
1

Appendix C: Example of Object-Z

This appendix contains an Object-Z speci�cation of the two generic

relationship types composition and containment, the object types

Subnetwork and Link and the relationships between them.

Comments are given in the text to explain the notation.

The following rules are used for indentation and lineshift in asser-

tions:

1) lineshift without indentation means conjunction (whenever possi-

ble).
2) lineshift with indentation means begin parenthesis \(".
3) lineshift with outdentation means end parenthesis \)".

Composition[X ;Y]

Generic relationship type: \an X is composed of some Y 's".
X and Y are generic parameters, i.e. sets that are used, but
provided later.

ComposedOf : X $ Y

Composites : PX
Components : PY

ComposedOf is a binary relation between X and Y .
Composites is a set of X members and Components is
a set of Y members.

Composites � domComposedOf

Components � ranComposedOf

The domain of ComposedOf is a subset of Composites.

The range of ComposedOf is a subset of Components

The interpretation of Composites and Components may vary.

Later we will give an example where they represent available

instances of X and Y (the Information Base).
The � relations indicates that zero role-cardinality is possible.

Appendix C 2

AddComposites

An operation

�(Composites;Components;ComposedOf)
Composite? : X

AddComposites changes the variables in the � list.

Composite? is an input to the operation

Composite? 62 Composites

Composite? is not a member of the Composites set

Composites 0 = Composites [fComposite?g

The new value of Composites is the old value with

Composite? inserted (set union).

ComposedOf � ComposedOf 0

8 x : X � 8y : Y j x 7! y 2 ComposedOf 0 n ComposedOf �

x = Composite? ^ y 2 Components

8 means \for all", 9 means \there exist".

Only tuples with �rst element Composite? and second ele-
ment in Components are inserted into ComposedOf

RemoveComposites

�(Composites;Components;ComposedOf)

Composite? : X

Composite? 2 Composites

Composites 0 = Composites n fComposite?g
ComposedOf 0 = fComposite?g �C ComposedOf

The Composite? is removed from the Composites and the re-

lation.

Appendix C 3

AddComponents

�(Components;Components;ComposedOf)
Component? : Y

Component? 62 Components

Components 0 = Components [fComponent?g
ComposedOf � ComposedOf 0

8 x : X � 8y : Y �

8 x 7! y : X $ Y j x 7! y 2 ComposedOf 0 n ComposedOf �

y = Component? ^ x 2 Composites

RemoveComponents

�(Components;Components;ComponentOf)
Component? : Y

Component? 2 Components

Components 0 = Components n fComponent?g
ComposedOf 0 = ComposedOf �B fComponent?g

Add

�(ComposedOf ;Composites;Components)
NewComponent? : Y
NewComposite? : X

NewComposite? 7! NewComponent? 62 ComposedOf

ComposedOf 0 = ComposedOf[

fNewComposite? 7! NewComponent?g
NewComposite? 2 Composites 0

Newcomponent? 2 Components 0

Appendix C 4

Remove

�(ComposedOf ;Composites;Components)
RemoveComponent? : X

RemoveComposite? : Y

RemoveComposite 7! RemoveComponent? 2 ComposedOf

ComposedOf 0 = ComposedOf n

fRemoveComposite 7! RemoveComponent?g
Composites 0 � Composites

Components 0 � Components

Containment [X ;Y]

Composition[X ;Y]

A generic relationship between X members and Y members.
\an X contains some Y s". Inherits Composition[X ;Y].

Components = ranComposedOf

All components have to have a container

8y : Y j y 2 Components �

9
1
x : X j x 2 Composites �

x 7! y 2 ComposedOf

All components are in at most one container

This could also have been modelled as a function from Y to X .

Appendix C 5

The invariant has implications for the inherited operations:

AddComposites: ComposedOf and Components are left un-

changed.

RemoveComposites: All components of the removed compos-

ite are removed from Components and all mappings involving

the removed composite are removed from ComponentOf .

AddComponents: Composites may grow or shrink and the map

(The Container, NewComponent?) is added to ComposedOf

RemoveComponents: Composites may grow or shrink and
the map (The Container, Component?) is removed from

ComposedOf

Add : Composites may grow or shrink and the new component
is added to Components

Remove: Composites and Components may shrink.

Now follows the Subnetwork and Link object types and the Sub-

networkSubnetwork, SubnetworkLink and ConnectedBy relationship
types.

Subnetwork

level : N

9 s : Subnetwork � s:level = 0

The level attribute indicates the level of nesting of the subnet-
work within the layered network.

Appendix C 6

RootSubnetwork

Subnetwork

level = 0

NonMaxSubnetwork

Subnetwork

level > 0

Link

We are focussing on relationships so Links do not have any
attributes or invariants at this time.

SubNSubN

Containment [Subnetwork ;NonMaxSubnetwork]

This is a relationship class describing the

Subnetwork/Subnetwork relationship type. It gives actual pa-
rameters Subnetwork and NonMaxSubnetwork to the generic
parameters in Containment , which it inherits.

8 s : Components � 8 s1 : Composites �

s 7! s1 2 Component) s1:level = s:level + 1

Appendix C 7

SubNLink

Containment [Subnetwork ;Link]

This is a relationship class describing the Subnetwork/Link re-

lationship type. Note that it inherits a containment relationship

so that all properties of containment are preserved.

8 l : Link � l 2 Components

For every link l there exist exactly one Subnetwork s such that

s contains l .

Appendix C 8

ConnectedBy

This is a relationship class describing the connected-by relation-

ship type. Exactly two Subnetworks are connected by a link in

this relation.

SLS : P(NonMaxSubnetwork � Link � NonMaxSubnetwork)

8 s1; s2 : NonMaxSubnetwork � 8 l : Link j

(s1; l ; s2) 2 SLS �

(s1 6= s2 ^ s1:level = s2:level > 0)

8 s3; s4 : NonMaxSubnetwork �

(s1; l ; s2) 2 SLS ^ (s3; l ; s4) 2 SLS)

s1 = s3 ^ s2 = s4

if SLS (s1; l ; s2) and SLS (s3; l ; s4) then s1 = s3 and s2 = s4.

9 s : Subnetwork �
9SS : SubNSubN �

s 7! s1 2 SS :ComposedOf

s 7! s2 2 SS :ComposedOf

9SL : SubNLink �

s 7! l 2 SL:ComposedOf

If (s1; l ; s2) 2 SLS then there exist some subnetwork s con-
taining s1 and s2 and s contains l in the SubNLink rela-
tionship.

\The link connects two subnetworks in a larger subnetwork con-
taining the subnetworks and the link"

Appendix C 9

The following describes an example application of the previous mod-

eling. It uses the classes to create a layered network.

[Layered ;Links;SL;SS ;CB ; InformationBase]

These are given sets

InformationBase = Layered [Links [SL [SS [CB

The Layered set contains the Subnetwork objects of the layered
network.
The Links set contains the Link objects of the layered network.
The SS set contains the SubnetworkSubnetwork relationship objects

within the layered network.
The SL set contains the SubnetworkLink relationship objects within
the layered network.
the CB set contains the ConnectedBy relationship objects within
the layered network.

Only object identities are contained in these sets.

Appendix C 10

LayeredNetwork

Root : RootSubnetwork
S : PNonMaxSubnetwork

L : PLink

SNSN : SubNSubN
SNLN : SubNLink

CONB : ConnectedBy

Root :Level = 0
Layered = fRootg [S

SNSN :Components = S

SNSN :Composites � Layered

SNLN :Composites = Layered

SNLN :Components = Links

8 s1; s2 : Subnetwork � 8 l : Link
j (s1; l ; s2) 2 CONB :SLS �

s1 2 S ^ s2 2 S ^ l 2 Links

8 s : S � 9 s2 : S � 9 l : Links �
(s; l ; s2) 2 CONB :SLS _ (s2; l ; s) 2 CONB :SLS

