P244

The Subscription Profile represents the tailoring of a service template to the requirements and needs
of a subscriber, while the SAG Service Profile is a customization of the former for a specific SAG,
reflecting the fact that in some subscriber organizations not all the users are granted with the same
service characteristics. These profiles are defined by the subscriber at subscription time and handled
by the Subscription Management components.

Finally, in some cases the end-user is granted with customization capabilities and is allowed to define
its own User Service Profile, derived and constrained by the SAG Service Profile corresponding to
the SAG the user is assigned to. This is not part of the service contract and thus not a responsibility
of the subscription management components. It is handled by the User Agent as part of the user
profile management functionality.

3.4 Service Dependencies
In some cases, the provision of a service requires the use of other services. This is the case of
complex services that are composed of a number of basic services. In this case, the subscription to
the compound service will require the definition of the service characteristics (set up of a Service
Contract) for the constituent (dependent) services.

In some other cases, this may not be an operational matter but a marketing one. For instance, a
retailer may decide to offer a set of services as a package and not to allow their independent
subscription. In this example, the services are mutually dependent from a contractual viewpoint.

ServiceDescription

ServiceTemplate

SubscriptionProfile

SAGServiceProfile

restricts

restricts

UserServiceProfile

restricts

Service Type
Management
(SLCM)

Subscription
Management
(Subs)

User Profile
Management
(UA)

Figure 3-3. Service Profiles.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

245

Figure 3-4 represents how a subscriber may be required to agree on a set of service contracts when

he subscribes to a service that depends on some other services. A service contract dependency is
derived from the service dependency.

Service

depends on

Subscriber

ServiceContract

subscribes

required by

1+

derived from

Figure 3-4. Impact of Service Dependencies on Service Contracts

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

P246

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

247

Annex 4. Suggested Decomposition for the Subscription

Management Component

In this annex, an internal decomposition for the subscription management component is described.
Although, it is not prescriptive it is strongly recommended as it provides a simple and natural way of
handling the two main concepts in a subscription database: subscribers and service contracts. The
reason for not making it prescriptive is just the idea that it is likely that most of the retailers will wish
to keep their already existing subscription databases while connecting them to new service systems
like the one provided by TINA. For this reason, only the interfaces to other TINA service components
and the interfaces for online subscription services are prescribed.

4.1 Subscriber Manager (SubM)
It manages the subscribers’ lifecycle.

The Subscriber Manager (SubM) offers two internal (to Sub components) interfaces:

• i_subSCooManagement : to create, delete and query about subscribers, and

• i_subSCMNotify : to notify about new service contracts or changes in the already
signed ones.

SubM maintains a Subscriber Object (SubO) per subscriber. This SubO offers two external
interfaces:

subscriber (session) related compo-

SLCM

instantiation

SSM
USM

SF

namedUA

USM/SSMols

Subscription
Subscriber

Subscriber
 Manager

Service

Service Contract
Manager

Contract
Coordinator

Sub

SFols

User

Session

Subscriber

Session

UA

Figure 4-1. Relationship with other components in the SA.

user (session) related compo-

subscription mgmt components

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

248

• i_SubscriberInfoQuery : to query subscriber information, and

• i_SubscriberInfoMgmt : to update subscriber information.

4.1.1 i_SubscriberInfoQuery

:This interface is offered to the access components (NamedUA, PeerA) to allow them to retrieve the
subscription information associated to a particular user, the one that the access components is
representing.

The most important operations in this interface are:

• listServices (): returns the list of services the user is subscribed to, indicating which
ones are available with the current terminal configuration.

• getServiceProfiles (): returns the profile assigned to the user (SAG service profile)
for a specific service or a list of services.

• checkServiceProfile (): It checks whether the User Service Profile (customized by
the end user) is compatible with the subscribed profile (corresponding SAG Service Pro-
file).

4.1.2 i_SubscriberInfoMgmt

This interface allows to add, modify or delete subscriber related information like associated entities
(users, terminals or NAPs), subscription assignment groups and associations of service profiles to
SAGs. From this interface, the client can access only to the information of a particular subscriber.

• createEntities (): it creates the entities specified as a parameter returning an identi-
fier for each of them.

• deleteEntities (): it deletes the entities specified as a parameter. It removes any ex-
isting assignment to SAGs these entities could have.

• createSAGs (): it creates a (number of) SAG(s). A list of entities for every SAG can be
specified. A SAG identifier is returned to ease further management.

• assignEntitiesToSAG (): It assigns a list of entities to a SAG.

• removeEntitiesFromSAG (): It removes a list of entities from a SAG.

• listEntities (): It returns the list of entities associated to the subscriber. If a (list of)
SAG identifier(s) is specified, it returns only the users assigned to that(those) SAG(s).

• listSAGs (): It returns the list of SAGs (ids) for that subscriber.

• getSubscriberInfo (): It returns the information about the subscriber.

• setSubscriberInfo (): It modifies the information about the subscriber.

• listSubscribedServices (): It returns the list of services subscribed by the subscrib-
er. If a user is specified, it returns the list of services granted to that specific user by the
subscriber.

4.1.3 i_SubscriberLCMgmt

This interface is offered to the Subscription Coordinator (SCoo) to allow it to create, delete and list
subscribers.

The most important operations in this interface are:

• createSubscriber (): creates a subscriber object and returns its interfaces.

• deleteSubscriber (): deletes a subscriber object.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

249

• listSubscribers (): returns the list of subscribers. If a service identifier is specified, it
returns the list of subscribers subscribed to that service.

• listUsers (): returns the list of users. If a service identifier is specified, it returns the list
of users subscribed to that service.

4.1.4 i_ServiceContractInfoUpdate

This interface is offered to the Service Contract Manager (SCM) to allow it to notify a subscriber object
about services contracted by its represented subscriber.

The most important operations in this interface are:

• notify (): notifies the SubO about a new, modified or cancelled service contract signed
by the represented subscriber. It passes also a reference to the Service Contract Object
in order to allow it to get further information.

4.2 Subscription Coordinator (SCoo)
This is the main control point of subscription management. It coordinates subscriber management
and service contract management. When it receives a request to subscribe a new customer, it
creates a Subscriber Object for this new customer (via the i_subSCooManagement interface in the
SubM) and a set of Service Contracts (via the i_subSCooManagement interface in the SCM), one
for each requested service.

It provides interfaces to clients to get the appropriate interface references (i_InitialAccess) to
perform its corresponding subscription management operations.

An interface (i_Subscribe) is offered to allow clients to apply for or cancel service contracts or
subscriptions to the retailer domain.

This component is also the point of contact with the SLCM. It is offering an interface
(i_ServiceNotify) to this component to receive notifications about new available services or
modification/withdrawal of existing ones.

All the interfaces offered by this component are external (client are not part of the set of subscription
management components).

4.2.1 i_InitialAccess

It allows a client to request an interface to access to the subscription management functionality. In
case the client is a UA, it returns a i_SubscriberInfoQuery interface reference and, in case it is
a SSMols, a i_Subscribe interface reference. A terminate operation is provided to release the
interfaces once they are not needed.

• init (): returns the list of interface references corresponding to the client that makes the
request.

• terminate (): release the resources that could be allocated in the init operation.

4.2.2 i_Subscribe

It allows to create a subscription contract for a subscriber. These are the main operations in this
interface:

• getReferences (): It returns the references to interfaces to modify subscriber info or ser-
vice contract info.

• listServices (): It returns the list of services provided by the retailer.

Service Component Specification Computational Model and Dynamics
Version 1.0b , January 19, 1998.

250

• subscribe (): It allows to create a subscription contract with the retailer. As input param-
eters it has the subscriber information and a list of services the subscriber is willing to sub-
scribe to. It returns a subscriber identifier, a reference to the subscriber information man-
agement interface (i_SubscriberInfoMgmtMgmt) and a list of interface references for con-
tracting each of the specified services (i_subSMContractService).

• unsubscribe (): It allows a subscriber to delete a (list of) service contract(s) or the whole
relationship with the retailer.

• contractService (): It subscribes a subscriber to a service and returns an interface ref-
erence where he can define the service contract (i_subSMContractService).

• listSubscribers (): It returns the list of subscribers. If a service Id is specified, it re-
turns the list of subscribers for that service. Only accessible for a retailer operator.

• listServiceContracts (): It returns the list of service contracts. If a service Id is spec-
ified, it returns the list of service contracts for that service. If a subscriber is specified, it
acts as the listSubscribedServices in the i_SubscriberInfoMgmt interface for
that particular subscriber. Only accessible for a retailer operator.

• listUsers (): It returns the list of users for a specified service. Only accessible for a re-
tailer operator.

Editor’s note: Maybe, we should move the operations only accesible to retailer operators to a different
interface. Any feedback about this is appreciated.

4.2.3 i_ServiceNotify

This interface allows SLCM to notify Sub about new services deployed and available for subscription
and use, or about modification or withdrawal of existing ones.

• notify (): it notifies Sub about the deployment, upgrade or withdrawal of services in the
network, so that Sub can have updated information about subscribable and available ser-
vices.

4.3 Service Contract Manager (SCM)
The SCM controls the service contract lifecycle for a specific service instance. There will be as many
SCMs as services is offering the retailer to the subscribers. A new SCM will be deployed every time
a new service is deployed and made ready for usage and subscription. It offers an internal interface
to the Subscription Coordinator (i_ServiceContractLCMgmt) to create, query and delete service
contracts.

It maintains a Service Contract Object (SCO) for each service contract. This object offers two
interfaces:

• i_ServiceContractInfoMgmt : it allows the modification and query of the service
contract information. This is an external interface that allows the client to define the ser-
vice contract.

• i_ServiceContractInfoQuery : it allows the retrieval of service contract information.
It is an internal interface used by the Subscriber Object to get information about the sub-
scribed services.

4.3.1 i_ServiceContractInfoMgmt

i_ServiceContractInfoMgmt provides functions to define and modify a service contract.

The main operations are:

• getServiceTemplate () : It returns the template for service profile definition.

Computational Model and Dynamics Service Component Specification
Version 1.0b , January 19, 1998

251

• defineServiceContract (): It allows to define the service contract. This contract in-
cludes, amongst other contractual information, the set of service profiles composing the
service contract, namely the subscription profile (applicable to all users) and the set of
SAG service profiles (each one applicable to a SAG and consistent with the subscription
profile). It returns a list of SAG profile identifiers to ease their future reference. It is used
to define and redefine (modify) service contracts.

• defineServiceProfiles (): It allows to define a set of service profiles for the service
contract, namely the subscription profile and the set of SAG service profiles. It returns a
list of SAG profile identifiers to ease their future reference. It is used to define and redefine
(modify) service profiles.

• deleteServiceProfiles (): It deletes a service profile removing the SAG that could
be associated to it.

• getServiceContractInfo (): It returns the information related to the service contract.
If a list of SAGs is specified, the set of associated SAG service profiles defined for those
SAGs in the contract is returned.

4.3.2 i_ServiceContractInfoQuery

This interface provides functions to query information about a service contract. It is used by a
Subscriber Object (SubO) to retrieve the subscriber’s service profiles.

The main operation is:

• getServiceProfiles () : It returns the service profiles defined in the service contract.
If a SAG identifier is specified, only the SAG Service Profile for that SAG is returned.

4.3.3 i_ServiceContractLCMgmt

This interface provides functions for creating, querying and deleting service contracts. It is used by
the Subscription Coordinator (SCoo).

The main operation is:

• listServiceContracts () : It returns the list of service profiles signed. If a service
identifier is specified, only the service contracts for that service are returned. If a subscrib-
er is specified, using its account number, the list of service contracts for that subscriber
is returned.

• createServiceContracts () : It creates a set of service contracts and returns the list
of references to i_SubInfoMangement interfaces (one per service contract) required to
manage them.

• deleteServiceContracts () : It deletes the set of service contracts specified as pa-
rameters.

