
Telecommunications

Networking

Information

Architecture

Consortium Issue Status: Public Document

Network Components Specification
Version 2.2

Abstract: This document contains the computational specification of the
components identified by the TINA Network Resource Architec-
ture. The work is part of the TINA-C specification effort and as
such an element in the TINA-C architecture. This document is
intended to replace the 1995 Connection Management Specifica-
tions document.

Keywords: Network Component, Network Resource Architecture, Connec-
tion Management, Open Distributed Processing, Telecommuni-
cation Management Network, Managed Objects, G.803
Functional Architecture.

Author(s): Chelo Abarca, Takeo Hamada, Hyun
Cheol Kim, Carlo Licciardi, Jarno
Rajahalme, Raja Rosli, Frank
Steegmans, Wataru Takita

Editor: Takeo Hamada, Frank Steegmans

Type: Public Document

Document Label: NCS v2.2_97_12_20

Date: Dec. 20, 1997

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20

Public Document 3

Table of Contents

Table of Contents. . 3
0. Open Issues and Reader’s Guide . 7

0.1 Objectives . 7
0.2 Major Structural Issues of This Document . 7
0.3 Major Technical Issues of This Document . 8
0.4 Evaluation of Technical Maturity of Sections 9
0.5 Correspondence between NCS components and IDL specifications 9
0.6 Compilation by hidl/hodl and HTML Files . 10

1. Introduction . 13
1.1 Objective . 13
1.2 Audience . 13
1.3 How to Read This Document . 13

1.3.1 Prerequisites . 13
1.3.2 Document Organization . 13

1.4 Main Inputs . 14
1.5 Feedback . 14

2. Specification Methodology . 15
2.1 Definition of a Network Component . 15
2.2 Component Specification Conventions . 16

2.2.1 Introduction . 16
2.2.2 ODL Specifications (Prescriptive) . 16
2.2.3 Behavior Specifications . 16

2.3 Naming Conventions. 17
3. Network Component Relationships . 19
4. Common Definitions . 21

4.1 Generic Type Definitions. 21
4.1.1 TINA Naming . 21
4.1.2 Management States. 21
4.1.3 Management Interface . 21

5. Communication Session Related Components 23
5.1 Communication Session Manager (CSM) . 23

5.1.1 Related Information Model Fragment 23
5.1.2 Behavior Specification . 24

5.2 Terminal Communication Session Manager (TCSM) 27
5.2.1 Related Information Model Fragment 28
5.2.2 Behavior Specification . 28

5.3 TINA Communication Session: interfaces descriptions 30
5.3.1 TCSM and CSM interfaces: high level descriptions. 31
5.3.2 Components and interfaces. 34

6. Connectivity Session Related Components 45
6.1 Overview of Connectivity Session . 45

6.1.1 Relationship to ConS -RP. 47
6.1.2 Connectivity Session (ConnS) . 47
6.1.3 Network Flow Connection (NFC) . 47
6.1.4 Network Flow End Point (NFEP) . 48

4 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
NCS v2.2_97_12_20

6.1.5 Network Flow Connection Branch . 48
6.1.6 Related Information Model Fragment. 49

6.2 Connection Coordinator Factory (CCF) . 51
6.2.1 Behavior Specification . 51

6.3 Flow Connection Controller . 54
6.4 TINA Connectivity Session: interfaces description 55

6.4.1 CCF, CC and FCC interfaces: high level descriptions 55
7. Layer Network Related Components . 71

7.1 Layer Network Coordinator (LNC) . 73
7.1.1 Interface Description . 74

7.2 Trail Manager (TM) . 75
7.2.1 Interface Description . 76

7.3 Terminal Layer Adapter (TLA) . 76
7.3.1 Interface Description . 77

7.4 Tandem Connection Manger (TCM). 81
7.4.1 Interface Description . 82

7.5 Layer Network Binding Manager (LNBM) . 83
8. Subnetwork Related Components . 85

8.1 Connection Performer . 85
8.2 Related Information Model Fragment . 86
8.3 Mapping of Information Object to CP . 88
8.4 Computational structure . 88

8.4.1 General access interface to NRIM objects 88
8.4.2 Connection Performer Interface--Subnetwork Connection Management. 90
8.4.3 Example scenarios . 91

9. Accounting Management Components . 93
9.1 Overview of Accounting Management in TINA Service 93

9.1.1 Visibility of Billing Context . 95
9.2 An Example Scenario of Accounting Management 96
9.3 Accounting Event Management . 98
9.4 Essential Accounting Events in Network Resources 99
9.5 Non-essential Accounting Events in Network Resources100
9.6 Generic Accounting Management Components. 102

9.6.1 AmcLadder .102
9.6.2 i_AmcLadderElement . .104
9.6.3 Accountable Object . .104
9.6.4 Usage Metering Log Manager (UMLog) 104

9.7 Management Domain Related Components 105
9.7.1 Accounting Policy Manager. .105

9.8 Relationship to Other Documents . .105
10.Fault Management Components . .107

10.1 Introduction. .107
10.2 Computational Viewpoint. .107
10.3 Functions . .108

10.3.1 FM functions. .108
10.3.2 COs functions . .108
10.3.3 Future extensions . .110

11.Document History .111

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20

Public Document 5

12.Acronyms .115
13.Glossary . .119
14.Annex: ODL-specs .125

14.1 ConnectionCoordinator.odl . .125
14.2 ConnectionCoordinatorFactory.odl . .125
14.3 ConsUserAgent.odl. .126
14.4 ContractProfileManager.odl .127
14.5 FlowConnectionController.odl .127
14.6 InitialAgent.odl .128

15.Annex: IDL-specs . .131
15.1 CLNCommonDefs.idl . .131
15.2 ComSCommonDefs.idl . .133
15.3 Common.idl. .134
15.4 ConnectionPerf.idl .135
15.5 NRACommonDefs.idl. .140
15.6 NrimObjectConf.idl . .141
15.7 NrimRelConf.idl. .147
15.8 PLATyToolsFix.idl .156
15.9 RACommon.idl . .156
15.10 Security.idl .162
15.11 States.idl .162
15.12 UMLogManager.idl .165
15.13 accPolicyManager.idl .167
15.14 attribute.idl .168
15.15 capability.idl . .168
15.16 csm.idl. .171
15.17 exceptions.idl .175
15.18 lnc.idl .176
15.19 lncfed.idl. .183
15.20 media.idl. .187
15.21 naming.idl . .188
15.22 nfep.idl .189
15.23 sfep.idl. .191
15.24 sfepcoms.idl . .191
15.25 tcsm.idl .192
15.26 tla.idl. .197

6 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Open Issues and Reader’s Guide

Public Document 7

0. Open Issues and Reader’s Guide

0.1 Objectives

First of all, this document is INCOMPLETE. Although the network component specification
(NCS) was planned to be made a baseline of TINA documents, some interruptions both in
terms of work schedules and human resources of the core-team prevented it from making
the final goal. The current document is delivered “as is”, i. e. this document is not reviewed
by the stream or the core-team, or even adequately edited. It is more of less a compilation
of final drafts of the last generation of core-teamers, with marginal editing efforts.

The sole purpose of this version is to provide a starting point for the continuing NCS work,
which is planned to be done by a yet-to-be-identified working group. This work is supposed
to have critical importance of the TINA resource architecture work, which is the culmination
of 5 years’ resource architecture works from NRIM to NRA, done in the core-team.

In this section, we present our analysis of the current status. Then we list open issues,
works to be done to complete the document.

0.2 Major Structural Issues of This Document

Overall, we think that major topics of NRA has been covered in NCS. Though some ele-
ments (e. g. configuration, fault management) are still missing. Major structural changes are
still necessary, in particular

• Readability of IDL/ODL Files: readability of IDL/ODL files are still low. Some
files rely on modules, whereas other files rely on inheritance mechanism of
nested interfaces. In short, there is no consistent style in IDL files. There is no
naming convention consistently followed among current set of IDL files. Even
though the introduction part of this document states as if there is a naming con-
vention in this NCS document, too many of the files (in fact most of them) do not
follow it. A major restructuring of IDL files with a consistent naming + modular
scheme is necessary.

• ODL Specification: even when IDL specifications are done fairly well, ODL
specifications are still very immature. The current ODL specifications (idl/ob-
jects) only covers a small portion of the objects provided in NCS, and the ob-
jects provide only small portion of interfaces which they are expected to provide.

• IDL Specification: some sections of this document cite IDL files. They are, how-
ever, not necessarily most up-to-date. The IDL specification in this document
may differ from those in idl/modules. If they differ, those in original IDL files (idl/
modules) should have precedence over those in this document.

• Readability of Document: this document can be made readable, only when IDL/
ODL themselves are readable, since this document is intended to explain the
IDLs. By the reasons stated above, this document itself needs a major re-orga-
nization, to better reflect the structure of the specifications. The structure of this
document itself assimilates that of NRA v3.0, which is still missing some ele-
ments to be a complete architecture document (e. g. performance monitoring).

8 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Open Issues and Reader’s Guide NCS v2.2_97_12_20

• Separation of ConS: ConS reference point is described as a part of this NCS
document (IDL file is under idl/ConS directory). Although IDL files is separated
from other NCS specifications, the contents of the document has not been up-
dated to reflect the change. Old IDL files for connectivity session components
(cc.idl, fcc.idl, ccf.idl in ver. 2.1) are now replaced by ConS.idl. There are, how-
ever, interfaces of the relevant components (CC, FCC, CCF) not exactly in
ConS (e. g. i_Notify). Those interfaces will be subsequently added to respective
IDL/ODL files of respective components in the future update.

0.3 Major Technical Issues of This Document

60% to 80% of the interfaces and components of TINA connection management are al-
ready covered in this document. It means that most of the topics covered in NRIM and
much of connection management part of NRA are covered by this document, though they
have never been officially reviewed. Some recent advances since last release of NRA
(v3.0, Feb. 10, 1997) have been added, or planned to be added but not realized.

• Internet Transport: good basic concepts of connectionless network and use of
internet transport in TINA network resource layer have been established. The
results are published in TINA’97 (Santiago de Chile, Nov. 1997) by resource
streamers (“Managing TINA Streams that use Internet Transport”, Hyun Cheol
Kim et al.). The current version of NCS have already taken the proposal into its
specification (Sec. 7 Layer Network Related Components). A new computation-
al component called Layer Network Binding Manager (LNBM) has been added,
which manages technology-specific, connectionless network.

• QoS negotiation: ideas have been proposed in TINA’97 (Santiago de Chile,
Nov. 1997) by resource streamers (“Quality of Service Negotiation in TINA” by
Jarno Rajahalme et al.). The paper mainly discusses negotiation of QoS pa-
rameters at terminal level, and their mapping onto transport layer. The proposal
is not taken into the current NCS specification, and is yet to be reviewed.

• Configuration Management: a section is devoted for configuration management
in NRA. Though the topic is important, the whole material is missing in this ver-
sion of NCS.

• Fault Management: a section is devoted for fault management in NRA. In this
NCS document, a section (Section 10) is spent for fault management. Some ba-
sic concepts are presented, but the concepts are still immature and many parts
are still missing to be useful.

• Security Issues: security issues are only awkwardly handled in this document,
and inconsistent throughout this document. All interfaces exposed at reference
points (ConS, TCon) need at least have basic security measures (authentica-
tion, authorization) based on DPE security (i. e. CORBA security++). In this
NCS document, some interfaces in connectivity session components (CC,
CCF, FCC) require a set of security parameters represented by ‘t_SecHandle’.
Though its idea is correct, its semantics is yet to be clarified, and it is also likely
that the parameter is not necessary in regular operational environment using
CORBA security (corresponding parameter is passed as part of DPE security
operations, thus they do not appear at connectivity components API).

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Open Issues and Reader’s Guide

Public Document 9

0.4 Evaluation of Technical Maturity of Sections

In this section, we evaluate the current status of each section. These evaluation can not

help being subjective, but we feel they are fairly accurate estimation. The point represents
the maturity level of work item represented by respective section, from 0 (no work done) to
10 (complete). Each point can roughly translate into a week’s work of an expert in the ap-
propriate area. For example, section 6 (Connectivity Session Related Components) may re-
quire four more weeks to complete basic concepts (texts of this document) and 6 more
weeks to finish all relevant IDL/ODL files. There are other work items not listed in the current
NCS document, though, our expectation is that 6 mo. or 1 year of intensive work is neces-
sary to finish all the work items to a satisfactory level.

0.5 Correspondence between NCS components and IDL specifications

In the following, we show the correspondence between NCS components and IDL specifi-
cations (idl/modules). Although it should be shown throughout this document and ODL
specifications, which specifies relationships between computational object and interfaces,
both are immature at this point, the correspondence between NCS components and IDL
specification are not clearly shown.

Table 0-1. Evaluation of Technical Maturity of Sections

Basic Concept IDL/ODL Specification

2. Specification Methodology 7 N.A.

3. Network Component Relationships 5 N.A.

4. Common Definitions 3 3

5. Communication Session Related Components 7 4

6. Connectivity Session Related Components 6 4

7. Layer Network Related Components 7 5

8. Subnetwork Related Components 7 5

9. Accounting Management Components 7 6

10. Fault Management Components 2 0

Table 0-2. Correspondence between NCS components and IDL specifications

Section Component Names IDL File Names

2. Specification Methodology None. None.

3. Network Component Relationships None. None.

10 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Open Issues and Reader’s Guide NCS v2.2_97_12_20

0.6 Compilation by hidl/hodl and HTML Files

All the IDL/ODL files are successfully compiled using hidl compiler from OmniBroker and
hodl compiler by TINA-C, respectively. To apply hidl compiler, an aggregated IDL file is pre-
pared (idl/ncs.modules.idl). All the browsable HTML files are under idl/html directory.

• _top_.html: the result of hidl compiler, which translated the aggregated top-level
IDL file (ncs.modules.idl). The HTML file contains index of modules, interfaces,
and so on. Its URL is:
http://tinac.com:4070/97/resources/network/docs/ncs/v2.2/idl/html/_top_.html

4. Common Definitions None. Common.idl
NRACommon.idl
RACommon.idl
States.idl
attribute.idl
exceptions.idl
naming.idl

5. Communication Session Related Components CSM
TCSM

CLNCommonDefs.idl
capability.idl
csm.id
media.idl
sfep.idl
sfepcoms.idl
tcsm.idl

6. Connectivity Session Related Components CCF
CC
FCC

ConS.idl
nfep.idl

7. Layer Network Related Components LNC
LNBM
TM
TCM
TLA

lnc.idl
lncfed.idl
tla.idl

8. Subnetwork Related Components CP ConnectionPerf.idl
NrimObjectConf.idl
NrimRelConf.idl

9. Accounting Management Components AmcLadderElement UMLogManager.idl
accPolicyManager.idl

10. Fault Management Components AM
FC
TDS

None.

Miscellaneous None (for debugging). PLATyToolsFix.idl

Table 0-2. Correspondence between NCS components and IDL specifications

Section Component Names IDL File Names

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Open Issues and Reader’s Guide

Public Document 11

• _top_o_.html: the result of hodl compiler. The HTML file contains index of ob-
jects. Object HTML files are generated along with it, which shows its behavior,
and it points to HTML files of supported interfaces. Its URL is:
http://tinac.com:4070/97/resources/network/docs/ncs/v2.2/idl/html/_top_o_.ht-
ml

12 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Open Issues and Reader’s Guide NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Introduction

Public Document 13

1. Introduction

1.1 Objective

The objective of this document is to specify the network components as described by the
Network Resource Architecture (NRA) [4]. Components are specified using TINA ODL [8],
and the behavior of the components is specified with state diagrams and event traces.

This document is based on other TINA baseline documents. However, new considerations
regarding Network Resource Architecture or Network Resource Information Model may be
included. These will be introduced in upcoming releases of the other TINA documents.

This work is part of the ongoing Network Resource Architecture activity within the TINA-C
Core Team and aims at its part to harmonize the work done on the NRA and the relevant
TINA reference points effort.

1.2 Audience

The intended audience is the whole TINA community at large, but especially parties inter-
ested in the Network Resource Architecture in:

• The TINA Core-Team

• TINA auxiliary projects

• The TINA Trial projects

1.3 How to Read This Document

This document is part of a set of documents issued by the Core Team of the TINA Consor-
tium. In particular, this document further explains the interfaces and behavior of compo-
nents defined in the Network Resource Architecture.

1.3.1 Prerequisites

This document assumes the reader is familiar with at least the following TINA documents:

• Network Resource Architecture [4]

• Network Resource Information Model Specification [5]

• Computational Modeling Concepts [1]

• TINA Object Definition Language Manual [8]

1.3.2 Document Organization

A brief description of the contents of each major section in this deliverable follows.

• Section 2 defines the concept of network component and describes the use of
TINA ODL and other methodological considerations applied in the development
of the specifications. The structure and requirements for the specifications in
the following sections is also given.

14 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Introduction NCS v2.2_97_12_20

• Section 3 provides an overall presentation of the components of the network re-
source architecture, including description of component relationships.

• Section 4 deals with common definitions used in NCS, such management
states and attributes.

• Section 5 deals with communication session related components such as CSM
and TCSM.

• Section 6 covers connectivity session related components such as CCF, CC,
and FCC.

• Section 7 covers layer network related components such as LNC, TM, TLA,
TCM, and LNBM.

• Section 8 covers subnetwork related components such as connection perform-
er (CP) and element management objects (NRIM objects).

• Section 9 covers accounting management components.

• Section 10 covers fault management components.

• Section 11 presents the history of this document.

1.4 Main Inputs

The main inputs to this work are:

• Connection Management Specifications (1995) [2].

• Network Resource Architecture version 3.0 [4].

• Network Resource Information Model Specification [5].

• Reference Points [6].

• Connection Management Specifications for VITAL 2nd phase [11].

1.5 Feedback

Please send your comments via e-mail to: ncs@tinac.com. You can also access the web
page http://tinac.com:4070/97/resources/www/ncs.html for more information on the NCS
review process etc.

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Specification Methodology

Public Document 15

2. Specification Methodology

This section describes the specification methods used in this document. A definition for a
network component is given first, followed by the structure for individual component speci-
fications. TINA naming conventions are also summarized to facilitate consistent naming
throughout the document.

2.1 Definition of a Network Component

The current NRA [4] does not define the concept of the network component. For the pur-
pose of this specification, we define a network component as follows:

A (TINA) component is a computational object1 whose internal decomposition or
distribution pattern is not visible2. The component is characterized by its sup-
ported and required interfaces and the semantics of those interfaces. The inter-
faces are bound to the defined inter- and intra-domain reference points3 as well as
to TINA defined architectural separations4.

A network component is defined as a component within the scope of the Network
Resource Architecture.

Components are building blocks for the architecture, providing segmentation of the func-
tionality of TINA systems. Component specifications provide a high level view of the seg-
mented functionality, focusing only to the external interfaces and behavior. This allows the
components to be provided by different vendors and still interoperate. Component specifi-
cations may also suggest some internal decomposition of the component, but those parts
of the specifications are only descriptive.

Since components are defined as objects, they have all the characteristics of objects, es-
pecially:

1. Components collaborate through the defined interfaces.

2. Encapsulation: Neither internal state nor internal behaviour is visible to outside of the
component.

3. Specialization: Components can be refined through inheritance to allow vendor-spe-
cific added-value functionality, different distribution patterns, etc.

4. The initial interface of the component provides the contact point and component man-
agement functions.

1. Note that this definition requires relaxation of the definition of the computational object (CO) in the

current Computational Modeling Concepts [1], namely to allow a CO to composed of component COs.
See also Ch. 7.1 in [9] for related discussion.

2. Each instance of an interface will be bound to one DPE node, though.

3. See [7] for definition of TINA reference points.

4. E.g. separation between access, primary and ancillary service usage, and communication [9].

16 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Specification Methodology NCS v2.2_97_12_20

2.2 Component Specification Conventions

This section specifies the structure in which the individual component specifications are
given in the following sections.

Each component specification consists of following three parts:

1. Introduction

2. ODL specification

3. Behaviour specification

The content of each of these is described in the following sections.

2.2.1 Introduction

In this section the component is shortly introduced with a computational model fragment
showing the component in relation to other components. An internal subdivision can also
be suggested.

Since each object deals with a fragment of the information model, relevant mappings from
information to computational models are shortly presented, referring to [3] when necessary.

Each component has an initial interface. This interface serves as the entry point to the com-
ponent. Other interface references may be given through the initial interface or as return
values from other interfaces. These include the common management interfaces for the
components.

2.2.2 ODL Specifications (Prescriptive)

ODL specifications are used to specify the interfaces and related data types of the compo-
nent object. Common interfaces and data types are defined separately from the component
specifications.

OMG IDL is used to prescribe the interfaces and data types. TINA ODL is used to specify
the computational objects making use of the interface and data types. The file extension
.idl is used for OMG IDL files, and .odl is used for ODL files. This is to make use of OMG
CORBA tools easier.

2.2.3 Behavior Specifications

Behavior is specified at three levels:

1. At the component level: Generic description; how required and supported interfaces
are interrelated, how the component in question relates to other components.

2. At the interface level: General purpose and operations; how the operations in this
interface relate to each other.

3. At the operation level: Pre-conditions, sequence of actions and post-conditions. In
pre- and post-conditions, the state attribute values of all the objects involved are indi-

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Specification Methodology

Public Document 17

cated.

2.2.3.1 State Diagrams (Prescriptive)

State diagrams are used to specify the semantic relationships between interface opera-
tions. Each operation invocation typically causes a state change after which a given set of
operations can be invoked. State diagrams provide precise means for this kind of specifi-
cation without long natural language descriptions.

State diagrams belong to the prescriptive part of the architecture.

2.2.3.2 Event Traces (Descriptive)

Event traces are examples of possible operation sequences in graphical format. An event
trace can never completely specify component behavior, but can be used to describe e.g.
the most common use of the component. Event traces are valuable examples for under-
standing component usage, but provide little support for the component implementation.
Therefore event traces are descriptive.

2.3 Naming Conventions

General conventions used in IDL and ODL specifications:

• Object names appear in the format of ’XxxXxxXxx’.

- E.g. InitialAgent, UserAgent.

• Interface type names appear in the format of ’i_XxxXxx’

- E.g. i_ProviderInitial

• Operation names appear in the format of ’xxxXxxXxx’, and the first word (xxx)
is typically a verb.

- E.g. requestAccess(...) is a method on the i_ProviderInitial interface of the Ini-
tialAgent object

- It may also be written as
InitialAgent::i_ProviderInitial::requestAccess(...).

• Data type names appear in the format of ’t_XxxXxxXxx’.

• Constant names appear in the format of ’XxxXxxXxx’.

• Exception names appear in the format of ’e_XxxXxxXxx’.

• Parameter names appear in the format of ’xxxXxxXxx’.

• Comments are started with ’//’ and continue to the end of the line.

• Comments spanning multiple lines may use ’/* ... */’.

18 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Specification Methodology NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Network Component Relationships

Public Document 19

3. Network Component Relationships

The definition of TINA business roles, separation principles and conceptual layering dictate
the outer limits for the network components. While it would be tempting to go further in the
functionality subdivision, such subdivisions can not be conformance requirements. There-
fore, we define the network components using the most outer limits. This allows maximum
freedom for vendors to design the actual distribution patterns and functional subdivisions of
the components, while still maintaining the interoperability provided by the reference points.
Note, however, that a specification of an individual component is free to suggest further
subdivisions, especially if they make the specification more readable.

The reference points [7] divide the Network Resource Architecture functionality into a set of
categories. Figure 3-1 summarizes the reference points and the components they bind. The
lines in the figure represent the different reference points, individual computational interfac-
es are not shown. The components are:

• Communication session related components (Section 5):

- Communication Session Manager (CSM)

- Terminal Communication Session Manager (TCSM)

• Connectivity Session related components (Section 6):

- Connection Coordinator (CC)

• Layer network related components (Section 7):

- Layer Network Coordinator (LNC)

- Trail Manager (TM)

- Layer Network Binding Manager (LNBM)

- Tandem Connection Manager (TCM)

- Terminal Layer Adaptor (TLA)

• Subnetwork related components (Section 8):

- Network Management Layer Connection Performer (NML-CP)

- Element Management Layer Connection Performer (EML-CP)

Note that reference points below Layer Network (LNW)-RP are technology dependent, i.e.
they need to be specialized for different network technologies.

20 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Network Component Relationships NCS v2.2_97_12_20

Figure 3-1. Overview of the Network Components and Reference Points

EML

NEL

NML

SML

TLA

Consumer
Domain

Connectivity
Provider
Domain

Service
Provider
Domain

Service Components

TCSMCSM
Communication
Session

Connectivity
Session

Layer

Subnetwork

Subnetwork

Service
Session

CC

LNC

NML-CP

EML-CP

NE

Network

CPE-CP

NE

Cons-RP

EECom-RP

NML-RP

EML-RP

Ret-RP

TCon-RP
LNFed-RP

CSLN-RP
LNW-RP LNW-RP

Key:
CC = Connection Coordinator LNW = Layer Network
Cons = Connectivity Session NE = Network Element
CP = Connection Performer NEL = Network Element Layer
CPE = Customer Premises Equipment NML = Network Management Layer
CSLN = Client-Server Layer Network Ret = Retailer
CSM = Communication Session Manager RP = Reference Point
EECom = End-to-End Communication SML = Service Management Layer
EML = Element Management Layer TCon = Terminal Connectivity
LNC = Layer Network Coordinator TCSM = Terminal Communication Session
Manager
LNFed = Layer Network Federation TLA =Terminal Layer Adapter

UAP

EECom-RP

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Common Definitions

Public Document 21

4. Common Definitions

4.1 Generic Type Definitions

4.1.1 TINA Naming

TINA naming is explained in naming.idl (Section 15.21).

4.1.2 Management States

Management states are explained in States.idl (Section 15.11)

4.1.3 Management Interface

Management Interface allows operations on information object attributes as defined in
NRIM. In addition to the Get/Replace operations, object may support configuration man-
agement (Create/Delete operations).

One important portion of management interface is state management. This interface will be
used to control the states of the information model objects supported by components.
States of all the information objects are managed through this interface.

Usage of state management interface is normally not needed by the actual service use,
since setup operations allow specification for the initial states.

Information objects are addressed by names, so it is possible to implement one of the in-
terfaces for the whole component. Tina naming conventions are defined, and the compo-
nent uses them to consistently name all the created information objects.

State management interface has operations to both query and set the state of an object, or
group of objects. All operations are subject to policies and access rights.

22 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Common Definitions NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 23

5. Communication Session Related Components

5.1 Communication Session Manager (CSM)

The CSM computational object offers to service level (i.e. SSM) a logical view of connec-
tivity. Connectivity resources at this level are information streams. Information streams flow
from an endpoint to another endpoint. These endpoints are modelled as Stream Flow End-
points (SFEPs) and information streams as Stream Flow Connections (SFCs). So, connec-
tivity at this level must be requested in terms of SFCs. This means that a client of CSM can
setup, modify and release a Communication Session that is made up of one or more stream
flow connections.

Figure 5-1. CSM CO

5.1.1 Related Information Model Fragment

Figure 5-2. OMT diagram for EECom-RP

5.1.1.1 Communication Session (CommS)

An instance of this object type contains one or more stream flow connections. It represents
the total set of communication resources involved in a communication session. A client of
a communication session can establish, release and manipulate stream flow connections.

Attributes:

• Communication Session Name

• Success Criterion (AllorNone, BestEffort)

• Stream Flow Connection Description List

5.1.1.2 Stream Flow Connection (SFC)

An instance of this object represents a stream flow connection. A stream flow connection
transports information from a source stream flow endpoint to one or more sink stream flow
endpoints. Stream flow connections are always unidirectional. A stream flow connection
can be established, released, activated and deactivated. New branches can be added or
deleted to/from a stream flow connection. A stream flow connection is always either point-
to-point or point-to-multipoint unidirectional (when non specified it is assumed to be point-
to-multipoint by default).

Attributes:

• Stream Flow Connection Name

• Success Criterion (AllorNone, BestEffort)

• Stream Flow Connection Topology {PointToPoint, PointToMultipoint}

24 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

• Stream Flow End Point Description List

5.1.1.3 Stream Flow End Point (SFEP)

This class represents an endpoint of an information flow. Stream flow end points are always
unidirectional; a SFEP is either a source or a sink. SFEPs already exist before they can be
used in a SFC; they are considered to be created by the applications or by a SFEP Manager
(an entity that would be able to keep track on the resources within the terminal) and regis-
tered within the terminals. The administrative state can be specified as locked or unlocked.
Unlocked means that the requested connection should be immediately ready for receiving
information. Locked status means that the needed resources have just been allocated, they
can not be activated. If no status is specified unlocked is assumed. High level QoS param-
eters should be specified depending on the type of the flow (not considered in VitalV2).

Attributes:

• Stream Flow Endpoint Name

• Stream Flow EndPoint Direction (Source or Sink)

• Administrative State (Locked or Unlocked)

• Media Description {High level requested QoS parameters}

5.1.1.4 Stream Flow Connection Branch

An instance of this association represents a branch of a stream flow connection. It relates
a stream flow connection object and a sink stream flow endpoint.

5.1.2 Behavior Specification

The CSM computational object offers two interface types to the SSM. One that enables the
creation (or release) of communication sessions and another one that enables the creation
(activation, deactivation and release) of stream flow connections within each one of the cre-
ated communication sessions.

Assumptions:

• The mapping between Stream Binding and communication session is one-to-
one.

• The logical view of connectivity given by the stream binding mechanism only
supports point-to-point and point-to-multipoint unidirectional connections since
SFCs are always unidirectional.

• The idl specification includes only what Vital has considered as mandatory at
this interface.

• Only simple exception handling has been considered.

• The QoS at the CSM level will take values that are independent from any spe-
cific technology. For Vital V2 it has been assumed that simple values are
passed to the CSM (strings). A more complex structure is foreseen for Vital V3.

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 25

• The Retailer and the Connectivity Provider will be within the same administra-
tive domain (typically an operator). This means that no parameters have been
included to allow the CSM to choose the Connectivity Provider where the con-
nectivity session is instantiated. In the future the NP might be deliberately indi-
cated by the user or it can be chosen based on the Network Address given by
the TCSM.

In order to illustrate the behaviour of the CSM some event sequences are shown in the fol-
lowing more representative scenarios:

• Communication Session setup

• (more will be added in the final version)

5.1.2.1 Communication Session Setup

Figure 5-3. Communication Session Setup

1. SSM requests the CSM for creation of a communication session. This request should
include as parameters:

• The Success Criterion that indicates the criterion for a successful completion of
the session set operation. The possible values are AllorNone or BestEffort. In
the first case the operation will be considered successful if all the SFCs are set-
up successfully while in the second case the operation will succeed if at least
one SFC is successfully setup.

• A list containing the SFCs that belong to the requested communication session.
A least one SFC should be specified. In order to describe properly a SFC a
Name should be given by the SSM to each of them, a particular Success Crite-
rion (indicating a successful SFC if all the sinks are successfully bound or at
least one), the topology, and the SFEPs. For each SFEP the reference should
be indicated, the type (source or sink), the media description (i.e. the QoS) and
the administrative state; locked means that the information can not flow and un-
locked means that it can. The locked status can be modified to activated by re-
questing to the CSM an activation operation.

2. The reference of the ComSCtrl Interface will be sent back to the SSM together with the
SFC response parameters (i.e. SFC Name and respective SFepRefList of the bound
SFEPs).

There is only one ComSSetup interface per CSM. It is the factory of instances of ComSCtrl
interfaces. The CSM will instantiate one ComSCtrl Interface per communication session.
This interface allows the SSM to control the Session by requesting new stream flow con-
nections, deleting existing ones, activate and deactivate them. Additionally new branches
can be added (or deleted) to the SFCs and activated (or deactivated).

The CSM will issue a similar request to the CC; a request for a connectivity session setup.
But in order to do that CSM has to perform some actions to meet the following objectives:

1. Find the TCSMs.

26 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

2. The parties must agree on the capability sets (i.e. CODECs) they will use at the appli-
cation level (In Vital only one option will be considered, not list of options).

3. From each SFepRef CSM has to find out the correspondent Rfep (in VitalV2 it is char-
acterised by only one Network Address, one LNW type and one TLA Reference).

4. The parties must agree on the network protocol they will use at network transport
level. (In VitalV2 only one option will be considered).

5. Generate a CorrelationId per SFEP. This parameter will be used by the TLA to resolve
the RFEP (or NFEP) within the terminal once the NWTPs have been decided by the
CPs (e.g. VCI number 10).

Figure 5-4. CSM-TCSM Relationship

• This information is negotiated between the CSM and the TCSM. The TCSMRef
encapsulated in each SFEP will be used to locate the TCSM in each terminal.

• CSM performs the mapping between SFEPs and NFEPs (or REFPs). By de-
fault the mapping has been assumed to be one-to-one; the same is valid for the
SFC-NFC mapping.

• A unique correlation identifier is created per SFEP. This value will be used by
the terminal to resolve the NFEP when e.g. the VPI/VCI values are chosen by
the lower levels.

• Then the CSM object will send a request to the TCSM (correlate operation) in
order to find out the characterization of the correspondent RFEP. As parame-
ters the CorrelationId and the SFEPId are included. In return the RFEP infor-
mation is sent, i.e the LNWType, the TLARef, the correspondent network ad-
dress (in Vital V2 it has just been considered one network address per LNW /
TLA) and the protocol information at the application level (Codecs) and at the
transport network level (For Vital V2 only one combination as been considered).
In Vital V3 the connectivity provider information and the LNW type might be
used by the CSM to choose the overall connectivity provider. In Vital V2 the
CSM will just follow this information to the CC since the Retailer and the Con-
nectivity Provider business roles are within the same administrative domain, i.e.
each Network Operator.

• Then the CSM will send a request to the TCSM (i.e. modifyProtocol operation)
in order to negotiate the protocols at both the application level and the transport
network level (Vital V2 offers the possibility of negotiating both in one operation
or separately in two independent operations). Note that in this scenario it is as-
sumed that one operation is sent per SFEP but the CSM object can deal with
several SFCs at the same time. At this phase it is assumed that if the protocol
information received form all the SFEPs is the same the CSM will proceed, if
not it will impose the protocol information received by the SFEP source to the
SFEPs sinks. Note that the same operation can be used to impose the source
protocol to the sinks since “protocol” has been included as an inout parameter.

• The CSM can now request the already identified NFCs to the CC (see section
5).

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 27

5.2 Terminal Communication Session Manager (TCSM)

The Terminal Communication Session Manager (TCSM) is responsible for establishing the
nodal (or TFC) of a SFC. It manages the connection setup for a node and does not partic-
ipate in actual connections. It cooperates with CSM responsible for the SFC.

TCSM in VITALv2 knows the details of the nodal binding in a technology independent man-
ner, which are hidden from CSM. For this reason it interacts with user applications in order
to resolve the TFC to media flow connection between the terminal devices and the software
modules that manipulate the information that flows between them.

There is one TCSM per terminal, special resource, or any node that terminates a stream
flow connection. A TCSM can manage multiple TFCs.

At last, TCSM acts as SFEP manager. It is responsible for the creation/deletion of a SFEP
and manages its life-cycle. TCSM assigns (raises) SFEP to (from) user applications, under
the request of the last ones, as well as it associates (deassociates) a SFEP to a TFC.

Before requesting for a streambinding, a user application has to request the TCSM to as-
sign to the application the needed SFEPs. The SFEPs are identified uniquely by a SFEP
identifier (in VITAL v2 is of type t_SFEP_CId). Later, when the CSM establishes a SFC, it
needs a way of associating the network part of the connection with its terminal(s) part(s).
To do this, it generates a unique identifier, called correlation identifier, and passes this iden-
tifier to each TCSM associated with the SFC, plus the SFEP identifier, that will be associ-
ated to the TFC as root FEP. This identifier identifies both the associated SFC and NFC.
This correlation identifier is also passed from CSM to the connectivity session and from con-
nectivity session to a trail in a layer network. Once a unique NFEP is either created or se-
lected, during the establishment of a trail, the correlation identifier is passed to the
corresponding TLAs. Then, each of the TLAs inform its corresponding TCSM of the chosen
NFEP, using the correlation identifier, in order to identify the specific TFC to which that
NFEP will be assigned as leaf FEP.

Figure 5-5. TCSM CO

TCSM provides to its clients the following interfaces:

• TCSM provides to UAP-SS a I_tcsmSFEPManager interface for the manipula-
tion of the SFEPs.

• It provides the I_rettcsmCoord interface to CSM in order to be the CSM able to
resolve the LCG to its nodal part and to establish a NCG at each terminal that
is involved in a communication session. This interface is part of the Ret-RP

• It provides the I_tcsmReport interface to TLA in order to be the TCSM able to
complete a NCG.

• It provides the I_tcsmNotification interface to UAP-CS and TLA in order to be
the TCSM notified by application-driven and network-driven changes to the
state of the NCG.

28 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

• It also provides an I_rettcsmNotifyCtrl interface to CSM, in order to get to CSM
the chance to cotrol the emissions of notifications from TCSM to itself.

5.2.1 Related Information Model Fragment

The TCSM as has been already noted, maintains the nodal part of the communication ses-
sions that affect the terminal that belongs. This is realised in terms of Nodal Connection
Graph (NCG).

The Nodal (or Terminal) Connection Graph (NCG) concept is used to specify the terminal
connectivity needs of a communication session in a technology independent manner.

The connectivity requirements specified at the node are almost similar to the Logical Con-
nection Graph (LCG), but there are some differences with LCG as in the node it should dif-
ferentiate what binding are resolved locally in the node and which have to be associated
with a remote node.

The NCG contains a number of Terminal Flow Connections (TFC) that interconnect Stream
Flow End Points (SFEPs) and Network Flow End Points (NFEPs). In the current solution
these TFCs only support a point-to-point connection, either between two SFEPs or be-
tween a SFEP and a NFEP.

In order to resolve a TFC it is necessary to take into account engineering view concerns
and include terminal specific information on terminal devices and operating systems.

Each Terminal Flow Connection is initially identified by a SFEP identifier that correspond
to a pre-existing resolved SFEP. The communication session associates each terminal flow
connection (identified by the SFEP), with a correlation identifier. The correlation identifier
identifies a stream flow (and possibly also a network flow) connection.

NCG is used for negotiation between network and terminal for establishing the correspon-
dence between stream interface addresses and network addresses.

Figure 5-6. Class Diagram of NCG

5.2.2 Behavior Specification

5.2.2.1 Assign SFEP to an User Application

1. UAP-SS invokes the operation GetTypedIdleSFEPList of I_tcsmSfepManager inter-
face of TCSM. In case there are available SFEP is the pool of the available SFEPs,
the list of the SFEP identifiers that correspond to the available SFEPs of the specified
type is returned to UAP-SS.

2. UAP-SS invokes the operation AssignSFEP of I_tcsmSfepManager of interface of
TCSM in order to request from TCSM to assign to itself (UAP-SS) a list of SFEPs,
whose identifiers are passed as in parameters. In case these SFEPs do not exist or
they are already assigned to an UAP-SS, TCSM throws an exception.

Figure 5-7. Assign a SFEP to a UAP-SS.

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 29

5.2.2.2 Set-up a Terminal Flow Connection

1. CSM request from the TCSM to correlate a TFC with a correlation identifier. TCSM
identifies the existence of the SFEP. If there isn’t any SFEP identified by the specific
identifier, or in case that this SFEP is available in the pool or is already assigned to a
TFC, TCSM throws an exception. TCSM communicates with application in order to
specify the protocols that we be negotiated and give to the application the appropriate
connectivity information.

2. TCSM, invokes the GetuserNfepPools operation of all TLAs that exist in terminal.

3. TCSM invokes the SetupNfep operation of the appropriate TLA.

4. TCSM invokes the NfepEnableOperations of the appropriate TLA.

5. CSM invokes the ModifyPotocols operation of TCSM, in order to confirm the protocol
stack. TCSM communicates with application in order to be instantiated a media flow.

6. At a later time, TLA invokes the AssociateNfep Operation of TCSM.

7. TCSM invokes the OpenChannel operation of CSAP.

Figure 5-8. Establishment of a TFC

5.2.2.3 Removal of a TFC

1. CSM request from the TCSM to invalidate a TFC with a correlation identifier. If the cor-
relation identifier is not valid, TCSM throws an exception.

2. TCSM communicates with application in order to be the corresponding media flow
deactivated.

3. TCSM invokes the RemoveMF operation of the corresponding (to the SFEP) CSAP.

4. TCSM invokes the ReleaseNfep operation of the appropriate TLA.

Figure 5-9. Release of a TFC.

5.2.2.4 Activation of a TFC

1. CSM invokes the tcsmActivateTFC operation of TCSM

2. TCSM invokes the NfepDisableOperations operation of the appropriate TLA.

3. TCSM i communicates with application in order to be the corresponding media flow
activated.

Figure 5-10. Activating a TFC

5.2.2.5 Deactivation of a TFC

1. CSM invokes the tcsmDeactivateTFC operation of TCSM

2. TCSM communicates with application in order to be the corresponding media flow
deactivated.

30 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

3. TCSM invokes the NfepEnableOperations operation of the appropriate TLA.

Figure 5-11. Deactivation of a TFC.

5.3 TINA Communication Session: interfaces descriptions

The TINA communication session interfaces support communication session level interac-
tions across the Ret reference point.T he communication session is separate from the ser-
vice session. However, as it is part of Ret Usage it needs to be considered.

The communication session does not directly allow requests for connections between do-
mains: these types of requests are handled by the stream binding feature sets of the TINA
service session. Instead, the communication session supports lower level requests to set
up SFCs that support stream bindings initiated by service sessions.

Figure 5-12 shows the Computational objects that are involved in managing and controlling
the Communication Session and it shows the relevant interfaces. Two objects are drawn in

the figure:TCSM (Terminal Communication Session) in the Consumer Domain and CSM
(Communication Session Manager) in the provider/retailer domain.

The provider part of the communication session coordinates with the terminal parts to es-
tablish SFCs and Terminal Flow Connections (TFCs), and associated the TFCs with the
appropriate SFCs and Network Flow Connections (NFCs). It is supported by these compo-
nents: the Communication Session Manager (CSM) and the Terminal Communication Ses-
sion Manager (TCSM).

The TINA communication session interfaces specification make the following assumptions:

• Service level stream binding support specifies the stream flow connections.

• All SIs and SFEPs that it is passed are already in existence and are known by
a TCSM.

• The TFC is not yet fully established.

Communication
Session

Manager (CSM)

Communication
Session

Manager

Terminal

Figure 5-12. Communication Session components

i_NotifyCtrl
(TCSM)

consumer

i__TerminalFlowControl

i_Notify

i_ComSSetup

provider

i_ComSCtrl

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 31

The CSM can request the TCSM to associate an SFEP with a TFC identified by a correla-
tion identifier. The CSM can also make requests to determine and set the capabilities and
session protocols that can be associated with an SFEP. It can ask for the Resource Flow
End Points that are associated with a SFEP, once the capabilities and protocols are select-
ed.

When an NFC is established, the TCSM completes the TFC which it identifies by the cor-
relation identifier associated with the NFEP selected by the NFC. If the communication ses-
sion is supported by the ConS and TCon reference points, correlation identifiers can be
passed over the TCon reference point. The Terminal Layer Adapter, the consumer compo-
nent supporting the TCon reference point, uses the correlation identifier and the selected
NFEP to request the TCSM to complete the TFC. As the communication session needs to
cope with non-ConS reference points, the functionality for completing a TFC is also sup-
ported between the TCSM and CSM.

As well, the TCSM notify the CSM of faults or problems with the TCSM and TFC changes
or failures, including changes to SFEP QoS or removal of SFEPs. This allows the consum-
ers to maintain control of their own terminals. However, TCSMs only act on behalf of TFCs
and SFEPs located on its terminal. (I.e. it can not set up, pull down or modify the overall
SFC, it can only modify or remove the branch or branches of an SFC that relate to its ter-
minal).

In the following sections interfaces supported by CSM and TCSM are described.

5.3.1TCSM and CSM interfaces: high level descriptions

5.3.1.1 i_TerminalFlowControl

i_TerminalFlowControl: This interface allows the coordination between nodal (TFC) and
physical (network - NFC) parts of a stream flow l connection.

• Correlate:

- Relate a TFC, locally identified in the node by an SFEP, to a unique correlation
identifier that identifies the network part of the connection with which it is to be
associated.

• Invalidate:

- Invalidate a correlation identifier. When a SFC is released, its correlation iden-
tifier is no longer valid and must be removed. To do this, the CSM must invali-
date the SFC at each associated node. When an SFC branch is released, its
correlation identifier is no longer valid for the node terminating that branch. The
CSM must then invalidate the correlation identifier with the associated TCSM.

• Associate:

- Associate a TFC, specified by a correlation identifier, with a particular NFEP.
The TCSM can complete a TFC on receiving this notification.1

• Disassociate:

32 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

- Disassociate a nodal binding, specified by a correlation identifier, from a par-
ticular NFEP. This allows an SFC to migrate from one NFC to another if re-
quired. The CSM may also use this command when release an SFC or SFC
branch.

• Resolve:

- Set the correlation identifier, required capabilities2 and required session proto-
cols for an SFEP and acquire the RFEPs that can support the SFEP for these
requirements

• Get RFEPs:

- Ask the terminal for RFEPs that may be associated (connected by a TFC) with
a given SFEP.

• Query supported capabilities:

- Ask the terminal for capabilities a group of SFEPs may support.

• Set required capabilities:

- Set the capabilities an SFEP is required to support.

• Query supported session protocols:

- Ask the terminal for session protocols a group of SFEPs may support.

• Set required session protocols:

- Set the session protocols an SFEP is required to support.

• Activate: Activate a TFC. This allows the CSM to activate the SFC

• Deactivate: Deactivate a TFC. This allows the CSM to deactivate the SFC

• QueryTFC:

- Report on state of a given TFC (identifier by an correlation identifier). This al-
lows the CSM to establish the overall state of an SFC if necessary.

• QuerySFEP:

- Report on state of an SFEP. This allows the CSM to establish the overall state
of an SFC if necessary.

5.3.1.2 i_NotifyCtrl

i_NotifyCtrl: This interface is used to control notifications. It need not directly belong to the
object being managed, but could belong to a notification server of object group manager. It
is used to enable and disable notifications, and to set destinations of notifications. Multiple
destinations for events are supported.

1. This operation is equivalent to the i_tcsmReport Associate operation. It allows a TFC to be completed
at the request of the CSM if necessary. Normally we avoid this due to the overhead involved.

2. Capabilities and session protocols indirectly determine the transport QoS an NFC branch needs to
support

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 33

• enable notifications

- Enable distribution of notifications to a given list of destinations.

• Disable notifications

- Disable distribution of notifications to a given list of destinations.

• Set notification destinations

- Associate one or more destinations, specified by an i_Notify interface refer-
ence with a set of specified (possibly all) notifications types. This command can
also be used to modify the set of notifications desired.

• Remove notification destinations

- Disable distribution of notifications to a the given list of destinations, identified
by registration id, and remove these destinations from further use.

5.3.1.3 i_Notify

This interface receives notifications from any source.

• Events:

- Receive one or more notifications. A generic notification format is assumed al-
lowing notifications from many different sources to be accepted. This generic
format includes basic notification type and instance identifier attributes, and an
extensible list of attributes of any type.

5.3.1.4 i_ComSSetup

This interface is used to setup/release a communication session. These operations are per-
formed through this interface:

• Setup a new communication session

• Release an existing one

• list all communication sessions

• activate suspended communication sessions (previously deactivated)

• deactivate existing communication sessions (previously created)

5.3.1.5 i_ComSCtrl

This interface is used to control SFC and branches of SFCs within an assigned Communi-
cation Session. This interface supports three kind of operations:

• operations on SFCs: they allow to create, release, activate and deactivate
SFCs

• operation on Branches of SFCs: they allow to add/delete branches to/from
SFCs and to activate and deactivate branches of a particular SFC.

34 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

• operations to get information: they allow to list all existing SFCs and to get
information on a specified SFC.

5.3.2Components and interfaces

5.3.2.1 TCSM

The TCSM supports a user setting up SI and associated SFEPs. These must be registered
with the TCSM before they are made available to the service session. The TCSM interacts
with the CSM to support requests to aid the setup, modification, and release of SFCs. In
particular it can associate SFEPs and their associated TFCs with particular SFCs and
NFCs, modify TFCs and associated SFEPs, and activate and deactivate TFCs. The TCSM
is responsible for the completion of the TFC and may interact with the TLA and/or the
TCSM to achieve this. TLA and UAP interaction functionality is described in Section 7.3.

5.3.2.1.1. Supported Interfaces

• i_TerminalFlowControl: This interface allows the coordination between TFC
and network (NFC) parts of a stream flow connection. See Section 5.3.1.1

• i_NotifyCtrl: Lets a client control notifications and send events to required
destinations. See Section 5.3.1.3

5.3.2.1.2. Required Interfaces

• i_Notify: Lets a client receive notification events. See Section 5.3.1.3

5.3.2.2 CSM

The CSM supports the establishment of SFCs. It allows its clients (service sessions) to add,
activate, deactivate or remove SFCs via the associated session control interface. It also al-
lows clients to manipulate individual stream flows. Each stream flow connection has an in-
terface related solely to it. Similarly, each communication session control interface is
dedicated to a single CSM.

To establish a stream flow connection, the CSM must coordinate with each associated
TCSM to correlate the nodal part of the connection with the network connection and overall
stream flow connection (SFCs are uniquely by the session, and this name may not be
known to the user part of the session during establishment). It may also interact with them
to modify SFCs or support changes in the nodal part of a connection.

Finally, the CSM interacts with connectivity level components. We usually assume that
these components conform to ConS. However different components could be used. To en-
sure that the communication session can function independently of the underlying connec-
tivity level, we have included operations for completing, modify and removing TFCs at this
level.

5.3.2.2.1. Supported Interfaces

• i_Notify: Lets the CSM receive notification events. See Section 5.3.1.3.
Actually this interface may be placed on other components.

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 35

• i_ComSSetup: It allows Service Session Manager to setup a Communication
Session.

• i_ComSCtrl: It allows Service Session Manager to control the Communication
Session and the creation/deletion/activation/deactivation of SFCs and
branches.

5.3.2.2.2. Required Interfaces

• i_TerminalFlowControl: This interface allows the coordination between TFC
and network (NFC) parts of a stream flow connection. See Section 5.3.1.1

• i_NotifyCtrl: Lets the CSM control notifications and which events it wants to be
notified about. See Section 5.3.1.3

5.3.2.2.3. Required Interfaces for service session interactions

• i_Notify: Lets the CSM send notification events. Actually this interface may be
placed on other components.

Editor’s note: the following part need to be updated according to the modification in Ret RP.
Operations here listed might not be fully compliant with IDLs.

5.3.2.3 Operations on the i__TerminalFlowControl Interface

5.3.2.3.1. Correlate TFC with SFC and NFC operation

void correlate(
in t_SFEPName sfep,// SFEP identifier
in t_CorrelationId relatedCon)

// Correlation ID: SFC and NFC identifier
raises (e_UserDomainError, e_SIQueryError,
e_ResrcError);

This operation allows the communication session to correlate a SFEP with a terminal flow
connection (TFC) a correlation identifier, that identifies the SFC and an associated NFC.
(The SFEP is used to identify the initial partial TFC.) This identifier is used later to take ac-
tions on the TFC. In particular, it is used to help associate an NFEP with a particular TFC.
If the operation is successful it returns. Otherwise, it raises an exception. This operation, or
the resolveSFEP operation, is required to setup each branch of an SFC.

SFEPs are identified by the t_SFEPName passed as the sfep parameter. This is the local
identifier of the SFEP (unique for the terminal and currently a string). The t_CorrelationId
passed as the relatedCon parameter is the correlation identifier which identifies the NFC
and SFC to which the TFC is related. It must be unique for each terminal involved in the
SFC as well as for the service and connectivity providers. (This can be achieved by com-
bining a service provider identifier with session, SFC and NFC identifiers.) Currently, it is
implemented by a sequence of strings.

36 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

5.3.2.3.2. Invalidiate operation

void invalidate(
in t_CorrelationId tfc)
raises (e_UserDomainError, e_CorrelError);

This operation allows the communication session to invalidate a correlation identifier and
related TFC. The correlation identifier is passed by the t_CorrelationId used as the tfc pa-
rameter. After this operation, the identifier can no longer be used to identify a TFC, and the
terminal can invalidate the TFC and release its associated resources. If there is an error an
exception is raised. Otherwise the operation just returns. This operation is required to re-
move branches of an SFC.

5.3.2.3.3. Get Rfeps related with an SFEP operation

void getRelatedRfeps(
in t_SFEPName sfep, // SFEP name
out t_RFEPDescList rfeps);
raises (e_UserDomainError, e_SIQueryError,

e_ResrcError);

This operation allows the communication session to ask for RFEPs that may be associated
with an SFEP. These RFEPs form the pool from which NFC can be set up. An SFEP may
be associated with many RFEPs. The RFEPs it may be associated with can be restricted
by the capabilities, session protocols and transport requirements associated with the
SFEP. If the operation is successful, it returns the RFEPs descriptions. If there is an error,
it raises and exception. This operation, or the resolveSFEP operation, is required to setup
each branch of an SFC, if no RFEP information is passed in the initial SFEP description.

SFEPs are identified by the t_SFEPName passed as the sfep parameter. This is the local
identifier of the SFEP. The t_RFEPDescList passed as the rfeps output parameter de-
scribes NFEPs or NFEPPools which can be associated with the SFEP. For the communi-
cation level, these need to include attributes identifying local connectivity providers (i.e.
whose network is the RFEP connected to), the layer network technology and other infor-
mation need to determine the connectivity provider. For connectivity and layer networks
they also need to include transport protocols requirements and transport quality require-
ments. (Transport quality requirements may be included in the RFEP descriptions by the
terminal or set by the CSM from data returned from setCapability and setSProtocol opera-
tions).

5.3.2.3.4. Resolve SFEP capabilities, protocols and RFeps operation

void resolveSFEP(
in t_SFEPName sfep, // SFEP name
in t_CapabilityDesc capability,
in t_SessionProtocolDescList protocols,
in t_CorrelationId,
out t_RFEPDescList rfeps)
raises (e_UserDomainError, e_SIQueryError,
e_ResrcError, e_SProtocolSelectError,

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 37

e_CapabilitySelectError);

This operation allows the communication session to set capabilities, session protocols, cor-
relation identifier and ask for RFEPs that may be associated with an SFEP in one combined
operation. This operation is included for efficiency reasons, so that the communication ses-
sion can set up the SFEP and associated partial TFC in one operation. (The full TFC can
not be set up until it is associated with a single NFEP.) If successful, this operation returns
the list of RFEPs that are available to this SFEP. The RFEPs should include transport qual-
ity and protocol requirements.

SFEPs are identified by the t_SFEPName passed as the sfep parameter. This is the local
identifier of the SFEP. The capability and protocols parameters describe the capabilities
(e.g. codec capabilities) and session protocols to be used with the SFEP. Both capabilities
and session protocols are described by a key (local identifier for the terminal’s capability or
session protocol table), an identifier (agreed unique identifier, relating either to standard or
proprietary capability or protocol). The correlation identifier is described in Section
5.3.2.3.1. The operation returns a set of RFEPs if it is successful, as described in Section
5.3.2.3.3, which should contain related transport quality requirements. If there is an error,
an exception is raised.

This operation, or some combination of the correlate, setCapability, setSessionProtocol
and getRFEPs operations is required to setup each branch of an SFC. In addition, the que-
ryCapabilities and querySessionProtocols may be required to determine compatible SFEPs
on each branch. (Compatible means that there is some means to interwork the capability
and session protocols selected for each SFEP).

5.3.2.3.5. Associate SFEP with NFEP operation

void associate(
in t_CorrelationId tfc,
in t_FepName finalNFep,
raises (e_UserDomainError, e_CorrelError,

 e_ResrcError,e_NFEPIdError);

This operation allows the communication session to associate a NFEP with a TFC, identi-
fied by the correlation identifier, completing the TFC set up. The TFC may be completed at
the TCon level, assuming a similar operation between the TLA and TCSM. This operation
is included here to allow use of non ConS/TCon providers. It also allows SFCs to be multi-
plexed over the one NFC by associating multiple TFCs with the one NFC. The
t_CorrelationId passed as the tfc parameter gives the correlation identifier, and the
t_FepName passed as the finalNFEP identifies the NFEP that has been selected at the lay-
er network (or equivalent) to terminate the associated NFC. If the operation is successful it
returns and completes the TFC (and hence the NFC). Otherwise, it raises an exception.
This operation is optionally required to setup each branch of an SFC.

5.3.2.3.6. Disassociate SFEP from NFEP operation

void disassociate(
in t_CorrelationId tfc,
in t_FepName finalNFep,

38 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

raises (e_UserDomainError,e_CorrelError,
e_NFEPIdError);

This operation allows the communication session to disassociate a NFEP with a TFC, iden-
tified by its correlation identifier. This can be used to start deleting an SFC or SFC branch.
It could also be used to swap an SFEP from connection with one NFEP to connection with
another. This operation does not remove the entire TFC (though it is no longer operational).
Rather it prepares the TFC for a change in setup. The t_CorrelationId passed as the tfc pa-
rameter gives the correlation identifier, while the t_FepName passed as the finalNFep iden-
tifies the NFEP to be removed from the TFC. If the operation is successful it returns.
Otherwise, it raises an exception. This operation is required to remove branches of an SFC
or change the NFEP with which they are associated.

5.3.2.3.7. Query capabilities that the SFEP can support

void queryCapabilities(
in t_SFEPQueryDescList sfeps,
out t_SFEPCapDescList sfepCaps,
out t_CapabilityDescList detailedCaps,
out t_CapabilityRelationList restrictions)
raises (e_UserDomainError, e_SIGeneralError);

This operation allows the communication session to query a terminal for the capabilities
that a particular SFEP or SFEPs can support. If successful, this operation returns a list of
SFEPs and their associated capabilities indicated by a key, a table of capability descrip-
tions, and a list of restrictions that apply to these capabilities. Otherwise, it raises an excep-
tion. This operation will be required for setting up each branch of an SFC, unless capability
information is included in the SFEP description.

The t_SFEPQueryDescList passed as the sfeps identifies the SFEPs by their local SFEP-
Name, and includes a mediaParameters list that may restrict the capabilities to be selected.
The t_SFEPCapDescList returned as the sfepCaps parameter lists each of the submitted
SFEPs with list of keys that identify the precise capabilities that may be supported. Each
key may be associated with a priority to indicate preferred capability sets.

The keys relate to the t_CapabilityDescList passed as the detailedCaps parameter. This
parameter is a table of detailed descriptions of the capabilities, and included a unique iden-
tifier, the terminal’s key, and a set of attributes describing the capabilities (e.g. codec spec-
ification) and possible restrictions (e.g. quality requirements, or required session (or
transport) protocols).

Finally, t_CapabilityRelationList passed as the restrictions parameter details relations be-
tween the capabilities that may restrict what combination of capabilities may be used. (Be-
cause of these relations, submitting a group of SFEPs is desirable so the CSM can
determine what may be used together.) These relations are described by lists of simulta-
neous and alternative capabilities identified by keys.

5.3.2.3.8. Set capabilities that the SFEP is required to support

void setCapability(

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 39

in t_SFEPName sfep,
in t_CapabilityDesc selection,
out t_TransportQuality reqQual)
raises (e_UserDomainError, e_SIGeneralError,

 e_CapabilitySelectError);

This operation allows a communication session to set the particular capabilities the SFEP
should support. This operation is needed to ensure that SFEPs support compabilitible ca-
pabilities. In particular, these capabilities can map to particular CODECs and support capa-
bilities. If successful the operation returns a list of transport quality requirements.
Otherwise, an exception is raised. This operation, or the resolveSFEP operation, is required
to setup each branch of an SFC.

The SFEP is identified by the t_SFEPName passed as the sfep parameter. The capabilities
to be set are described by the t_CapabilityDesc passed as the selection parameter. This
description is the same as Section 5.3.2.3.7. The returned quality requirements are de-
scribed by the t_TransportQuality passed as the reqQual parameter. This quality is de-
scribed by a list of attribute tag value pairs.

5.3.2.3.9. Query session protocols that the SFEP can support

void querySessionProtocol(
in t_SFEPQueryDescList sfeps,
out t_SFEPSProtocolDescList sfepProtocols,
out t_SProtocolDescList detailedProtocols,
out t_SProtocolRelationList restrictions)
raises (e_UserDomainError, e_SIGeneralError);

This operation allows the communication session to query a terminal for the session proto-
cols that a particular SFEP or SFEPs can support. If successful, this operation returns a list
of SFEPs and their associated session protocols indicated by a key, a table of session pro-
tocol descriptions, and a list of restrictions that apply to these session protocols. Otherwise,
it raises an exception. This operation will be required for setting up each branch of an SFC,
unless session protocol information is included in the SFEP description.

The t_SFEPQueryDescList passed as the sfeps identifies the SFEPs by their local SFEP-
Name, and includes a mediaParameters list that may restrict the session protocols to be
selected. The t_SFEPSProtocolDescList returned as the sfepProtocols parameter lists
each of the submitted SFEPs with list of keys that identify the precise session protocols that
may be supported. Each key may be associated with a priority to indicate preferred session
protocols.

The keys relate to the t_SProtocolDescList passed as the detailedProtocols parameter.
This parameter is a table of detailed descriptions of the capabilities, and included a unique
identifier, the terminal’s key, and sets of attributes describing the session protocols (e.g. co-
dec specification) and possible restrictions (e.g. quality requirements or required transport
protocols).

40 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

Finally, t_SProtocolRelationList passed as the restrictions parameter details relations be-
tween the capabilities that may restrict what combination of session protocols may be used.
These relations are described by list of simultaneous and alternative session protocols
identified by keys. Note that some protocols may be required to be used together, as they
may form part of stack.

5.3.2.3.10. Set session protocols that the SFEP is required to support

void setSessionProtocol(
in t_SFEPName sfep,
in t_SProtocolDescList selection,
out t_TransportQuality reqQual)
raises (e_UserDomainError, e_SIGeneralError,

 e_SProtocolSelectError);

This operation allows a communication session to set the particular session protocols the
SFEP should support. This operation is needed to ensure that SFEPs support compabil-
itible session protocols. If successful the operation may returns a list of transport quality re-
quirements. Otherwise, an exception is raised. Session protocols may sit both above and
below the capability set (but are always above transport related protocols that are deter-
mined at the layer network level). An SFEP may be associated with a stack of such proto-
cols, so a number may be set at once. This operation, or the resolveSFEP operation, is
required to setup each branch of an SFC.

The SFEP is identified by the t_SFEPName passed as the sfep parameter. The session
protocols to be set are described by the t_SProtocolDescList passed as the selection pa-
rameter. This description is the same as Section 5.3.2.3.9. The returned quality require-
ments are described by the t_TransportQuality passed as the reqQual parameter as
described in Section 5.3.2.3.8

5.3.2.3.11. Activate a TFC

void activate(
in t_CorrelationId tfc)
raises (e_UserDomainError, e_CorrelError);

This operation allows the communication session to activate a TFC identified by a correla-
tion identifier. The tfc parameter gives the correlation identifier. The operation requests a
change in the administrative status of the TFC and associated resources (including the
SFEP) to unlocked. If the operation is successful, it returns. Otherwise an exception is
raised. This operation is required to activate branches of a SFC.

5.3.2.3.12. Deactivate a TFC

void deactivate(
in t_CorrelationId tfc)
raises (e_UserDomainError, e_CorrelError);

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 41

This operation allows the communication session to deactivate a TFC. identified by a cor-
relation identifier. The tfc parameter gives the correlation identifier. The operation requests
a change in the administrative status of the TFC and associated resources (including the
SFEP) to locked. If the operation is successful, it returns. Otherwise an exception is raised.
This operation is required to deactivate branches of an SFC.

5.3.2.3.13. Query the state of the TFC

void queryTFCs(
in t_CorrelationIdList tfcs,
out t_TFCDescList state)
raises (e_UserDomainError, e_CorrelError);

This operation allows the communication session to query the status of a given TFCs. The
TFCs are identified by the t_CorrelationIdList passed as the tfcs parameter. If successful,
this operation returns a list of TFC descriptions which describe their current state (adminis-
trative and operational) and other details. Otherwise an exception is raised.

5.3.2.3.14. Query the state of the SFEP

void querySFEPs(
in t_SFEPNameList sfep,
out t_SFEPStatusDescList state)
raises (e_UserDomainError, e_SIQueryError);

This operation allows the communication session to query the status of a terminals SFEPs.
The SFEPs are identified by the t_SFEPNameList passed as the sfep parameter. If suc-
cessful, this operation returns a list of SFEP descriptions which describe their current state
(administrative and operational) and other details. Otherwise an exception is raised.

5.3.2.4 Operations on the i__ComSSetupl Interface

void setup_communication_session
 (in t_SuccessCriterioncriterion,
 in t_SFCDescList sfcDescList,
 out t_ComSessionName comSessionName,
 out i_ComSCtrlcomSCtrl,
 out t_SFCRespList sfcRespList)
 raises (Error);

void release_com_session
 (in t_ComSessionName comSessionName)
 raises (Error);

void activate_communication_session
 (in t_ComSessionNamecomSessionName)
 raises (Error);

void deactivate_communication_session

42 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

 (in t_ComSessionNamecomSessionName)
 raises (Error);

void list_all_communication_sessions
 (in t_ComSessionNameListcomSessionNameList)
 raises (Error);

5.3.2.5 Operations on the i_ComSCtrl Interface

Operations on Stream flow connections:

void setup_flow_connections
 (in t_SuccessCriterioncriterion,
 in t_SFCDescList sfcDescList,
 out t_SFCRespList sfcSetList)
 raises (Error) ;

 void release_flow_connections
 (in t_SuccessCriterioncriterion,
 in t_SFCNameList sfcList,
 out t_SFCRespList sfcRelList)
 raises (Error);

 void activate_flow_connections
 (in t_SuccessCriterioncriterion,
 in t_SFCNameList sfcList,
 out t_SFCRespList sfcActList)
 raises (Error);

 void deactivate_flow_connections
 (in t_SuccessCriterioncriterion,
 in t_SFCNameListsfcList,
 out t_SFCRespList sfcDeactList)
 raises (Error);

Operations on branches

 void add_branches
 (in t_SuccessCriterioncriterion,
 in t_SFCName sfcName,
 in t_SFepDescList sfepDescList,
 out t_SFepRefList boundList)
 raises (Error);

 void delete_branches
 (in t_SuccessCriterioncriterion,
 in t_SFCName sfcName,
 in t_SFepRefList list,
 out t_SFepRefList dellist)
 raises (Error);

Network Component Specifications v 2.2 Public document Dec. 20, 1997
NCS v2.2_97_12_20 Communication Session Related Components

Public Document 43

 void activate_branches
 (in t_SuccessCriterioncriterion,
 in t_SFCName sfcName,
 in t_SFepRefListlist,
 out t_SFepRefList actList)
 raises (Error);

 void deactivate_branches
 (in t_SuccessCriterioncriterion,
 in t_SFCName sfcName,
 in t_SFepRefListlist,
 out t_SFepRefList deactList)
 raises (Error);

Operations to retrieve information on SFCs

 void list_all_SFCs
 (out t_SFCNameList sfcList)
 raises (Error);

 void get_flow_conn_info
 (in t_SFCName sfcName,
 out t_SFCDesc sfcDesc)
 raises (Error);

44 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Communication Session Related Components NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 45

6. Connectivity Session Related Components

This view is used by the communication level(CSM) to establish the network part of its
stream flow connections. The network requirements information for the Stream Flow Con-
nections which was previously determined based on the network capabilities exchange ne-
gotiation (between the CSM and TCSM) is passed from the CSM to this level.The function
provided at this level is the setup and management of connectivity sessions and network
flow connections. The interaction between the connectivity level and the communication
level above it is part of the TINA Connectivity Session (ConS) Reference Point.

The Connectivity session is related to a technology independent abstraction of network
connections. A connectivity session is a context in which one or more network flow connec-
tions can be established and managed as a unit. Setting up a network flow connection in-
volves setting up one or more trails in the layer networks that make up a connectivity layer
network. More than one trail needs to be created to realize a network flow connection if the
end points of the network flow connection (called Network Flow Endpoints) are on different
layer networks. Figure 6-1 illustrates the connectivity level computational objects namely
the Connection Coordinator Factory (CCF), theConnection Coordinator (CC), and the Flow
Connection Coordinator (FCC). They are illustrated with objects from other groups with
which they interact.

As shown, the connectivity session objects (part of the connectivity provider domain) com-
municates with the communication level (CSM) in the service provider domain and commu-
nicates with the Layer Network Components below it. In relation to the ConS Reference
Point, the three Connectivity session objects correspond to the usage part.

6.1 Overview of Connectivity Session

In Figure 6-1, connectivity session related components are shown. There are three compo-
nents in the connectivity session.

• Connection Coordinator Factory (CCF)

• Connection Coordinator (CC)

• Flow Connection Coordinator (FCC)

46 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

The object Connection Coordinator Factory(CCF) provides an operation for the setting up
of a connectivity session.It serves as the factory object for connectivity sessions. It provides
access to the connectivity level and its technology independent network view. At connec-
tivity session setup time, one or more network flow connections may also be setup.

The Connection Coordinator is created by the CCF. It is recommended that an instance of
this object exists for each connectivity session that is setup. The CC is the session control
object and provides an operation for the management of an individual connectivity session
including addition, removal and modification of network flow connections that are contained
in the connectivity session. In complying with the ConS Reference Point, it is recommended
that a CC is associated with a single connectivity session. When a Network Flow Connec-
tion setup is requested, the CC creates a Flow Connection Controller(FCC) object and del-
egates the setup request to that object.

Communication
Session

Manager (CSM)

Connection
Coordinator

Factory (CCF)

ConnectionCreates

Creates

i_ConSSetup

i_
F

lo
w

C
tr

l

i_ConSCtrl

Figure 6-1. Connectivity session related objects

Connectivity

i_ConSNotifyCtrl

Coordinator
(CC)

Layer Network
Coordinator

 (LNC)
Trail

Manager
 (TM)

i_LNBSetup

i_TrailControl
i_NotifyCtrl

i_Notify

i_
F

C
N

ot
ify

Flow Connection Controller
(FCC)

i_
F

C
N

ot
ify

C
tr

l

Provider

Service
Provider

Connectivity
Session
Objects

Layer Network
Binding Manager

(LNBM)

i_LNBControl

i_Notify

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 47

The FCC object provides management operations for the network flow connections asso-
ciated with it including addition of branches, removal of branches and network flow connec-
tion release.The Connectivity Providers Flow Connection Coordinator determines that both
the Network Flow End Points point to network termination points in different layer networks.
As a result the Flow Connection Coordinator locates an interworking unit that is capable of
handling the interworking between two layer networks and requests an interworking con-
nection. After successfully setting up the interworking connection, the interworking unit will
return Network Flow End Points pointing to one network termination point and another Net-
work Flow End Point pointing to the other Network Termination point of the interworking
connection. The connectivity session components interact with layer network related COs
and support the interfaces required by them.

6.1.1 Relationship to ConS -RP

The Connectivity Service Reference Point (ConS-RP) is defined between business admin-
istrative domains that provide connectivity services (network transport services) and busi-
ness administrative domains that are using services on behalf of their customers.

The provider of the connectivity service (Connectivity Provider) enables its clients (connec-
tivity users) to setup, modify and release a connectivity session that is composed of one or
more NFCs. The connectivity service also allows a connectivity user to manage (i.e. setup,
release, and modify) a group of network flow connections as an aggregated unit(ie.in a con-
nectivity session, a connectivity user can release all network flow connections that are part
of the connectivity session in one operation) making the exchange of information more ef-
ficient thus reducing setup delay.

6.1.2 Connectivity Session (ConnS)

An instance of this object type contains one or more stream flow connections. It represents
the total set of communication resources involved in a communication session. A client of
a communication session can establish, release and manipulate stream flow connections.

Attributes:

• Communication Session Name

• Success Criterion (AllorNone, BestEffort)

• Stream Flow Connection Description List

6.1.3 Network Flow Connection (NFC)

An instance of this object represents the resource that transfers information across the con-
nectivity layer network of a TINA network. The information is transported between a group
of Network Flow End Points. The connection topology may be point-to-point bidirectional,
point-to-point unidirectional, or point-to-multipoint unidirectional.

48 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

A network flow connection can be established, released, activated and deactivated. New
branches can be added or deleted to/from a stream flow connection. A network flow con-
nection is always either point-to-point or point-to-multipoint unidirectional (when non spec-
ified it is assumed to be point-to-multipoint by default).

Attributes:

• Network Flow Connection Name

• Success Criterion (AllorNone, BestEffort)

• Network Flow Connection Topology {PointToPoint, PointToMultipoint}

• Network Flow End Point Description List

6.1.4 Network Flow End Point (NFEP)

This class represents an endpoint of a connectivity layer network. Network flow end points
can be uni or bidirectional. A NFEP can be a source or a source/sink in case of being bidi-
rectional. The NFEPs are technology independent representation of a network termination
points. They represent the required Termination points (existent in the terminal) to accom-
plish the connection.

Attributes:

• Network Flow End Point Name

• Network Flow Endpoint Direction (Source, Sink,SourceSink)

• Connectivity Provider

• Network Address List(+ eventually restrictions (eg. VPI/VCI)

• Administrative State (Locked or Unlocked)

Import NFEP.idl

6.1.5 Network Flow Connection Branch

An instance of this association represents a branch of a network flow connection. It relates
a stream flow connection object and a sink stream flow endpoint.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 49

6.1.6 Related Information Model Fragment

The information structure that represents such information about all network flow connec-
tions of a connectivity session is called a Physical Connection Graph. Figure 6-2 shows the
OMT diagram for a Physical Connection Graph.

Figure 6-2. . OMT diagram for ConS-RP

The objects provide the vocabulary for both domains to control and manage network con-
nections. The connectivity layer network is a container of all the network EndPoints and is
an identifier for the connectivity domain. it represents the networks owned by the connec-
tivity provider and can be used to perform high level maintenance on a network and check
its state. The connectivity layer network contains pools of flow end points which represent
groups of endpoints of these network connections. A pool can be the end of a link on which
ATM packets are carried with a single wall socket or a group of connections of different
technology eg. a computer connected to both a telephone network and an Ethernet network
using multiple sockets. The endpoints is an abstract concept, since it will always be either
a root (generating traffic or a leaf consuming traffic).

The capability to carry traffic between one root EndPoints and one or several leaf Endpoints
is labelled as flow connection and allows the identification for manipulation of all the End-
Points involved in the flow connection. Flow Connections can be grouped together into a

Physical Connection Graph

Network Flow Connection

Network Flow End

Network Flow

1+

Source

1+

Sink

Connection Branch

Point

Interworking
Binding

Layer
Network
Binding

maps

to

XOR

50 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

connectivity session. To express preferences about routing (eg. to provide lip-synch when
video and voice are carried on separate connections through the network) the route related
information object is used.

Figure 6-3. Relationship to ConS

ConsPA

Communication Session

Connectivity User Domain

Initial

C
on

s_
In

ita
l_

A
cc

es
s

C
on

te
xt

_M
gm

nt

Connection
Coordinator

(CC)

Connectivity

Management Related Objects

C
on

fig
_Q

ue
ry

Network
Configuration

Manager
Flow Connection Manager

C
on

n_
S

es
si

on
_S

et
up

Connectivity Provider Domain

.F
lo

w
_

C
on

ne
ct

io
n_

C
on

tr
ol

F
lo

w
_C

on
ne

ct
io

n_
N

ot
ifi

ca
tio

n_
C

on
tr

ol

 C
on

n_
S

es
si

on
_C

on
tr

ol

F
lo

w
_C

on
ne

ct
io

n_
N

ot
ifi

ca
tio

n

Creates
Creates

C
on

fig
_C

ha
ng

e_
N

ot
ifi

ca
tio

n

C
on

fig
_C

ha
ng

e_
N

ot
ifi

ca
tio

n_
C

on
tr

ol

ConsUA

Agent

Context
Manager

C
on

s_
U

A
_A

cc
es

s

Manager
Session

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 51

6.2 Connection Coordinator Factory (CCF)

An instance of this type exists in a connectivity provider domain. It provides connectivity
session establishment and release functions. At the time of a connectivity session setup, a
client can request setup of one or more network flow connections, the following information
is provided by the client:

Network Flow Connection Name

Root NFEP descriptors

Correlation identifier

A NFEP descriptor includes NFEP Pool identification and the bandwidth and QoS parame-
ters associated with the NFEP. Upon receipt of a connectivity session setup request, the
CCF either creates a new CC object for controlling the new connectivity session or assigns
the control responsibility to an existing CC, depending on the scheduling policy used by the
CCF. In either case, the CCF delegates to the CC object the communication setup request
and passes along the connectivity session information received from the client.

Figure 6-4. CCF CO

6.2.1 Behavior Specification

Assumptions:

- A communication session maps one-to-one in a connectivity session.

- A SFC maps one-to-one in a NFC. Two SFC can map into one NFC.

- A SFEP maps one-to-one in a NFEP.

- The previous assumptions lead to the fact that only unidirectional connections are sup-
ported at the service and network levels. The default mapping is one-to-one.

- Only simple exception handling has been considered.

In order to illustrate the behavior of the CC some event sequences are shown in the follow-
ing more representative scenarios:

- Connectivity Session setup

- (more will be added in the final version)

6.2.1.1 Connectivity Session Setup

1. CSM requests the CC for creation of a connectivity session. This request should include
as parameters:

52 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

- The Success Criterion that indicates the criterion for a successful completion of the ses-
sion set operation. The possible values are AllorNone or BestEffort. In the first case the op-
eration will be considered successful if all the NFCs are setup successfully while in the
second case the operation will succeed if at least one NFC is successfully setup.

- A list containing the NFCs that belong to the requested connectivity session. A least one
NFC should be specified. In order to describe properly a NFC, a Name should be given by
the CSM to each of NFC, a particular Success Criterion (indicating a successful NFC if all
the leafs are successfully bound or at least one) and the topology of the network connection
should be defined. Additionally, a correlation identifier should be defined for each NFC and
the NFEPs information should be given. As attributes the NFEP Name, the administrative
status, the NFEP Direction, the LNW Type, the TLA Reference and the list of possible net-
work addresses should be defined for each End Point together with the transport protocol.

2. The references of the ConSCtrl Interface will be sent back to the CSM together with the
NFC response parameters (i.e. NFC Name, the respective NFepRefList of the bound
NFEPs and the FCCtrl interface reference).

There is only one ConSSetup interface per CC. It is the factory of instances of ConSCtrl
interfaces. The CC will instantiate one ConSCtrl Interface per connectivity session. This in-
terface allows the CSM to control the session by requesting new network flow connections,
deleting existing ones, activate, deactivate and modify them. Additionally in order to add
(delete) new branches and activate (or deactivate) them separate interfaces are created for
each NFC. This mechanism will allow to speed up the process of adding and deleting
branches to the NFCs. Conceptually it is in line with the concepts below the CC (i.e. LNC)
where the concept of session does not exist anymore. The NFC will be mapped one-to-one
in a trail.

The CC will issue a similar request to the LNC; a request for a trail setup.

5. State Diagram

The behavior of the ConnectivityService Provider and the interactions on the ConS-RP are
explained by the state diagram below. A connectivity session and its component flow con-
nections have separate administrative states. however, these administrative states are
subject to the following rules.

• If the administrative state of a connectivity session is unlocked, then the admin-
istrative state of each component flow connection may be either locked or un-
locked, it can be individually changed.

• If the administrative state of a connectivity session is locked, the administrative
state of each component flow connection is Locked.

• Similar rules hold between the administrative state of a flow connection and the
administrative state of its branches.If the administrative state of a flow connec-
tion is unlocked, then the administrative state of a branch of the flow connection

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 53

may be either unlocked or locked; it can be individually changed.If the adminis-
trative state of a flow connection is locked, the administrative state of each
branch of the flow connection is Locked.

6.2.1.2 Connection Coordinator (CC)

One or more instance of this object type exists in a connectivity provider domain. Each CC
object manages one or more connectivity sessions. For each connectivity session under its
control, the CC offers the following management capabilities:

Network Flow Connection setup

Addition/removal of branches to/from

CS disabled
CS enabled

FC disabled
FC disabled FC enabled

FCB disabled
FCB disabled FCB disabled FCB enabled

FC setup requesting

CS setup requesting

FEP addition requesting

Usage part

FC deactivate

FEP addition

FCB deactivate
FCmodify

FC modify[afterdis]

FC modify[withoutdis]

FCB activate

FEP addition

CS setup

FC modify

FC setup[dis] FC setup[en]

CS release CS release

CS setup[en]

CS setup[dis]

FC release
FC release FC release

FEP deletion
FEP deletion

FEP addition[dis] FEP addition[en]

FC setup

FC setup

FEP addition

CS activate

CS deactivate FC activate

FEP deletion FEP deletion

54 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

6.3 Flow Connection Controller

One instance of this object type is associated with each NFC. The Flow Connection con-
troller(FCC) is created by the CC associated with the connectivity session of which the NFC
is a part. The FCC is responsible for translating the NFC, with its technology dependent
view to a particular layer Network, or networks should be used. A selected Layer network
should support the requested QoS and provide suitable termination for at least one branch
of the NFC. If such a connection cannot be established across a single layer network, then
the FCC would have to setup connections across two different layer networks. The FCC
would have to find a suitable adapter and setup trails across both layer networks in the case
of connection oriented networks. The FCC uses the LNC interface from the Layer Network
to setup an end-end connectivity across a Layer Network(connection oriented or connec-
tionless Layer Network). This is because the concept of trails is only usable for Connection
oriented Networks while for connectionless the trail concept is unsuitable. To provide for
this transparent mapping, the concept is realised by using a Layer Network Binding and
managed by the Layer Network Binding Manager(LNBM). A FCC object provides the fol-
lowing management operations for the NFC under its control:

Network Flow Connection setup

Addition/Removal of branches if the NFC is point to multipoint connection

Activation of Bandwidth and Qos parameters of the network flow connection

Activation of the Network Flow Connection or its branches

Deactivation of the network flow connection or its branches

Network flow connection release

6.2.1 Related Information Model fragment

Figure 6-5. FCC related Information Model fragment

In the information model, for interworking between two different Layer Network the FCC
makes use of the information for Interworking using the Interworking Binding(IWB) with pa-
rameters about the Layer Networks, the Layer Network Binding with parameters about the
Layer Network Type and and the information on the Component NFCs.

LNBComponent

Network Flow Connection

IWB
NFC

LNLNType

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 55

6.4 TINA Connectivity Session: interfaces description

Figure 6-6. Connectivity session components interfaces

6.4.1 CCF, CC and FCC interfaces: high level descriptions

6.4.1.1 i_ConSSetup

This interface allows the establishment of connectivity sessions and their associated
computation objects. It also allows some general connectivity level management opera-
tions. These operations are primarily included to aid management, such as recovery and
transfer of connectivity session control.

• Establish a connectivity session

-This operation is used for setting up a connectivity session. If the invocation is suc-
cessful, this operation creates a CC object which provides operations for ma-
nipulating the newly created connectivity session. When a connectivity session
set up is requested, multiple NFCs can be established at the same time. Con-
trol interfaces associated with each NFC are returned.

• List connectivity sessions:

-Return a list of connectivity session identifiers. Some filtering may be used to ma-
nipulate which connectivity sessions are listed.

• Get a connectivity session:

CNP CC

I_ConSCtrl

CSM

CC SC

I_FCCtrlI_FCCtrl I_FCCtrlI_FCCtrl

56 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

-Return the control interface reference to a connectivity session associated with
the given connectivity session identifier.

• Delete a connectivity session:

-Delete the connectivity session(s) associated with the given identifiers. This oper-
ation is intended for management.

6.4.1.2 Required Interfaces

The following interface are suggested for initialization of the CCs that support a single con-
nectivity session. The creation of objects depends on DPE services.

i_ConSCtrl: Once the CC is created, the CCF can use this interface to establish any re-
quested NFCs.

6.4.1.3 i_ConSCtrl

This interface provides operations for setup, activation, deactivation, and release of one or
more flow connections of the connectivity session associated with the Connection Coordi-
nator object. It also provides a connectivity session query operation and an operation to ac-
quire a notification control interface associated with the connectivity session.

This interface provides the following operations:

• Setup flow connections

-This operation is used for setting up one or more NFCs within the connectivity
session associated with the CC. If the invocation is successful, this operation
creates one or more FCC objects which provides operations for manipulating
the newly created NFCs. When a NFC set up is requested, the client should
specify at least one branch of the NFC. NFCs can be established in an active
or inactive state.

• Activate flow connections

-This operation is used for activating one or more (possibly all) NFCs of the
connectivity session associated with the CC. One of the output is List of triples
of the form <FC, FEP, Status> where FC is the name of a NFC, FEP is the
name of an endpoint (root or leaf) of the NFC referenced by FC, and Status is
either “Activated” or “UnableToActivate”.

• Deactivate flow connections

-This operation is used for deactivating one or more (possibly all) NFCs of the
connectivity session associated with the CC.

• Release connectivity session

-This operation is used for releasing the connectivity session associated with the
CC. When the connectivity session is released, all component NFCs are also
released and the CC is deleted.

• Release flow connections

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 57

-This operation is used for deactivating one or more (possibly all) NFCs of the
connectivity session associated with the CC.

• Get notification control interface

-Return the i_ConSNotifyCtrl interface reference associated with this connectivity
session. This interface allows a client to modify enable or disable notifications
at a session level or change the default destination.

• Get connectivity session info

-This operation is used for retrieving the connectivity session information. Outputs
are State of the connectivity session and List of names of NFCs that are
components of the connectivity session.

• Get flow connection control interfaces

-This operation is used for obtaining the references to the i_FlowCtrl and
i_FCNotifyCtrl interfaces associated with one or more (possibly all) flow
connections of the connectivity session associated with the CC.

6.4.1.4 i_ConSNotifyCtrl

This is a suggested interface for controlling notifications at the session level. This allows
notifications associated with the connectivity session and its associated NFCs to be con-
trolled together or individually, as desired.

• Enable flow connection notification

-Enables notifications associated with either listed NFCs or the connectivity
session (i.e. all NFCs in the connectivity session).

• Disable flow connection notification

-Suspends sending notifications associated with either listed NFCs or the
connectivity session (i.e. all NFCs in the connectivity session).

• Update flow connection notification destination

-This operation is used to set the default flow connection notification destination
parameter for this connectivity session only.

6.4.1.5 Required Interfaces

The following interface are suggested for initialization of the FCCs:

i_FlowCtrl: Once the FCC is created, the CC can use this interface to initialize NFCs.

6.4.1.6 i_FlowCtrl

This interface provides operations for addition, removal, modification, activation, and deac-
tivation of one or more branches (possibly all branches) of the NFC associated with the
FCC object. It also provides a query operation for obtaining information on the associated
NFC.

This interface provides the following operations:

58 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

• .Add flow connection branches

-This operation is used for adding one or more branches to the NFC associated
with the FCC object. NFC branches can be added in an active or inactive state.

• Delete flow connection branches

-This operation is used for removing one or more branches (possibly all branches)
from the flow connection associated with the FCC object. A request to delete
all branches releases the NFC, and removes the related FCC. (The i_ConSCtrl
interface can also be used to release NFCs).

• Activate flow connection branches

-This operation is used for activating one or more branches (possibly all branches)
of the flow connection associated with the FCC object.

• Deactivate flow connection branches

-This operation is used for deactivating one or more branches (possibly all
branches) of the flow connection associated with the FCC object.

• Modify flow connection branches

-This operation is used for adding one or more branches to the flow connection
associated with the FCC object.

• Get flow connection info

-This operation is used for retrieving the flow connection information.

6.4.1.7 i_FCNotifyCtrl

This interface provides operations for controlling the emission of notifications regarding the
network flow connection associated with the FCC object.

It provides the following operations:

• Enable flow connection notification

-This operation is used for instructing the FCC to emit notifications regarding the
NFC.

• Disable flow connection notification

-This operation is used for instructing the FCC to suspend emission of notifications
regarding the NFC.

• Set flow connection notification destination

-This operation is used to communicate the interface reference to the FCC which
its client will use to receive flow connection notifications.

6.4.1.8 Generic or Predefined Supported Interfaces

The following generic or predefined interfaces are supported by the FCC:

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 59

i_Notify: the FCC may support this interface to receive notifications associated with the
trails it establishes in the layer network, see Section

6.4.1.9 Required interfaces

The following interfaces are required by the FCC:

i_FCNotify: The FCC sends notifications regarding its associated flow connection to this in-
terface. See. Section

i_TrailSetup: The FCC uses this interface to establish a trail, see Section

i_TrailControl: The FCC uses this interface to control a trail it uses or has established, see
Section

i_LNBSetup: The FCC uses this interface to request the LNBM (Layer Network Binding
manager) to establish a Layer Network Binding

i_LNBControl:The FCC uses this interface on the LNBM to control a LNB (Layer Network
Binding) the FCC uses or has established

i_NotifyCtrl: The FCC may require this interface to acquire notifications associated with
trails it controls in the layer network, see Section

6.4.1.10 Components and Interfaces

6.4.1.10.1. Connection Coordinator Factory (CCF)

The CCF facilitates the working of the connectivity provider’s domain through its ConSSet-
up interface by providing the capabilities to:

setup connectivity sessions by instantiation of connection controller objects;

manage all connectivity sessions in the domain by providing their names on request,

retrieve references to the ConSCtrl and ConSNotifyCtrl interfaces of a specific connectivity
session.

Supported interfaces:

i_ConSSetup: This interface allows the establishment of connectivity sessions and their as-
sociated computation objects. It also allows some general connectivity level management
operations. These operations are primarily included to aid management, such as recovery
and transfer of connectivity session control.

Required interfaces:

i_ConSCtrl: to establish requested NFCs in a CC.

i_ConSNotifyCtrl:

60 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

6.4.1.10.2. Connection Coordinator(CC)

An instance of the object is created for each connectivity session. It offers the capabilities
to:

control (setup,activate,deactivate,release) and manage (retrieve, session and flow control
interface information) of flow connections within a connectivity session through its ConSCtrl
interface

control (enable, disable) and management (update of recipient for the notifications) of no-
tifications on the state and state changes of flow connections within a connection session
through its ConSNotify interface

Supported interfaces:

i_ConSCtrl

i_ConSNotifyCtrl

Required interfaces: The following interface is suggested for initialization of the FCC.

i_FlowCtrl: Once the FCC is created, the CC can use this interface to initialize NFCs.

6.4.1.10.3. Flow Connection Controller (FCC)

The FCC object exists for each flow connection and offers the capabilities to:

control (addition, removal, modification, activation and deactivation) of one or more branch-
es of a flow connection as well as management (retrieve information on the flow connection
topology, traffic type, routing constraints,..) through its FlowConCtrl interface.

control (enable, disable, set) of the emission of notification through its FlowConNotifyCtrl
interface,

generation of the notifications which are targeted towards a specific instance of the Flow-
ConNotify interface in the connectivity user domain.

Supported interfaces:

i_FlowConnCtrl:

i_FCNotifyCtrl: to send notifications to the CSM regarding its associated
NFC;

i_NotifyCtrl:to acquire notifications associated to trails it controls in the layer network.

Required interfaces:

i_FlowConNotify: to send notifications to the CSM regarding its associated NFC;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 61

i_TrailSetup: to request the LNC to establish a trail

i_TrailControl: on the LNC to control a trail the FCC uses or has established

i_LNBSetup: to request the LNBM to establish a Layer Network Binding

i_LNBControl: on the LNBM to control a LNB the FCC uses or has established

i_NotifyCtrl: acquire notifications associated to trails it controls in the layer network.

Operations on the i_ConSSetup interface:

/* Establish connectivity session. */
void setup_connectivity_session(

in t_SecHandle handle,
in t_SuccessCriterion criterion,
in t_ConSessionName conSessionName,
in t_FlowConnNotification notifIf,
in t_ParameterListlist,
in t_FlowConnDescSeq flowConnDescList,
out i_ConnSessionNotificationControl notifCtrlIf,
out t_FlowConnResponseSeq res)
raises (NotAuthenticated, NotAuthorized,
InvalidFlowConnInfo);

This operation allows to establish a connectivity session (create CC; if desired establish
NFC(s) and return control interface for each NFC). It takes as input parameters: security
info, success criterion, connectivity session name, connectivity session parameters (option-
al: if any overrides default values), NFC setup info (optional: if setup of NFC(s) is request-
ed). The output parameters are success/failure, reference to i_conSCtrl, reference to
i_ConSNotifyCtrl, list of tuples <NFC name, reference to i_FlowCtrl, reference to
i_FCNotifyCtrl, FEPs that were bound, FEPs that could not be bound> for every setup NFC.

/* List connectivity session identifiers. */
void list_all_con_sessions(

in t_SecHandle handle,
out t_ConSessionNameList conSessionList)
raises (NotAuthenticated, NotAuthorized);

This operation allows to list connectivity session identifiers and possible filtering. It takes as
input parameters the security information and outputs the success/failure, list of names of
connectivity sessions of this user.

/* Get a connectivity session. */
void get_con_session_control_interfaces(

62 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

in t_SecHandle handle,
in t_ConSessionName conSessionName,
out i_ConnSessionControl ctrlIf,
out i_ConnSessionNotificationControl notifCtrlIf)
raises (NotAuthenticated, NotAuthorized,
InvalidConnSessionName);

This operation allows to get a connectivity session (return reference to control interface giv-
en a connectivity session identifier). It takes in as input parameters the security information
and Connectivity Session Name and outputs the success/failure,reference to
i_conSCtrl,reference to i_ConSNotifyCtrl of the Connection Coordinator.

Operations on the i_ConSCtrl:

The i_ConnSessionControl provides operations to manipulate one or more NFCs in the
connectivity session associated to the CC; for connectivity session query; and for acquisi-
tion
of a notification control interface associated with the connectivity session.

void setup_flow_connections(
in t_SecHandle handle,
in t_ParametersList list,
in t_SuccessCriterion criterion,
in t_FlowConnDescSeq flowConnDescList,
out t_FlowConResponseSeq resp)
raises (NotAuthenticated, NotAuthorized, InvalidFlowConnInfo);

This operation allows to set up one or more NFCs within the connectivity session (which
includes creating the corresponding FCC component(s) for their manipulation) in active or
inactive state; at least one branch of each requested NFC must be specified. It takes as
input the security information, parameter list, success criterion, and NFC setup information.
It then returns the success/failure,list of tuples <NFC name, reference to i_FlowCtrl, refer-
ence to FCNotifyCtrl, FEPs that were bound, FEPs that could not be bound>

/* Activate (one, more or all) NFCs in the connectivity session. */
void activate_flow_connections(
in t_SecHandle handle,
in t_SuccessCriterion criterion,
 in boolean allFlag,
 in t_FlowConnNameSeq flowConnList,
out t_ActivationResponseSeq resp)
raises (NotAuthenticated, NotAuthorized, InvalidFlowConnName,

ConnSessionActiveAlready);

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 63

This operation allows to activate one or more (or all) NFCs in the connectivity session; re-
turns triplets <NFC, FEP, status> where FEP is an endpoint (root or leaf) of the NFC and
status is “activated” or “unable to activate”. The input parameters are the security info,suc-
cess criterion, boolean TRUE=all ConS must be activated, FALSE=only some specified
NFCs, names of NFCs to be activated (only if previous parameter is FALSE).The return pa-
rameters are namely success/failure,list of triples <NFC name, FEP (root or leaf of NFC),
status (activated/unable to).

/* Deactivate (one, more or all) NFCs of the connectivity session */
void deactivate_flow_connections(
in t_SecHandle handle,
 in t_SuccessCriterion criterion,
 in boolean allFlag,
 in t_FlowConnNameSeq flowConnList,
out t_ActivationResponseSeq resp)
raises (NotAuthenticated, NotAuthorized, InvalidFlowConnName,
ConnSessionDeactiveAlready);

This operation allows to deactivate one or more (or all) NFCs of the connectivity session. It
takes as input parameters the security information, the success criterion, boolean
TRUE=all connectivity sessions must be deactivated, FALSE=only some specified NFCs,
names of NFCs to be deactivated (only if previous parameter is FALSE). The return param-
eters are namely success/failure, list of triples <NFC name, FEP (root or leaf of NFC), status
(deactivated/unable to).

/* Release (one, more or all) NFCs in the connectivity session. */
void release_flow_connections(

in t_SecHandle handle,
 in t_SuccessCriterion criterion,
 in boolean allFlag,
 in t_FlowConnNameSeq flowConnList)
raises (NotAuthenticated, NotAuthorized, InvalidFlowConnName);

This operation allows to release one or more (or all) NFCs in the connectivity session (the
corresponding FCCs delete themselves). If all then the connectivity session is released. It
takes as input parameters the security info,success criterion,boolean TRUE=all connectiv-
ity sessions must be released, FALSE=only some specified NFCs,names of NFCs to be re-
leased (only if previous parameter is FALSE). The success or failure of the operation is then
returned.The failure of the operation will result in an exception being raised either NotAu-
thenticated, NotAuthorized, InvalidFlowConnName)

64 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

/* Get information about the connectivity session. */
void get_conn_session_info(

in t_SecHandle handle,
out t_ConnSessionInfo info)
raises(NotAuthenticated, NotAuthorized);

This operation allows to get information about the connectivity session: its state and a list
of component NFC names.It takes the security information as the input parameters and re-
turns the success/failure of the operation, connectivity session name, connectivity ses-
sion’s operational state, connectivity session’s administrative state,connectivity session’s
profile
information, list of names of the NFCs that are components of the connectivity session. If
the operation fails an exception is raised namely NotAuthenticated or NotAuthorized

/* Get references to interfaces i_FlowCtrl and i_FCNotifyCtrl for (one,
more or all) NFCs in the connectivity session. */
void get_conn_session_info(

in SecHandle handle,
 in boolean allFlag,
 in t_FlowConnNameSeq flowConnList,
out t_FlowConnInterfacesSeq connIfList)
raises (NotAuthenticated, NotAuthorized, InvalidFlowConnName);}

This operation allows to get references to interfaces i_FlowCtrl and i_FCNotifyCtrl for one
or more (or all) NFCs in the connectivity session*. It takes the security information, the flag
Boolean TRUE=control interfaces for all NFCs are requested, FALSE=only for some spec-
ified NFCs,names of NFCs for which control interfaces are requested (only if previous pa-
rameter is FALSE).as the input parameter. The return parameters are namely the success/
failure of the operation, the list of triples <NFC name, reference to i_FlowCtrl, reference to
i_FCNotifyCtrl.

Operations on the i_ConSNotifyCtrl

The i_ConSNotifyCtrl provides operations for the control of notifications at the connectivity
session level - joint or individual control of notifications associated to the connectivity ses-
sion and its component NFCs, as desired.

* Enable notifications associated with one or more (or all) NFCs in
the connectivity session. */
void enable_Conn_Session_notification(

in t_SecHandle handle,
 in boolean allFlag,

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 65

 in t_FlowConnNameSeq flowConnList)
raises (NotAuthenticated, NotAuthorized,
NotificationDestinationNotSet);

This operation enables notifications associated with one or more (or all) NFCs in the con-
nectivity session. It takes as input parameters the security info, boolean TRUE=notifications
for all NFCs are to be enabled, FALSE=only for some specified NFCs,names of NFCs for
which notifications are to be enabled (only if previous parameter is FALSE).The success or
failure of the operation is returned. The exception parameters raised in case of failure are
either NotAuthenticated, NotAuthorized or NotificationDestinationNotSet.

/* Disable notifications associated with one or more (or all) NFCs in
the connectivity session. */
void disable_Conn_Session_notification(

in t_SecHandle handle,
 in boolean allFlag,
 in t_FlowConnNameSeq flowConnList)
raises (NotAuthenticated, NotAuthorized);

This operation allows to disable notifications associated with one or more (or all) NFCs in
the connectivity session.It takes as input the security info,boolean TRUE=notifications for
all NFCs are to be enabled, FALSE=only for some specified NFCs,names of NFCs for
which notifications are to be enabled (only if previous parameter is FALSE). The success
or failure of the operation is returned.

/* Set a CC interface as default destination of NFC notifications for
the connectivity session. */
void update_CS_flow_connection_notification_destination(

in t_SecHandle handle,
 in i_FlowConnNotification destination)
raises (NotAuthenticated, NotAuthorized);

This operation allows Set a CC interface as default destination of NFC notifications for the
connectivity session. It takes as input parameters the security information, the reference to
i_FCNotify and outputs the success or failure of the operation.

Operations on the i_FlowConnCtrl:

66 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

The i_FlowConnControl provides operations to manipulate one or more (or all) flow con-
nection branches of the associated NFC, and a query operation to obtain information about
it.

void add_flow_connection_branches(
in t_SecHandle handle,
 in t_SuccessCriterion criterion,
 in t_FepDescSeq descList,
out t_SuccFepList boundList,
 out t_FailedFepList unboundList)
raises (NotAuthenticated, NotAuthorized,
NonExistentFlowEndPoints, FlowEndPointsAlreadyBound,
InvalidFlowConnBranchesInfo);

This operation allows to add one or more flow connection branches to the associated NFC,
in an active or inactive state. It takes as input parameters the security info,success criterion,
NFC branches setup info and returns the success/failure,list of leaf FEPs of branches suc-
cessfully attached to the NFC, list of pairs <leaf FEP that could not be attached, failure
code>. In case of failure the exception raised are either due to non existent flow end points,
the flow end points are already bound or the flow connection branches information are in-
valid.

/* Delete one or more (or all) flow connection branches from the
associated NFC. */
void delete_flow_connection_branches(

in t_SecHandle handle,
 in t_SuccessCriterion criterion,
 in boolean allFlag,
 in t_FepRefList list,
out t_SuccFepList list1,
 out t_FailedFepList list2)
raises (NotAuthenticated, NotAuthorized,
NonExistentFlowEndPoints);

This operation allows to delete one or more (or all) flow connection branches from the as-
sociated NFC; if all then release the NFC and self-delete FCC. The input parameters are
security info,success criterion,boolean TRUE=the entire NFC is to be deleted, FALSE=only
some specified branches, names of leaf FEPs of branches to be deleted (only if previous
parameter is FALSE). The success/failure, list of leaf FEPs of branches successfully delet-
ed from the NFC,list of pairs <leaf FEP that could not be deleted, failure code> is then re-
turned.If failure is returned the probable cause are either due to not authorized, not
authenticated or the Network Flow End Points are non existent.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 67

/* Activate one or more (or all) flow connection branches of the
associated NFC. */
void activate_flow_connection_branches(

in t_SecHandle handle,
 in t_SuccessCriterion criterion,
 in boolean allFlag,
 in t_FepRefList list,
out t_SuccFepList activatedList,
 out t_FailedFepList activationFailedList)
raises (NotAuthenticated, NotAuthorized,
NonExistentFlowEndPoints,
FlowConnBranchesActiveAlready);

This operation allows to activate one or more (or all) flow connection branches of the asso-
ciated NFC. It takes as input parameters the security info,success criterion,boolean
TRUE=the entire NFC is to be activated, FALSE=only some specified branches,names of
leaf FEPs of branches to be activated (only if previous parameter is FALSE).The success/
failure,list of leaf FEPs of branches successfully activated from the NFC,list of pairs <leaf
FEP that could not be activated, failure code>. In case of failure the exception raised are
either due to non existent flow end points, or the flow connection branches are already ac-
tive.

/* Deactivate one or more (or all) flow connection branches of the
associated NFC. */
void deactivate_flow_connection_branches(

in t_SecHandle handle,
 in t_SuccessCriterion criterion,
 in boolean allFlag,
 in t_FepRefList list,
out t_SuccFepList deactivatedList,
 out t_FailedFepList deactivationFaliedList)
raises (NotAuthenticated, NotAuthorized,
NonExistentFlowEndPoints,
FlowConnBranchesDeactiveAlready);

This operation allows the deactivation of one or more (or all) flow connection branches of
the associated NFC. The input parameter are security info,success criterion,boolean
TRUE=the entire NFC is to be deactivated, FALSE=only some specified branches,names
of leaf FEPs of branches to be deactivated (only if previous parameter is FALSE). The out-
put parameters are the success/failure,list of leaf FEPs of branches successfully deactivat-
ed from the NFC,list of pairs <leaf FEP that could not be deactivated, failure code>. In case
of failure the exception raised are either due to non existent flow end points, or the flow con-
nection branches are already deactived.

68 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

/* Modify one or more (or all) flow connection branches of the
associated NFC. */

void modify_flow_connection_branches(
in t_SecHandle handle,
 in t_SuccessCriterion criterion,
 in t_FepDescSeq descList,
out t_SuccFepList modifiedList,
 out t_FailedFepList unmodifiedList)
raises(NotAuthenticated, NotAuthorized,
NonExistentFlowEndPoints, InvalidFlowConnBranchesInfo);

This operation allows the modify one or more (or all) flow connection branches of the asso-
ciated NFC. The input parameters are the security info,success criterion,NFC branches
modification info.The success/failure,list of leaf FEPs of branches successfully modified,
list of pairs <leaf FEP that could not be modified, failure code> is then returned.

.
/* Get information about the associated NFC. */
void get_flow_conn_info(

in t_SecHandle handle,
out t_FlowConnInfo connInfo)
raises (NotAuthenticated, NotAuthorized);
}

This operation allows to get information about the associated NFC. It takes as input the se-
curity information and outputs the success/failure, connection topology, traffic type, routing
constraints, NFC notification destination, reliability class, for each FPE a tuple <FPE name,
FPE type (root/leaf), peak bandwidth, average bandwidth, maximum delay, maximum de
lay variation, administrative state, operational state>.

Operations on the i_FCNotifyCtrl

The i_FCNotifyCtrl provides operations for controlling the emission of notifications about
the associated NFC.

/* Enable notifications regarding the associated NFC. */
void enable_flow_connection_notification(

in t_SecHandle handle)
raises (NotAuthenticated, NotAuthorized,
NotificationDestinationNotSet);

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Connectivity Session Related Components

Public Document 69

/* Disable notifications regarding the associated NFC. */
void disable_flow_connection_notification(

in t_SecHandle handle)
raises (NotAuthenticated, NotAuthorized);

/* Set an FCC interface as default destination of notifications for the
associated NFC. */
void set_flow_connection_notification_destination(

in t_SecHandle handle,
 in i_FlowConnNotification destination)
raises (NotAuthenticated, NotAuthorized);
}

Operations on the i_FCNotifyCtrl

/* Enable notifications regarding the associated NFC. */
void enable_flow_connection_notification(

in t_SecHandle handle)
raises (NotAuthenticated, NotAuthorized,
NotificationDestinationNotSet);

/* Disable notifications regarding the associated NFC. */
void disable_flow_connection_notification(

in t_SecHandle handle)
raises (NotAuthenticated, NotAuthorized);

/* Set an FCC interface as default destination of notifications for the
associated NFC. */
void set_flow_connection_notification_destination(

in t_SecHandle handle,
 in i_FlowConnNotification destination)
raises (NotAuthenticated, NotAuthorized);

}

70 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Connectivity Session Related Components NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Layer Network Related Components

Public Document 71

7. Layer Network Related Components

The concept of Layer Network (LNW) is used to denote a network that is based on a single
technology and that transports information of a specific format, referred to as the character-
istic information. Examples of layer networks are: ATM Virtual Path (VP) network, ATM Vir-
tual Channel (VC) network, SDH VC4 Path network, Frame Relay (FR) network, Internet,
Ethernet, and Token Ring Network. The functions provided at this level are the setup and
management of Layer Network Bindings (LNBs). The LNB is the generalized concept of trail
and represents an end-to-end connectivity across a layer network irrespective of its con-
nection type (connection-oriented or connectionless layer network). Figure 8-1 shows the
computational objects and interfaces associated with the layer network.

Figure 7-1. Layer Network Related Objects

The information objects that describe the network fragment in a layer network are the fol-
lowing:

Layer Network Domain (LND)
Represents the part of a layer network that is under the control of one
administrative domain. A layer network domain consists of a top level
subnetwork and a set of links.

Local Layer Network Domain (LLND)
Represents the part of a layer network that is under the control of the
local administrative domain. LLND is the subtype of LND.

Connectivity
Provider

Flow Connection Controller
(FCC)

Layer Network
Coordinator

(LNC)

Trail
Manager

(TM)

Tandem
Connection
Manager

(TCM)

Terminal
Layer

Adapter
(TLA)

i_LnbSetupi_LnbNotifyCtrl

i_tcontlaNfepSetup

i_tconlncNfepEvent

Layer Network
Binding

Manager
(LNBM)

Layer Network
Coordinator

(LNC)

i_TCCtrl

i_LnbControl

i_tcontlaConfQuery

i_tcontlaNfepControl

i_SncService i_SncServiceFactory

Terminal
Communication

Session
Manager
(TCSM)

Connection Performer
(CP)Connectivity

Consumer

i_
tc

sm
R

ep
or

t

i_Notify

Connectivity
Provider

Tandem
Connection

Manager
(TCM)

i_TCsetup
i_LnbControl

i_TCsetup

i_TCCtrl

i_
tc

on
tla

C
on

fQ
ue

ry

i_tlaTcpBinding

i_tlaUdpBinding

i_NotifyCtrl
creates

72 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Layer Network Related Components NCS v2.2_97_12_20

Foreign Layer Network Domain (FLND)
Represents from the perspective of a connectivity provider the part of
a layer network that is under the control of a foreign network adminis-
tration.

Figure 7-2. Layer network related information model fragment.

The information objects that describe the connectivity in a layer network are the following.
These objects represents the connectivity view as perceived by one connectivity provider
and does not represent a global view of a TINA network.

Trail (T) Represents the resource that transfers information between two or
more end points of a layer network. The end points of a trail are called
Network Trail Termination Points (NWTTPs).

Layer Network Binding (LNB)
Represents an association between two or more end points in a layer
network and the generalized concept of trail.

Tandem Connection (TC)
Represents a portion of a trail that either exists in a local layer network
domain or spans one or more foreign layer network domains. The end
points of a tandem connection are NWTTPs or NWCTPs. From the per-
spective of a LND, a tandem connection consists of a subnetwork con-
nection across the top level subnetwork of the local LND, zero or more
tandem connections in one or more foreign LNDs.

Each layer network of a connectivity layer network represents a set of compatible inputs
and outputs that may be characterized by the characteristic information. These end points
represent access points to layer networks and modelled as end points but are specialized
according to their types.

NWTTP LTP

NFEP PoolNFEP

NWCTP

TLTP
1+

End Point

Container

extremity

resource 1+

TTPBoundto
CTP

Peer to
Peer

LND

H
as

 T
T

P

TTP
adapts TLTP

LLND FLND

Trail

Has

Tandem Connection

Has

Requester
1+

2+

LNB
Has

LNW

BoundToTTP

Has

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Layer Network Related Components

Public Document 73

Network Trail Termination Point (NWTTP)
Represents an end point of a trail in a layer network. The NWTTP mod-
els the point where a layer network (typically an adaptation card in a
CPE) receives information from a client layer in a format that it support
or delivers information to the client layer. However, only technology in-
dependent aspects are represented in this object type. Technology
specific trail terminations (e.g., ATM VP layer TTP) should be derived
from this type to represent additional information.

Layer Network Access Point (LNAP)
Represents an end point of a LNB in a layer network. In the case of in-
ternet, a LNAP represents either a UDP port or a TCP port depending
on the transport protocol used for the stream flow.

7.1 Layer Network Coordinator (LNC)

The Layer Network Coordinator (LNC) object acts on behalf of a Layer Network Domain
(LND) and provides LNB setup, manipulation, and release operations to the FCC objects in
the same connectivity provider domain. One instance of this object type exists in a connec-
tivity provider domain for each LND contained in the connectivity provider domain. Further-
more, the LNC provides Tandem Connection (TC) setup, manipulation and release
operations to the LNC of each neighbor foreign LND, and also requests them to perform
tandem connection setup and release operations. Thus, an LNC has a peer-to-peer rela-
tionship (both client and server roles) with each neighbor LNC. However, LNCs in different
layer networks do not communicate directly. The Connection Coordinator (CC) object is re-
sponsible for this interworking.

The LNC is a single access point to a layer network domain and supports queries on the
status of the layer network and its associated LNBs. The LNC also supports queries about
tandem connections established within a layer network domain.

When it receives a LNB setup request, the LNC creates a TM or a LNBM object for the man-
agement of the new LNB and passes the LNB setup request to the TM or LNBM. The se-
lection between TM or LNBM is depend on the associated layer network capabilities. To
set-up a LNB which spans across different management domains, an LNC federates with
other domains and interacts in terms of tandem connections. When it receives a tandem
connection setup request, the LNC creates a TCM object for the manipulation of the new
tandem connection and passes the tandem connection management request to the TCM.

The LNC object provides i_LnbSetup and i_LnbNotifyControl interfaces, the client for these
two interfaces is the FCC object in the same connectivity provider domain. The LNC pro-
vides also i_TCSetup interface for LNC objects in federated domains.

74 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Layer Network Related Components NCS v2.2_97_12_20

7.1.1 Interface Description

7.1.1.1 i_LnbSetup interface

i_LnbSetup interface allows the establishment of LNBs and their associated computation
objects. It also allows query and LNB release operations. These operations are primarily
included to aid management, such as recovery and transfer of LNB control.

• setup_LNBs()

- This operation is used to set up one or more LNBs. If successful, this operation
creates a Trail Manager object or a Layer Network Binding Manager object (if
necessary) and returns a LNB control interface for each LNB established.

• release_LNBs()

- This operation is used to release one or more specified LNBs within the LNC.
It can only be used to release LNBs established in the domain associated with
the LNC. This operation is included for management purposes.

• get_LNB_ctrl_interfaces()

- This operation is used for obtaining the references to specified LNB control
interfaces.

• get_LNB_notification_ctrl_interface()

- Return the notification control interface reference associated with this LNC.
This interface allows a client to modify notifications, including destinations and
notification types of interest.

7.1.1.2 i_TCSetup interface

i_TCSetup interface allows the establishment of tandem connections and their associated
computational objects. It also allows query and tandem connection release operations.
These operations are primarily included to aid management, such as recovery and transfer
of tandem connection control.

• setup_tc()

- This operation is used to set up a tandem connection. If successful, this
operation creates a Tandem Connection Manager object and returns a tandem
connection control interface for each tandem connection established.

• release_tc()

- This operation is used to release one or more specified tandem connections
within the LNC. It can only be used to release tandem connections established
in the domain associated with the LNC.

• get_tc_info()

- This operation is used for retrieving lists of tandem connections in the layer
network.

• get_tc_ctrl_interfaces()

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Layer Network Related Components

Public Document 75

- This operation is used for obtaining the references to specified tandem
connection control interfaces.

• get_tc_notification_ctrl_interface()

- Return the notification control interface reference associated with this LNC.
This interface allows a client to modify notifications, including destinations and
notification types of interest.

7.2 Trail Manager (TM)

A Trail Manager (TM) is created by the Layer Network Coordinator of the layer network do-
main in which the trail is initially established. A trail is a specialization of LNB for connection-
oriented networks. Therefore, one instance of this object type exists for each trail in the orig-
inating connectivity provider domain. The trail manager acts as a single point of contact for
control of the trail, even though it extends over multiple domains. The FCC is the usual cli-
ent of the trail manager.

When the LNC receives a LNB setup request, the LNC creates a TM or LNBM depending
on whether it manages a connection-oriented or (exclusive) connectionless layer network.
The TM created then manages the specific trail. To provide transparency to FCC, both
LNBM and TM support an identical interface, called the LNB (i_LnbControl) Interface. After
creates a TM, the LNC returns to the FCC a reference to the LNB interface of the TM.

When a TM is requested to setup a trail, it determines the layer network domains that are
to be traversed by the trail. This determination is based on the layer network domains to
which the LTPs of the root and leaf NFEPs belong, the topology of the layer network, and
the route selection policy of the TM1. Based on this determination, the TM decomposes the
trail into two components: a tandem connection in the local LND, and zero or more foreign
tandem connections. More than one foreign tandem connection may need to be setup in
the case of a point-to-multipoint trail.

To setup the tandem connection in the local LND, the TM requests the LNC of the local LND
through i_TCSetup interface. To setup a foreign tandem connection, the TM requests the
LNC of the neighbor foreign LND associated with the tandem connection. Therefore, the
TM should keep the reference to the subnetwork connection associated with a trail in its do-
main, and the tandem connection with the neighbor domains. However, an LNC will return
the interface to a single trail manager even if the trail requires federation between multiple
domains of the layer network to be established.

The TM maps other trail management operations into one or more tandem connection man-
agement operations depending on the trail branches affected by the operation, and re-
quests the corresponding TCMs to perform the management operation.

The TM object provides i_LnbControl interface, the client for this interface is the FCC object
in the same connectivity provider domain. The LNC provides also i_TCSetup interface for
LNC objects in federated domains.

1. Source Routing Acceptance is a possibility

76 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Layer Network Related Components NCS v2.2_97_12_20

7.2.1 Interface Description

7.2.1.1 i_LnbControl Interface

Through this interface the FCC object can manipulate a trail by adding, modifying, activat-
ing, deactivating or releasing LNB branches. An operation can act on the entire trail by
specifying all branches. A trail and its branches may be specified in terms of Network Trail
Termination Points or NWTTP Pools.

• add_LNB_branches()

- This operation is used for adding one or more branches to the trail associated
with the Trail Manager object. Branches can be added in an active or inactive
state.

• delete_LNB_branches()

- This operation is used for removing one or more branches (possibly all
branches) from the trail associated with the Trail Manager object.

• activate_LNB_branches()

- This operation is used for activating one or more branches (possibly all
branches) of the trail associated with the Trail Manager object.

• deactivate_LNB_branches()

- This operation is used for deactivating one or more branches (possibly all
branches) of the trail associated with the Trail Manager object.

• modify_LNB_branches()

- This operation is used for modifying the layer network binding information of
one or more branches associated with the Trail Manager object.

• get_LNB_info()

- This operation is used for retrieving the layer network binding information. It
returns information on routing constraints, traffic type, QoS and termination
points. Filtering attributes may be applied to manage which LNBs are listed.

7.3 Terminal Layer Adapter (TLA)

The Terminal Layer Adapter (TLA) is the counterpart in the connectivity consumer domain
of the LNC in the connectivity provider domain. The TLA object provides functions for set-
ting up (creating), manipulating and deleting network flow end points. TLA performs these
operation upon requests from a TCM or LNBM in the associated LND. These operations
involve bandwidth management, port allocation and channel assignment of access links
that connect the CPE to adjoining NEs (i.e., switches or cross connectors).

One instance of this object type exists in a CPE for layer network to which the CPE is at-
tached. TLA also serves as the linkage point between the technology independent aspects
and technology specific aspects of a stream flow connection setup. After it sets up a NWT-
TP for a trail associated with a stream flow connection, the TLA notifies the TCSM that a

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Layer Network Related Components

Public Document 77

NFEP which is a generic view of the NWTTP has been setup. Upon receiving this notifica-
tion, the TCSM sets up the terminal flow connection that binds the SFEP to the chosen
NFEP.

7.3.1 Interface Description

7.3.1.1 i_tcontlaNfepSetup Interface

This interface is used for setting up a NFEP in the terminal. NFEPs may be set up dynam-
ically during connection establishment or may be pre-provisioned. It provides the following
operations:

• setup_nfep()

- This operation is used to set-up the NFEP in the connectivity consumer do-
main. The connectivity consumer will request the operation and report success
or failure. When the operation is performed successfully, the NFEP will exist,
be bound to a NWTTP and its collocated NWCTP, and be in the unlocked state
or the locked state, depending on the value of the parameter “Initial Adminis-
trative State”.

• release_nfep()

- This operation is used to release a NFEP in the connectivity consumer domain.
The connectivity consumer will execute the operation and report success or
failure. This operation may be invoked in the locked state or in the unlocked
state. After successful execution of the operation, the NFEP will not be bound
to the supporting NWTTP anymore, and the supporting NWTTP will be deleted.
If not pre-provisioned, the supporting NWCTP is deleted as well. Similar, the
NFEP is deleted if it is not pre-provisioned.

7.3.1.2 i_tcontlaNfepControl Interface

• activate_nfep()

- This operation is used to activate a NFEP in the connectivity consumer domain.
The connectivity consumer will execute the operation and report success or
failure.

• deactivate_nfep()

- This operation is used to de-activate an active NFEP in the connectivity con-
sumer domain. The connectivity consumer will execute the operation and re-
port success or failure.

• modify_nfep_qos()

- This operation is used to modify the characteristic of the NFEP (e.g. bandwidth,
QoS, bearer service type, etc.). The connectivity consumer will execute the op-
eration and report success of failure. This operation may be invoked in the
locked state or the unlocked state. It will not result in a state change.

78 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Layer Network Related Components NCS v2.2_97_12_20

7.3.1.3 i_tcontlaConfQuery Interface

This interface is provided both to TCSM or TCSM in order to query the TLA about the avail-
able NFEP Pools and their status.

• get_nfep_pools()

- This operation is used for retrieving the names of all flow endpoint pools that
the connectivity consumer domain supports.

7.3.1.4 i_tcontlaEventCtrl Interface

It is provided from TLA to LNC in order to be notified (the TLA) about error and failures at
the network that affect the terminal connec-tion.

• enable_tla_event()

- This operation instructs the connectivity consumer (TLA) to emit notifications
regarding the NFEPs.

• disable_tla_event()

- This operation instructs the connectivity consumer (TLA) to suspend emission
of notifications regarding the NFEPs.

• set_tla_event_destination()

- This operation is used to instruct the TLA about the i_tconlncNfepEvent inter-
face to which notifications should be sent.

7.3.1.5 i_tlaTcpBinding Interface

Even though TCP and UDP binding use the same network layer (IP), TCP binding provides
a totally different service to the above layer than UDP binding does. Fundamentally, TCP
binding offers a reliable, full duplex, sequenced, and unduplicated byte stream transport
between two TCP endpoints. Through the TCP flow and traffic control mechanism, TCP
binding provides the regulated stream flows between TCP endpoints. TCP binding oper-
ates very naturally in a client/server environment. A server TLA listens for incoming con-
nection requests and a client TLA initiates TCP binding by invoking communication routines
that establish a connection with a server. The TLA for the internet layer network offers an
i_tlaTcpBinding interface that has the following operations and Figure 12-3 shows the in-
teractions between the LNBM and the TLAs for the setup of a point-to-point LNB using
TCP.

• create_Tcpep()

- This operation takes an optional (IP) end point description as input. This de-
scription identifies the set of IP addresses (network interfaces) from which the
TLA can select one for creating an end point for the LNB. If the IP end point
description is omitted, the TLA selects one of the IP addresses associated with
the CPE. After creating2 the end-point it returns the fully resolved end point de-
scription3 (e.g. adds selected port).

• accept_Tcp()

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Layer Network Related Components

Public Document 79

- This operation optionally a local and a remote end-point descriptions as input.
It creates the local end point if it does not exist yet. The local end point will ac-
cept TCP connection requests only from the remote end point if it is specified.
If no remote end point is specified it will accept connection requests from any-
where. It returns the fully resolved local end point description.

• connect_Tcp()

- This operation takes an optional local and a remote end point description as
input. If the local end point does not exist, it creates one. It connects to the re-
mote end-point and returns the resolved local end-point.

• disconnect_Tcp()

- This operation takes a local end point description as parameter and discon-
nects the connection if it exists.

• delete_Tcpep()

- This operation takes a local end point description as parameter and deletes it
and the associated connection, if any.

Figure 7-3. LNBM-TLA Interactions for a TCP/IP LNB

2. All operations that can create end-points must also have a correlation identifier as ‘in’ parameter. This
is a reference to the terminal part of the stream flow connection.

3. The specification of the end-point description is out of the scope of this paper, but it must be able to
contain full or partially resolved references to IP end-points. A URL like approach might be suitable
(e.g. TCP://ip_address:port).

IP_TLA_T1

(IP_TLA)

IP_Binding_1

(IP_LNBM)

IP_TLA_T2

(IP_TLA)

ep_T1)
1.CreateTCPep(inout

2.[ep_T1]
ep_T2, in ep_T1)

3.Accept(inout

4.[ep_T2]ep_T1, in ep_T2)
5. Connect(inout

6._Setup_of_TCP_connection

8.[ep_T1]

7.Confirmation_of_TCP_setup

80 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Layer Network Related Components NCS v2.2_97_12_20

7.3.1.6 i_tlaUdpBinding Interface

This interface for the UDP transport supports both point-to-point and multipoint bindings.
The TLA interface for UDP provides the following operations which can be applied consis-
tently to both point-to-point and multipoint bindings. In spite of some limitations,
i_tlaUdpBinding interface has the advantage over i_tlaUdpBinding interface in the following
areas: speed, overhead, and simplicity. Because TCP binding, to provides reliable trans-
port, exchanges huge number of packets over the network. UDP binding doesn’t have this
overhead, and is considerably faster than TCP binding. In consequence, in those situation
where speed is important, or the number of packets sent over network must be kept to a
minimum such as network management services, UDP binding is the solution. Figure 12-4
illustrates the LNBM-TLA interactions needed for the setup and release of a point-to-point
LNB using UDP. A LNBM that manages a IP multicast address can easily use this for a
point-to-multipoint UDP LNB as demonstrated by Figure 12-5. Figure 12-5 illustrates the
LNBM-TLA interactions needed for the setup of a point-to-multipoint LNB using IP multi-
casting.

• create_Udpep()

- This operation has the same semantics as CreateTCPep, the only difference
is that the end point is a UDP end point.

• add_Udp_source()

- This operation takes an optional local and a remote end point description as
input. If the local end point does not exist, it creates one. Then, it adds the re-
mote end-point to the list of accepted sources for the local end point, starts a
receiving process if this is the first receiving end point and returns the fully re-
solved local end point description

• add_Udp_destination()

- This operation takes an optional local and a remote end point description as
input. If the local end point does not exist, it creates one. Then, it adds the re-
mote end point to the list of destinations for the local end point and returns the
fully resolved local end point description.

• remove_Udp_source()

- This operation takes a local and a remote end point description as input. It re-
moves the remote end point from the list of accepted sources for the local end
point and stops the receiving process if this is the last receiving end point.

• remove_Udp_destination()

- This operation takes a local and a remote end point description as input. It re-
moves the remote end point from the list of destinations for the local end point.

• delete_Udpep()

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Layer Network Related Components

Public Document 81

- This operation takes an end point description as input. It stops the receiving
process if it is running and deletes the end point.

Figure 7-4. LNBM-TLA Interactions for a UDP LNB

Figure 7-5. LNBM-TLA Interactions for a point-to-multipoint UDP LNB

7.4 Tandem Connection Manger (TCM)

A Tandem Connection Manager (TCM) is created by the Layer Network Coordinator of the
same layer network domain. One instance of this object type exists for each tandem con-
nection originating in the connectivity provider domain. A tandem connection manager ob-
ject provides operations for manipulating the associated tandem connections, including the

IP_TLA_T1

(IP_TLA)

IP_Binding_1

(IP_LNBM)

IP_TLA_T2

(IP_TLA)

2.[ep_T1]

ep_T1)
1.CreateUDPep(inout

ep_T2)
3.CreateUDPep(inout

4.[ep_T2]

ep_T2, in ep_T1)
5.AddDestination(in

6.[]
ep_T1, in ep_T2)
7.AddSource(in

8.[]
ep_T2)

9.DeleteUDPep(inout

10.[ep_T2]ep_T1)
11.DeleteUDPep(inout

12.[ep_T1]

IP_TLA_T1

(IP_TLA)

IP_Binding_1

(IP_LNBM)

IP_TLA_T2

(IP_TLA)

IP_TLA_T2

(IP_TLA)

2.[ep_T2]

ep_T2)
1.CreateUDPep(inout

4.[ep_T3]

ep_T3)
3.CreateUDPep(inout

ep_T1)
5.CreateUDPep(inout

6.[ep_T1]
7. AddSource(ep_T1)

8.[]
9. AddSource(ep_T1)

10.[]

12.[]

11. AddDestination
(Multi_ep)

14.[ep_T2]

ep_T2)
13. DeleteUDPep(inout

82 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Layer Network Related Components NCS v2.2_97_12_20

tandem connection release operation. Tandem connection managers are responsible for
the routing of the tandem connection through the layer network domain. When a tandem
connection is released, the associated tandem connection manager object is deleted.

A tandem connection may be terminated by a connection termination point or a trail termi-
nation point. To support trail termination, a tandem connection manager can interact with a
TLA to manipulate the endpoints of the network flow connection associated with the tandem
connection. The tandem connection manager manipulates NFEPs through the TLA’s
i_tcontlaNfepControl interface.

When a TCM is requested to setup a tandem connection, it determines the layer network
domains that are to be traversed by the tandem connection. This determination is based on
the layer network domains to which the LTPs associated with the end points of the tandem
connection belong, the topology of the layer network, and the route selection policy of the
TCM. Based on this determination, the TCM decomposes the tandem connection into two
components: a tandem connection in the local LND, and zero or more foreign tandem con-
nections. More than one foreign tandem connection may need to be setup in the case of a
multipoint trail. To setup a foreign tandem connection, the TCM requests the LNC of the
neighbor foreign LND associated with the tandem connection. Before it sets up the tandem
connection in the local LND, the TCM determines if the local tandem connection is a bound-
ary tandem connection, i.e., one of the end points is on a CPE. if so, it requests the Terminal
Layer Adapter object associated with the CPE to setup the NWCTP and NWTTP for the
trail end point on the CPE. This request causes the TLA to assign bandwidth and channel
number (such as VPI/VCI in the case of ATM) on the associated access link. Upon receiv-
ing a success response from the TLA, the TCM proceeds to setup the local tandem con-
nection.

To setup the local tandem connection, the TCM selects the route in terms of (second level)
subnetworks and links in the local LND. It assigns bandwidth and channel number on each
link in the chosen route and requests the Network Management Layer Connection Perform-
er (NML-CP) associated with each subnetwork in the chosen route to setup the associated
subnetwork connection. Similarly, the TCM maps other tandem connection management
operations into operations on foreign tandem connections, if necessary, and subnetwork
connections in the local LND. Then, it requests the TCMs in the foreign domains and/or
NML-CPs in the local domain to perform the corresponding management operation.

7.4.1 Interface Description

7.4.1.1 i_TCCtrl Interface

Through this interface, a client can manipulate a tandem connection by adding, modifying
activating or releasing branches. An operation can act on the entire tandem connection by
specifying all branches. A tandem connection and its branches may be specified in terms
of NWTTPs, NWCTPs, NWTTP Pools or NWCTP Pools.

• activate_tc_branches()

- This operation is used for activating one or more branches (possibly all branch-
es) of the tandem connection associated with the Tandem Connection Manag-
er object.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Layer Network Related Components

Public Document 83

• deactivate_tc_branches()

- This operation is used for deactivating one or more branches (possibly all
branches) of the tandem connection associated with the Tandem Connection
Manager object.

• add_tc_branches()

- This operation is used for adding one or more branches to the tandem connec-
tion associated with the Tandem Connection Manager object. Branches can be
added in an active or inactive state.

• delete_tc_branches()

- This operation is used for removing one or more branches (possibly all branch-
es) from the tandem connection associated with the Tandem Connection Man-
ager object.

• modify_tc_branches()

- This operation is used for modifying one or more branches to the trail associ-
ated with the Tandem Connection Manager object.

• get_tc_info()

- This operation is used for retrieving the tandem connection information. It re-
turns information on routing constraints, traffic type, QoS and termination
points of the tandem connection.

7.4.1.2 i_tconlncNfepEvent Interface

Through this interface the TLA can notify the Tandem Connection Manager (or other layer
network manager, e.g. Trail Manager) of changes in the operational state of a NFEP.

• nfep_status_change ()

- This operation is used to notify the connectivity provider when the operational
state of a NFEP changes.

7.5 Layer Network Binding Manager (LNBM)

A Layer Network Binding Manager (LNBM) is created by the Layer Network Coordinator of
the layer network domain. The LNBM is the counterpart of the Trail Manager that is used
for managing a trail in a connection oriented network. To provide transparency to FCC, both
LNBM and TM support an identical interface. When a LNC receives a LNB setup request,
the LNC creates a LNBM if it manages a connectionless layer network. In the case of Inter-
net (connectionless LNW), a LNAP represents either a UDP port or a TCP port depending
on the internet transport layer protocol used for the stream flow. After it creates a LNBM as
a result of a SetupLNB, the LNC returns to the FCC a reference to the LNB interface of the
LNBM.

From a resource modeling perspective, a LAB has the following attributes: characteristic in-
formation (such as ATM VP, ATM VC, Frame Relay, UDP, TCP, etc.); topology (point-to-
point, point-to-multipoint, etc.), QoS parameters that can include bandwidth and timing. A
trail is then a specialization of LNB for connection-oriented networks.

84 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Layer Network Related Components NCS v2.2_97_12_20

Federation: LNBMs may interact to establish a LNB across multiple layer network do-
mains. The role of LNBMs in federation and interactions between them and LNC will be
elaborated in future releases of the NCS.

7.5.0.1 i_LnbControl Interface

Through this interface the FCC object can manipulate a trail by adding, modifying, activat-
ing, deactivating or releasing LNB branches. An operation can act on the entire trail by
specifying all branches. A layer network binding and its branches may be specified in terms
of Network Trail Termination Points or NWTTP Pools.

• add_LNB_branches()

- This operation is used for adding one or more branches to the LNB associated
with the Layer Network Binding Manager object. Branches can be added in an
active or inactive state.

• delete_LNB_branches()

- This operation is used for removing one or more branches (possibly all
branches) from the LNB associated with the Layer Network Binding Manager
object.

• activate_LNB_branches()

- This operation is used for activating one or more branches (possibly all
branches) of the trail associated with the Layer Network Binding Manager
object.

• deactivate_LNB_branches()

- This operation is used for deactivating one or more branches (possibly all
branches) of the trail associated with the Layer Network Binding Manager
object.

• modify_LNB_branches()

- This operation is used for modifying one or more branches of the LNB
associated with the Layer Network Binding Manager object.

• get_LNB_info()

- This operation is used for retrieving the layer network binding information. It
returns information on routing constraints, traffic type, QoS and termination
points. Filtering attributes may be applied to manage which LNBs are listed.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Subnetwork Related Components

Public Document 85

8. Subnetwork Related Components

8.1 Connection Performer

A Connection Performer (or CP for short) is a computational entity which manage a subnet-
work and is responsible for the provision of interconnections between the termination points
of subnetworks. In addition, it offers services to establish, modify and release subnetwork
connections in the subnetwork. These services of the CP are provided by means of the op-
erations for controlling NRIM objects1 such as SubNetworkConnections and Edges, which
represent the termination points of a SubNetworkConnection. The CP may manages one
or more subnetworks but cannot manage the subnetworks in other administrative domains.
In addition, the subnetworks will not span resources in more than one administrative do-
main.

1. NRIM object is an information object which defined in Network Resource Information Model.

Figure 8-1. Subnetwork control related objects

Connectivity Provider

Connectivity
Consumer

Tandom

Manager
 (TCM)

ConnectionLayer
Adapter

Terminal

(TLA)

Connection
Performer

i_SncServiceFactory

i_SncService

Connection
Performer

CPE

Connection
Performer

i_SncServiceFactory i_SncService

(NML)

(EML)

Network
Element
(EML)

i_SncService

i_SncServiceFactory

86 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Subnetwork Related Components NCS v2.2_97_12_20

The CPs may establish hierarchical relations with each other, reflecting the hierarchical re-
lations between subnetworks. Like the partitioning and aggregation concept in the informa-
tion model, a CP at lower-level provides the subnetwork view for higher level CP, hiding the
unnecessary details under the subnetwork. In other words, the CP may manage the lower-
level subnetworks without considering further operations to manage much lower-levels
subnetworks.

Based on the types of TMN Layer Management, the CP can be classified as either Network
Management Layer CP (or NML-CP for short) or Element Management Layer CP (or EML-
CP for short).

• NML-CP manages connections in a partioned subnetwork of a layer network
domain.

• EML-CP manages connections in the subnetwork which breaks down to the
Network Element Layer, and have access to an agent in a Network Element.

Since logical (or technology independent) subnetworks in both CPs can be common, this
document provides generic specificating of the CP. Further specialization of the CPs is be-
yond the scope of this document and will be done considering particular transport technol-
ogies, e.g., ISDN, ATM, and SDH.

8.2 Related Information Model Fragment

Since most of management related to the CP will be done by means of controlling NRIM
objects, the CP should includes necessary NRIM objects and provide interfaces to control
NRIM objects. This section provides brief description of NRIM objects contained in the CP.
The further detail specification of each NRIM object is outside the scope of this document
and can be found in NRIM.

Figure 8-2. CP Related Information Model Fragment

The constraints C1 and C2 labelled in the above OMT diagram are described below:

Bound

Has
Has

 Branch

NetWorkConnection

LinkConnection

Link

Edge

SubNetwork

R
oo

t

C1 R
oo

t

 BranchC2

SubNetwork
Top Link

Extremity of
Link

Extremity of

On
Terminates

TLTP

By TLTP
Served

By TL
Served

TopologicalLinkLink

TopologicalLink

2

1+

2+

SNW Bounded By LTP

Peer
Peer To

To CTP

2
1+

1+

TerminationPointTerminationPoint
Connection

1+

TerminationPoint

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Subnetwork Related Components

Public Document 87

• C1: An Edge object participates in exactly one of the two relationships

• C2: A NWCTP object participates in exactly one of the two relationships

With regard to the connection management, the manipulations of SubNetworkConnection
and Edge are the most important aspect. The characteristics of these NRIM objects are de-
scribed as follows:

• SubNetworkConnection(SNC): The resource that transfers information across
a subnetwork. The end points of a subnetworks connection are called Edges.
The connection topology may be point-to-point bidirectional, point-to-point uni-
directional, or point-to-multipoint unidirectional.

• Edge: The resource that represents an end point of a subnetwork connection.
Each Edge is bound to a NWCTP.

While the connection management, these NRIM objects are created, modified, and deleted
to control communications in a subnetwork. For example, the SubNetworkConnection and
is created in line with the following manner:

Pre condition: A Edge and SubNetwork have already been created and are
ready for management. The Edge is bound to NWCTP and related to
the SubNetwork. In addition, such information, e.g., existence and
states of NRIM objects, have been known by a managing entity.

(1) CreateSNC: This action causes the creation of a new SubNetworkConnec-
tion in line with specified attributes and the establishment of Root rela-
tionship between the SubNetworkConnection with and the Edge.

Post condition: A SubNetworkConnection has been created, and two Edges
have been created and attached to the SubNetworkConnection. Each
Edge is bound to a NWCTP. A Edge is related to SubNetworkConnec-
tion with Root relationship; the other Edge, with Branch relationships.

Also, the SubNetworkConnection can be modified as follows:

Pre condition: A SubNetworkConnection has been created, and
Edges have been created and attached to the SubNetworkConnection.
Each Edge is bound to a NWCTP. A Edge is related to SubNetwork-
Connection with Root relationship; the other Edges, with Branch
relationships. These information and the states of these NRIM objects
are known by a managing entity.

(1) CreateEdge: The results of this action is the creation of a new Edge bound
to a specified NWCTP.

(2) AttachEdge: This action causes attaching a created Edge to a specified
SubnetworkConnection. The Edge is related to the SubNetworkCon-
nection with Branch relationship.

Post condition: A Edge has been newly created, and Edges have been
attached to the SubNetworkConnection. Each Edge is bound to a
NWCTP. A Edge is related to SubNetworkConnection with Root rela-
tionship; the other Edge, with Branch relationships.

N N 1≥()

N 1–

N 1+

N

88 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Subnetwork Related Components NCS v2.2_97_12_20

For the configuration management, the other NRIM objects need to be considered. The de-
tails of these information aspects can be found in NRIM.

8.3 Mapping of Information Object to CP

The NRIM objects explained in Section 8.2 can be mapped into either computational inter-
faces or internal implementation2. Since the manipulation of SubNetworkConnection is a
major aspect of the CP, direct mapping of a SubNetwork and SubNetworkConnection to
interfaces is required for achieving the connection management smoothly. Moreover, the
SubNetwork is the top level information entity in the CP, so it should be visible in a compu-
tational view to adapt information hierarchy to the structure constructed by CPs at various
levels. The other NRIM objects are mapped into the internal implementation.

8.4 Computational structure

From the network management point of view, each management operation to network re-
sources is done by means of the manipulation of NRIM objects. In the computational view,
the access to NRIM object can be realized in different ways depending on the mapping
style of NRIM objects. When the NRIM object maps to the interface directly, the manipula-
tion of each NRIM object is done in the form of the access to the interface. On the other
hands, a sort of general access interface provides NRIM object manipulations when the
NRIM objects are implemented inside a computational entities. The following section pro-
vides the description for both direct and indirect mapping approaches.

8.4.1 General access interface to NRIM objects

Considering the definition of NRIM, the most of the manipulations of NRIM objects can be
done by means of either attribute oriented operations, e.g., get and replace, or NRIM object
life cycle operations, e.g., create. The number of these operations is not so many. Once
these operations are defined in a general access interface for NRIM objects, hence, such
interface can satisfy the large portion of the requirement for NRIM object manipulation.

The attribute oriented operations, which addressed in X.720, are as follows:

• get attribute value

• replace attribute value

• replace attribute value with default value

• add attribute member: add an new member (members) to an existence list

• remove attribute member: remove an member (or members) from an existenc-
es list

Through the computational manifestation, the operations, ‘replace’, ‘replace with default’,
‘add member’, and ‘remove member’ can be generalized as a ‘set’ type of operations.

2. ‘Internal implementation’ will be realized as a finer grain internal computational objects or technology
dependent implementation, e.g., C++ objects.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Subnetwork Related Components

Public Document 89

Also, the following life-cycle operations are addressed in X.720:

• create

• delete

X.720 addresses another operation semantic called ‘action’. Since the ‘action’ implies any
of operation, it is too much abstract to define such operation in the computational view.
Thus, each action definition should be mapped to each computational operation directly
rather than mapped to a generalized operation in the access interface.

Another major management addressed in NRIM is the relationship management between
NRIM objects. Like NRIM object manipulation, the manipulation of the relationships can
also be defined commonly.

Figure 8-3. Relationship between NRIM objects

Figure 8-3 illustrates the notion of relationship between NRIM objects. A NRIM object may
participate one or more relationships with particular roles, and may be bound to other NRIM
objects or itself with relationships. The relationship can be created, deleted, and modified
as the outcome of life cycle and attribute-oriented operations for NRIM objects. In addition,
it can be manipulated by explicit operations. According to the definition in NRIM, the char-
acteristics of the relationship is not so different from NRIM object, since the relationship is
characterized by its attributes, behavior, and roles. The specific aspects of relationship
management are the role handling and life cycle of relationship. To support life cycle of the
relationship, the following operations need to be considered:

• create

• delete

• setup

The semantics of ‘create’ and ‘delete’ are mostly the same as the operations for NRIM ob-
jects. The ‘setup’ is the compound semantics of ‘create’ and a role attaching operation,
which is a role handling operation. The role handling is the another specific aspect of the
relationship management. With regard to the relationships, the NRIM object may be at-

Relationship

NRIM
Object

Role

Role

NRIM
Object

NRIM
Object

Relationship

NRIM
Object

NRIM
Object Role

Role

RoleRole

Role

90 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Subnetwork Related Components NCS v2.2_97_12_20

tached to the relationship with the role, and detached under certain condition. Since the role
is not an object, however, it cannot be created nor deleted individually and does not have
any attributes. Therefore, the operations for role handling can be specified as follows:

• attach

• detach

The ‘attach’ operation causes the participation of the specified NRIM object in the relation-
ship with the specified role, and the ‘detach’ operation lets the NRIM object leave from the
relationship. Regarding the roles, some specialized query operations are also helpful for
the relationship management. The following operations are defined in this specification:

• get roles

• get other related roles

• get role type

• get current relationship of NRIM objects

The attribute-oriented operations can satisfy the other query requirements for the relation-
ship management.

8.4.2 Connection Performer Interface--Subnetwork Connection Management

Contrary to the approach in the Section 8.4.1, the SubNetwork and SubNetworkConnection
are directly mapped to the interfaces. These interfaces also needs to provide the capabili-
ties of controlling the edges, even if the edge itself is mapped to the implementation. In the
case of the direct mapping, the attributes of the NRIM object are specified as the attributes
of the interface. The operations other than attribute-oriented operations are designed as
the operations in the interface. In this specification, a ‘SubNetwork’ is mapped to a ‘Snc-
ServiceFactory’ interface; a ‘SubNetworkConnection’, a ‘SncService’ interface. The ‘Snc-
ServiceFactory’ supports the following operations for the life cycle management of
‘SubNetworkConnection’, i.e., creation and deletion:

• create SubNetworkConnection(snc)

• create and setup SubNetworkConnection(snc)

• delete SubNetworkConnection(snc)

The ‘create’ operation causes the creation of the new ‘SncService’ interface instance in the
computational view, and also cause the creation of the ‘SubNetworkConnection’ in the in-
formation view. The ‘create and setup’ is the compound operation of ‘create’ and initial con-
figuration of the ‘SubNetwork’, i.e., attaching edges. This interface also supports the
following operations for managing the edge life cycle:

• create edge

• delete edge

The ‘SncService’ interface provides the operations for the edge configuration, i.e., attach-
ing to and detaching from the ‘SubNetworkConnection’, as follows:

• attach edge to SubNetworkConnection

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Subnetwork Related Components

Public Document 91

• detach edge from SubNetworkConnection

• migrate edge from one SubNetworkConnection to another

Note that these interfaces are specified in line with logical definition in the information view.
Once the NRIM objects are specialized for a particular technology, these interfaces also
need to be re-defined according to the specialized definition, such as ‘AtmVcSubNetwork’
and ‘AtmVpSubNetwork’.

8.4.3 Example scenarios

8.4.3.1 SubNetworkConnection creation

This scenario is the example procedure of the creation of the SubNetworkConnection from
scratch.

Pre condition: A SubNetwork has been created: a ‘SncServiceFactory’ has
been instantiated. The administrative state of SubNetwork is ‘un-
locked’; the operational state is either ‘operational’ or ‘degraded’. A re-
questing entity, i.e., Layer Network Coordinator or certain Connection
Performer, knows the reference of the ‘SncServiceFactory’.

(1) Lock Sn: The requesting entity sets administrative state to ‘locked’. The
‘SncServiceFactory’ should get ‘Principal’ to distinguish the requesting
entity. After turing the administrative state to ‘locked’, the ‘SncService-
Factory’ only receives the request issued from the entity which locks
the ‘SncServiceFactory’. In other words, the ‘SncServiceFactory’ al-
ways examines ‘Principal’ matching the registered information at the
time the ‘SncServiceFactory’ is locked.

(2) Create Edges: The requesting entity issues ‘create edge’ operations, e.g., one
for a Root Edge and the other two operations for Leaf Edges. The out-
come of this operation is the creation of Edge bound to the specified
NWCTP. The ‘administrative state’ of the created Edge is ‘locked’, and
‘operational state’ is ‘failed’. The created Edges are also protected from
accesses other than the requests from the registered entity. If the oper-
ation successfully accomplished, the requesting entity receives the
name of the Edge.

(3) Create Snc: The requesting entity issues ‘create snc’ operation. This oper-
ation causes the creation of ‘SubNetworkConnection’ and Instanciation
of ‘SncService’ interface. The specified Root Edge is attached during
this operation. The administrative state of the Edge turns to ‘unlocked’
before starting to attach the Edge. The administrative state of created
SubNetworkConnection is ‘locked’, and operational state is ‘failed’. For
the continuity of the access control, the registered ‘Principal’ is copied
to the created ‘SncService’. If the operation is properly completed, the
entity receives the reference of the created ‘SncService’ interface.

(4) Unlock Sn: The requesting entity sets administrative state to ‘unlocked’.
The ‘SncServiceFactory’ cleans up the registered ‘Principal’ and turn to
be ready for accepting operations.

92 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Subnetwork Related Components NCS v2.2_97_12_20

(4) Attach Edge: The requesting entity issues ‘attach edge’ operation to the cre-
ated ‘SncService’ interface. The specified Leaf Edge is attached in this
operation. The administrative state of the Edge turns to ‘unlocked’ be-
fore starting to attach the Edge.

(5) Unlock Snc: The requesting entity sets administrative state to ‘unlocked’.
The ‘SncService’ cleans up the registered ‘Principal’, turns the opera-
tional state to ‘operational’ (or possibly degraded), and turn to be ready
for accepting operations. While this operation, the operational states of
attached Edges also turn to ‘operational’ or ‘degraded’

Post condition: The SubNetwork and ‘SncServiceFactory’ interface exist. The
SubNetworkConnection is created and the ‘SncService’ is instantiated.
The administrative states of both SubNetwork and SubNetworkCon-
nection (or ‘SncServiceFactory’ and ‘SncService’) are ‘unlocked’.
Those operational states are either ‘operational’ or ‘degraded’. The
Edges are attached to the SubNetworkConnection. The administrative
states of the edges are ‘unlocked’; the operational states, ‘operational’
or ‘degraded’.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Accounting Management Components

Public Document 93

9. Accounting Management Components

Accounting management in NRA, therefore this section of accounting management com-
ponents in NCS deals with the following two issues;

• Accounting/billing management in TINA communication service

• Accounting management architecture

Although the first issue can be seen as an example of the second one, i. e. accounting/bill-
ing management of TINA communication service can be performed by giving generic ac-
counting management interfaces to network resource components, we prioritize our focus
on the first one, as it has primary importance in TINA service realizations. As such, we give
our presentation in the order of practical importance in this NCS section, rather than gen-
erality of the components themselves. In the following parts of this section, we proceed from
an scenario based on a typical usage of TINA communication service, from which we derive
management and control interfaces. From that design, we proceed to present common ar-
chitectural components, which would support the common accounting management archi-
tecture presented in NRA.

9.1 Overview of Accounting Management in TINA Service

Before we proceed to present accounting management components, we illustrate the us-
age of accounting management in a typical TINA service scenario and its relationship to
service/network components.

Figure 9-1. Overview of Accounting Management in TINA Service

ConS

R
et

T
C

on

T
C

on

R
et

PAPA UA UA

CSM

CC

SSMUSM USM

(1-a)

(3)
(1-b)

(4)

(5)

(4)

(5)

(6) (6)

(1-b)

(1-a)

(2)

(4) (4)

ssUAP

asUAP

or

ssUAP

ssUAP

asUAP

or

ssUAP

(7)

(8)

(7)

(8)

94 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Accounting Management Components NCS v2.2_97_12_20

Figure 9-1 shows an overview of accounting/billing management in a TINA service. In this
scenario, two UAPs in user domains communicates each other through a bi-directional
stream binding.

The preceding contexts of the above scenario are:

• Service session creation: service components such as UA, USM, SSM, etc. are
already created and are in place.

• Network resource components set-up: network resource components such as
CC, LNC, TCM, etc. are already created and are in place. For the sake of sim-
plicity, the figure does not show all the network resource components.

• Stream binding set-up: necessary NFEPs and SFEPs are already provisioned
are bound to the stream bindings.

Although all of these above steps are part of the accounting management, we do not delve
into their details, as they do not directly correlate with usage accounting; they should rather
be considered as provisions for usage accounting. For the same reason, accounting infor-
mation after usage, e. g. deletions of components, are also out of the scope of this section.
Those accounting information from pre- and post-usage provisions may be useful for fault
management and system maintenance purposes, however.

We also assume that service transaction concept is in effect, i. e. billing information may be
correlated with performance monitoring results during the transaction. In the current exam-
ple, we assume the followings:

• The two users are on two separate service transactions with the retailer, whose
contexts are passed through Ret.

• The retailer is on a service transaction with the communication provider, whose
context is passed through ConS. This service transaction corresponds to client-
server relation between stream flow connections (SFCs) and network flow con-
nections (NFCs) on the stream binding.

• The retailer is acting as a billing agent for the communication service provider.
Although it is possible that the retailer does not act as an agent, this is probably
the most ‘typical’ usage of TINA service, implicitly assumed in the current TINA
RfR specifications. A billing agent does not necessary imply, however, that the
connectivity provider (CP) be made opaque from the users. It can be made
transparent, i. e. a separate bill from the CP, or be made opaque, i. e. a com-
bined, integrated bill from the retailer only, depending on the scope of the bind-
ing contexts.

The above assumptions imply the followings to the maintenance of service quality in TINA.
In the transparent billing, both business entities, i. e. the retailer and the communication
service provider, are visible from the users. Since visibility in the billing should be translated
into responsibility on service quality maintenance, performance monitoring results should
be correlated with billing information separately in case of transparent billing at the conclu-
sion of service transactions.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Accounting Management Components

Public Document 95

9.1.1 Visibility of Billing Context

Before we proceed to explain the scenario depicted in Figure 9-1, it is necessary to illustrate
the accounting relationship established by billing (accounting management) context, which
essentially dictates who bills who in TINA services. In the current service architecture, we
distinguish two different cases.

• Visible Billing Context: in the visible billing context, the retailer and the connec-
tivity provider (CP) look as two independent separate entities to the eyes of the
consumer. As such, two separate billing items are generated from the two enti-
ties.

• Invisible Billing Context: in the invisible billing context, the retailer appears as
the integrator of all the necessary sub-services, which include communication
service supported by the CP. The consumer does not directly deal with the CP,
as such no contexts may be passed to the CP from the consumer. The bill from
the CP may appear as one of billing items of the retailer, however.

We do not intend to make comparison of two billing models, nor do we assume that either
of the models is to be used or more likely used in TINA services; our purpose is to explain
that the TINA accounting management architecture supports both.

Figure 9-2. Visible Billing Context Example

Figure 9-2 illustrates a visible billing example, where the consumer sets up two separate
billing contexts (accounting management contexts) to the retailer and to the CP. The results
from performance monitoring (PM) are fed back to the respective providers separately,
those on network QoS to the CP whereas those on service quality to the retailer, which are
to be taken into account in the respective bills. In other words, in terms of the stream
binding, the retailer is responsible for and is billing from SFEP to SFEP, whereas the CP is
responsible for and is billing from NFEP to NFEP. This visible billing context case, however,

Consumer

Retailer

CP

Context

Bill

Context
Bill

PM

correlation

correlation

(Network QoS)

(Service Quality)

96 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Accounting Management Components NCS v2.2_97_12_20

does not exclude the retailer to act as a billing agent for the CP, in which the consumer is
still able to set-up a separate context with the CP, but he/she receives the bill indirectly via
the retailer.

Service quality issues in TINA are discussed in more details in [12], and service transaction
is explained in TINA service architecture [1].

Figure 9-3. Invisible Billing Context Example

Figure 2-5 illustrates a invisible billing context example. The consumer does not see the CP
directly, and its bill is included in the one from the retailer. The CP is responsible for network
QoS of the stream binding, i. e. from NFEP to NFEP, which are billed to the retailer. The
retailer is responsible for service quality of the stream binding, i. e. from SFEP to SFEP,
which are billed to the consumer.

9.2 An Example Scenario of Accounting Management

We now proceed to explain the accounting management scenario of Figure 9-1. In this sce-
nario, we assumed a transparent billing context model, where the retailer acts as a billing
agent for the CSP. Although the flow of accounting events may differ, overall accounting
management architecture and necessary component specifications are almost the same
for other billing models.

1-a.Bare transport level traffic is measured, as they are specified in NRIM [5], which
corresponds to the NFC under measurement. The accounting events are
recorded, or collected using an event management ladder [4], such that usage
information of the NFC is collected by CC. Although network resource
components such as LNC, TM, etc. do not appear in the figure, they are assumed
as they are described in NRA, forming an event management ladder as their
instances are created.

Consumer

Retailer
CP

Context

Bill

Context

BillPM

correlation

correlation (Service Quality)

(Network QoS)

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Accounting Management Components

Public Document 97

1-b.In WYSWYP (What You See is What You Pay) [14] performance monitoring,
performance and traffic on SFC are measured at SFEP, with assistance from
TCSM (not shown in the figure). This provision is particularly useful for
connection-less traffic on IP network, where internet service provider (CP) is not
concerned with per connection QoS and its traffic measurement. The accounting
management events, which may include both traffic measurement and
performance monitoring results, are sent to and collected by CSM, via TCSM in
the consumer domain.

2. Accounting events (records) are passed to CSM from CC. When on-line billing is
used, filtered accounting events, which may cause a change in the retailer’s billing
status, are passed on-the-fly during the service transaction. When on-line billing is
not used, only the calibrated billing information is passed from CC to CSM at the
conclusion of the service transaction. The billing information is calibrated by taking
both performance monitoring results and price compensation scheme into
account, which are agreed at the beginning of the service transaction.

3. Filtered accounting events are passed to SSM, which in turn may pass the events
to corresponding USMs or to UAs, depending on the availability of the
components.

4. SSM passes accounting events or billing information to corresponding per user
components. When on-line billing are used, and the bills are to be split among
interested parties, the accounting events from CSM are stipulated and then
passed to the corresponding USMs of the participating (paying) users. When on-
line billing is not used, and only the billing information is obtained from CC at the
conclusion of the service transaction, the stipulated billing information may be
passed to UAs, not USMs, as the USMs may be non-existent at the time. This
situation occurs because TINA service session is a multi-party entity, that is a user
can leave a service session whereas other users are still on the session.

5. Accounting events sent to USM are turned into billing information, which is to be
stored in UA. UAs continue to accumulate billing information of service sessions
per user basis, which are made permanent to acquire fault tolerance. Temporary
billing information of the on-going service sessions are also stored at UA, which
can be used for on-line billing.

6. UA periodically displays billing information of on-going service sessions via the
corresponding PA, when on-line billing is used. The user is able to query the
current billing status using PA, which requests billing information from UA.

7. asUAP or ssUAP may receive periodic update or per request update of its
accounting information from PA, if accounting information is cached in PA from
UA.

8. There is an alternative path to obtain accounting information. In particular, when
customized accounting/billing service is required, ssUAP or asUAP may obtain
accounting/billing informaiton through a ancillary accounting USM, which may
provide more sophisticated interface with on-line update than the one provided by
generic PA.

98 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Accounting Management Components NCS v2.2_97_12_20

In this section of NCS, we only specify the network resource components such as CC, LNC,
TC, etc., whose instances appear in the CP domain. Accounting management of service
components such as SSM, USM, etc., are specified in Service Component Specification
(SCS) [10] document. In this section, however we took a service-centered view on account-
ing management, i. e. trying to explain accounting management from the billing point of
view. As we noted earlier in Section 9.1, there are possibly many accounting events not im-
mediately related to billing information, e. g. from creation/deletion of CC to NEL, EML level
objects such as links, termination points, etc. Though those accounting events can give
useful information on the status of the network, not all the information is used for the billing,
and only a few important ones among those events are sufficient to generate a correct bill.

For example, upon the completion of connection management, an end-to-end trail of cre-
ated, upon which an NFC can be bound, upon which an SFC can be bound. From the user’s
point of view, the billing starts only when the SFEP becomes usable by the preceding
stream binding, therefore the preceding accounting events are irrelevant from the billing
point of view, though they can be quite important from the connection management point
of view.

In this section of NCS, we classify accounting events in two classes based on their rele-
vance to the billing.

• Essential accounting events: this class of events are essential for generating a
correct bill for TINA services using stream bindings. In other words, these
events are necessary to calculate bills for multimedia services offered by TINA.
Accounting events which may appear in Figure 9-1 belong to this class.

• Non-essential accounting events: this class of events are not essential for gen-
erating a correct bill. Although creation of CC is indispensable in TINA connec-
tion management, the event itself does not appear, nor correlate with the billing
information.

We primarily focus on the essential accounting events, because of its practical importance.
In particular, when on-line billing is used and essential accounting events need to be han-
dled on the fly during the lifetime of a service session, these events and the corresponding
interfaces need to be specified at respective components in SCS and NCS.

9.3 Accounting Event Management

Though we assume event management functions be provided by DPE, which enables to
establish an event channel between concerned objects. The provision is mandatory when
on-line billing is expected. In legacy systems and in some operational environment, how-
ever, on-line billing may be considered too difficult to realize, or it may be considered too
computationally expensive to process those accounting events near real-time. In those

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Accounting Management Components

Public Document 99

cases, accounting events, or common call records, would still prefer to be processed in a
batch style, where all the accounting events are collected at log manager and are stored
there, only to be processed periodically at the end of billing cycles.

Table 9-1 illustrates relationship between accounting event classes and event management
schemes. Quadrant I is the focus of this NCS section. Although other quadrants are also
parts of TINA, they are almost the same, and necessary components and interfaces are
well covered by generic part of accounting management architecture.

The underlying event management mechanisms is to be provided by DPE. DPE event man-
agement facilities will be based on the following specifications.

• CORBA COS Event Service

• X/Open Notification Service

• DPE Notification Service

• CORBA Notification Service

9.4 Essential Accounting Events in Network Resources

Essential accounting events in TINA network resources, which are covered in NCS, are the
following:

1. Event Name: completion of stream binding
Event Type: t_AccountingEvent
Sender: TCSM
Receiver: CSM::i_AccountNotify, CC::i_AccountNotify
Contents: time stamp
Description: upon arrival of this event, UAP in the consumer domain is allowed to
start sending data, and the billing can be started. An event to CSM activates billing
in the retailer, whereas another event to CC activates billing in the CSP.

2. Event Name: completion of stream un-binding
Event Type: t_AccountingEvent
Sender: TCSM
Receiver: CSM::i_AccountNotify, CC::i_AccountNotify
Contents: time stamp, measured traffic
Description: upon arrival of this event, UAP in the consumer domain is no longer

Table 9-1. Accounting Event Class and Event Management

On-line Billing Batch Billing

Essential
Accounting
Events

I) DPE event
management +
event mgmt. lad-
der

III) Batch Pro-
cessing + Log
manager

Non-essential
Accounting
Events

II) Batch pro-
cessing + Log
manager

IV) Batch pro-
cessing + Log
manager

100 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Accounting Management Components NCS v2.2_97_12_20

allowed to sending data, and the billing must be stopped. An event to CSM stops
billing in the retailer, whereas another event to CC stops billing in the CSP.

3. Event Name: traffic measurement on stream binding
Event Type: t_AccountingEvent
Sender: TCSM
Receiver: CSM::i_AccountNotify, CC::i_AccountNotify
Contents: time stamp, measured traffic
Description: when on-line billing is used, and when charging is based on amount
of data being sent, not time-based, TCSM periodically reports measured traffic,
which is to be converted to billing info. at CSM and CC, respectively.

Since essential accounting events originate in the consumer domain, it should be possible
that they can be made non-reputable by attaching a certificate generated by TCSM, to pre-
vent possible toll fraud.

9.5 Non-essential Accounting Events in Network Resources

NRIM [5] specifies following object types as accountable:

• Stream Flow Connection (SFC)

• Network Flow Connection (NFC)

• Terminal Flow Connection (TFC)

• Trail

• Subnetwork Connection (SNC)

• Link Connection (LC)

• Tandem Connection (TC)

Although they are all indispensable parts of TINA connection management, they are cate-
gorized as non-essential, only because they do not activate billing by themselves. These
accounting events, however, can be very useful for monitoring usage and performance of
the network. Accounting events of a connection can be measured at measurement points
within the flow, most typically at its respective endpoints. For example, a trail is terminated
at two Network Trail Termination Points (NWTTPs). When these termination points are
made Accountable Objects (Section 9.6.3), they report accounting events to a correspond-
ing Log manager (Section 9.6.4) in the respective management domain.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Accounting Management Components

Public Document 101

Figure 9-4. Trail and Tandem Connections

Figure 9-4 illustrates an accounting example for a trail and associated tandem connections.
The trail extends over two management domains, each of which has an associated log
manager in the domain. Non-essential accounting events are notified and then collected at
respective UM Log managers, which provides persistent storage to keep the records. Two
Log managers provides a query interface to the other, such that one manager can refer to
the records kept by the other manager.

Termination points of respective connection object types can generate the following ac-
counting events:

1. Event Name: completion of connection set-up
Event Type: t_AccountingEvent
Sender: connection TP
Receiver: LogManager::i_EventNotify
Contents: time stamp
Description: this event notifies a connection (e. g. SFC, NFC, etc.) set-up at the
sender termination point is completed.

2. Event Name: completion of connection release
Event Type: t_AccountingEvent

Trail

Tandem Connection

Tandem Connection

Tandem
Connection

NWTTP

NWCTP UM Log Manager UM Log Manager

notify

query
query

notify

102 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Accounting Management Components NCS v2.2_97_12_20

Sender: connection TP
Receiver: LogManager::i_EventNotify
Contents: time stamp, measured traffic
Description: this event notifies a connection release at the sender termination
point is completed.

3. Event Name: traffic measurement on connection
Event Type: t_AccountingEvent
Sender: connection TP
Receiver: LogManager::i_EventNotify
Contents: time stamp, measured traffic
Description: traffic on a connection may be periodically measured, which is kept
as a record at Log Manager.

9.6 Generic Accounting Management Components

9.6.1 AmcLadder

Object AmcLadder is a generic object for accounting management, from which other com-
ponents such as SSM and USM can be derived. In other words, AmcLadder object does
not exist as a stand alone object, it exists only as a base object for other service compo-
nents.

Figure 9-5. Object Inheritance of AmcLadder to Service Components

Figure 9-5 illustrates object inheritance of AmcLadder to service components. Although
AmcLadder does not show as a service component itself, we are able to treat actual service
components (SSM, USM, etc.) as if they are all amcLadder, as far as accounting manage-
ment is concerned.

AmcLadder

namedUA USM SSM CSM

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Accounting Management Components

Public Document 103

Figure 9-6. Formation of Accounting Management Ladder

Figure 9-6 illustrates the formation of an accounting management ladder. When an Am-
cLadder is created (actually SSM, CSM etc.), its notification destination is set to another
AmcLadder, which is to be positioned above in the ladder. For example, when a CSM is
created, its notification destination is set to the corresponding SSM, such that an account-
ing event path is formed among the session components. Interface i_AmcLadderElement
of the upper element becomes the notification destination of the lower element.

Object AmcLadder is also an X.742 compliant accountable object. As such, its accounting
activities are controllable from outside, using a management interface
i_AccObjectManagement. Although not being specified in this SCS document, potential cli-
ents of this interface are management applications, e.g. an operation system in the retailer
domain. Service Factory may also use the interface, when it creates service session and its
components, thus forming a part of the accounting management ladder.

Table 9-2. Supported Interfaces of AmcLadder

Interface Client(s) Event traces IDL

i_AmcLadderElemen
t

AmcLadder Scenario in Accounting Man-
agement (sect 5)

sect 8

i_AccObjectManage-
ment

Operation System
[AmcLadder]
[SF]

sect 8

Table 9-3. Required Interfaces of AmcLadder

Server Interfaces

AmcLad-
der

i_AmcLadderElement

AmcLadder

AmcLadder

i_AccObjectManagement

i_AmcLadderElement

i_AmcLadderElement

i_AccObjectManagement

CP Domain

Operation System

104 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Accounting Management Components NCS v2.2_97_12_20

The accounting management ladder was originally proposed to handle on-line accounting.
As such, the concept is widely used in service level accounting described in SCS [10]. In
NCS, however, most of the accounting will be performed using Usage Metering Log Man-
ager in off-line style, therefore the ladder concept may not be used as much. In NCS ac-
counting, the generic accountable object management (i_AccObjectManagement) and
policy-driven management domain control will be more dominant. The ladder concept,
however, will be useful when on-line management of events is necessary, in particular fault
and alarm management.

9.6.2 i_AmcLadderElement

This interface provides destination of events from the lower elements of the ladder. It inher-
its from COS Event Management (CosEventComm::PushConsumer). No other operations
are provided to this interface.

9.6.3 Accountable Object
• Description: the accountable object is a TINA resource object with an account-

ing management interface. In other words, the resource object must support
i_AccObjectManagement interface in its ODL specification, to become an ac-
countable object.

• Behavior: the metering of the accountable object can be controlled through the
management interface, i_AccObjectManagement.

• Operations: the following operations should be supported.

- Control operations:
start
stop
suspend
resume
set_state
set_accounting_cycle

- Notification control operations:
suspend_notification
resume_notification
set_verbosity_level
set_Notification_Destination
reset_Notification_Destination

The reader should substitute “connection TP” for respective termination point object type
of connection objects such as SFC, NFC, and so on.

9.6.4 Usage Metering Log Manager (UMLog)

The log manager is essentially the same as the log managed object of X.721 [12]. UM Log
supports an interface (i_UMLogOperation), which provides operations for management
and maintenance of log records.

• Description: the log manager performs logging.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Accounting Management Components

Public Document 105

• Behavior: the same as X.721 log managed object.

• Operations (i_X721LogOperation):

- Control operation:
start
stop
suspend
resume
set_log_attributes
reset_log_attributes

- Notification operation:
event_notify

• Operations (i_UMLogOperation):

- Log Management operation:
store
getUserLogEntries
removeUserLogEntries
getSessionLogEntries

9.7 Management Domain Related Components

9.7.1 Accounting Policy Manager
• Description: the accounting policy manager maintains the accounting policy.

For example, when a new resource object is created in the domain, the object
obtains the accounting policy from the accounting policy manager. The ac-
counting policy manager provides i_AccountingPolicyManager interface.

• Behavior: the accounting policy manager serves as a policy server, from which
the objects in the domain can obtain the policy. When a new policy is installed
or an old policy is updated, the policy needs to be notified to all the accountable
objects in the domain, with the help of the network resource management of the
domain.

• Operations (i_AccountingPloicyManager):
start
stop
suspend
resume
update_policy
delete_policy
propagate_policy

9.8 Relationship to Other Documents

Service Architecture [9] describes FCAPS in TINA services, and overview of accounting in
TINA service architecture. Service Component Specification [10] describes service compo-
nents and interfaces provided for accounting management. Network Resource Information

106 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Accounting Management Components NCS v2.2_97_12_20

Model [5] includes information model of accountable object and accounting management.
Network Resource Architecture [4] describes overall structure of resource level accounting,
accounting management domain, and FCAPS concept.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Fault Management Components

Public Document 107

10.Fault Management Components

10.1 Introduction

Fault Management is concerned with detection, localization and correction of abnormal be-
haviour of the telecommunication network and its environment.

All CM Managed Objects (COs) shall allow the emission of alarms associated with CM.
Fault Management (FM) shall create alarm records which can be used for activities such as
fault localization, fault correction, and alarm summary reporting.

How can an abnormal behaviour of an element be detected? There are two methods:

• Use a test engine, i.e. a element that tests periodically all the COs. If the test
engine detects a fault, it will send a notification to the Notification Server (NS)
and the NS will send alarms to the FM components [1].

• The client of the element, when the invocation of an operation return an excep-
tion or no response is received, then a fault can be detected. When the client
detects a fault, it will send a notification to NS and the NS will send alarms to
the FM components.

The first method is better than the second because using the second method nobody de-
tects a fault until the client invokes a operation. However the first method may be inefficient
with a reduced test interval. So the best option is use both methods, i.e. to an element that
test periodically all the COs (the test interval shouldn’t be very short) and allow the client to
send notifications when a fault is detected, in order to not overhead the messages in the
system.

10.2 Computational Viewpoint

The network resource fault management services are provided by the interaction of the
Computational Objects (COs) inside and outside of the fault management area. Figure 8-1
shows the fault management functions and the fault management interfaces services and
activities.

COs identified for network resource fault management are as follows:

• Alarm Manager (AM): receives fault-related alarm from Managed Objects (COs)
and performs relevant procedures for alarm correlation, alarm filtering, forward-
ing the alarm to fault coordinator or fault management service user and for
alarm record management. Each AM has its own discriminating criteria through
which incoming alarms are logged and forwarded to relevant computational ob-
jects in the system.

• Fault Coordinator (FC): includes capabilities to internally analyze alarms re--
ceived from multiple COs to determine next possible step for fault localization/
correction. For this purpose, the FC correlates all available information to refine
information concerning the root cause of event in question. During the analysis,
the TDS can be invoked to run a test as appropriate.

108 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Fault Management Components NCS v2.2_97_12_20

• Testing/Diagnostic Server (TDS) is concerned with testing of COs for the pur-
pose of service and function verification of COs. This CO must support an op-
eration to allow realize a testing of all COs periodically, in this way the TDS may
invoke a test operation periodically, and detect if a COs it’s crashed.

Figure 10-1. Fault Management Computational Viewpoint

10.3 Functions

This section describes the steps to be realized by COs and FM computational objects when
a fault is detected.

10.3.1 FM functions

The TDS performs the following operations:

• Perform a test on the elements to be supervised to detect faults.

• While it’s realizing the testing detects that a element doesn’t work correctly (Let
elem1 that element)

• Send an alarm to the AM.

• Continues performing the test.

The AM performs the following operations:

• When it receives an alarm from the TDS or NS, it realizes relevant procedures
for alarm correlation, alarm filtering and alarm record management.

• Forward the alarm to the FC.

The FC realizes the following operations:

• When it receives an alarm from the AM, the alarm is analyzed to determine next
possible step for fault localization/correction.

• Invokes an operation to the CMC or NRCM for restore elem1.

10.3.2 COs functions

All the CM COs must have the following interfaces:

Figure 10-2. Figure 8-2.Notifications interfaces

i_NotifyCtrl This interface provides operations for controlling the emission of notifi-
cations from the server to the client. It provides the following opera-
tions:

- Enable notifications: this operation is used by the client for instructing the
server to emit notifications regarding the server

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Fault Management Components

Public Document 109

- Disable notifications: this operation is used by the client to suspend emis-
sion of notifications from the server

- Set notification destination: this operation is used to communicate the in-
terface notification destination reference to the server.

i_Notify This interface is used by the client to receive notifications associated
which the server.

The CM COs configurators (CMC & NRCM in CM) perform the following operations:

• Configures elem1.

• To update the children list of the higher element in the hierarchy of elem1
(elem1_parent). For example: update snwCpChildren operation if
elem1_parent is a NML-CP.

The elem1 performs the following operations:

• Notifies that it is configured. This notification will be received by the AM. The AM
will use it to delete the respective alarm (if it exists)

• Reset all the elements that it is on the lower level of the hierarchy.

The elem1_parent realizes the following operations:

• It will send a notification to the NS (if an operation was invoked on and a failure
was detected elem1).

• Indicates to its parent (elem1_grandparent) that it can’t realize the operation
temporarily because elem1 is not available, the indication avoids the expiration
of the ORBIX operation timeout (if an operation was invoked on and a failure
was detected elem1).

• When receives a operation to update the children list will release all the resourc-
es that it was using with respect to elem1 (i.e. the children).

The elem1_grandparent when receives a notification from the elem1_parent (using
the i_Notify interface) should act consistently, probably sending a notification to the higher
element in the hierarchy and releasing all the resources that it had reserved for such con-
nection or group of connections.

The elem1, elem1_parent and elem1_grandparent can be any element of the hierar-
chy, for example:

• elem1_grandparent=LNC, elem1_parent= Top NML-CP and
elem1=EML-CP

• elem1_grandparent=Top NML-CP elem1_parent=NML-CP and elem1
=RA

• elem1_grandparent=CC, elem1_parent =LNC and elem1=Top NML-CP

• elem1_grandparent=LNC, elem1_parent=Top NML-CP and
elem1=NML-CP (if there are more than two levels of Cps)

• etc.

110 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Fault Management Components NCS v2.2_97_12_20

10.3.3 Future extensions

This chapter is a first draft that should be extended according to the following aspects:

• Characterize all types of emitters.

• Characterize all the notifications that each element can send.

• Define all the operations that an element has to perform when a notification is
received.

• Fault Management using the Notification Server.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Document History

Public Document 111

11.Document History

A document schedule according to the plan for this activity is the following:

• End of March: Edition of the first version of the document (this version).

• End of April: Edition of final version of the document.

• End of June: Update of the document based on problems or experience gained
in CM implementation.

• End of July: with considrable inputs from VITAL 2.0, many of the idl files, includ-
ing main parts of connection management, were supplied from VITAL.

• Ver. 2.1 was released at August 13, 1997, of which Jarno Rajahalme and Frank
Steegmans as editors.

• Ver. 2.2 was scheduled to be released in October, which was delayed till No-
vember 30. Due to scheduling problems and diminishing number of core-team-
ers, the document was not finished.

• Ver. 2.2 is released “as is”, as the final draft from the core-team. It has not been
reviewed, or by the core-team. It is hoped, however, that the current version
serves as the starting point of the fututure activities within TINA-C, of the net-
work resource architecture and ConS reference point (Dec. 20, 1997).

112 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Document History NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20

Public Document 113

References

TINA-C Documents

[1] Computational Modelling Concepts, Version 3.2, TINA document no.
TP_HC.012_3.2_96, TINA-C, May1996; TINA-C valid baseline.
Authors: T. Handegård, and many TINA-C Core Team members
http://tinac.com:4070/96/dpe/docs/computational_model/v3.2/cmc.ps

[2] Connection Management Specifications, Draft, TINA document no.
TP_NAD.001_1.2_95, TINA-C, Feb. 1995; TINA-C internal report.
Authors: F. Ruano, C. Aurrecoechea, A. Hopson, H. Oshigiri, J. Pavón
http://tinac.com:4070/95/resources/viewable/cmspecs.ps

[3] Information Modelling Concepts, Draft, TINA document label TB_EAC.001_1.2_94,
TINA-C, Mar. 1995; TINA-C valid baseline.
Authors: E. Colban, H. Christensen
file:/u/tinac/94p2/base/info/info.ps

[4] Network Resource Architecture, Version 3.0, TINA document no.
NRA_v3.0_97_02_10, TINA-C, Feb. 1997; TINA-C valid baseline.
Authors: F. Steegmans, C. Abarca, J. Forslöw, T. Hamada, S. Hogg, H.B. Jeon, D.S.
Kim, H.Y. Lee, N. Natarajan
http://www.tinac.com/deliverable/nra_v3.0_public.ps

[5] Network Resource Information Model Specification, Draft, TINA document no. XXX,
TINA-C, May 1997; TINA-C internal review release.
Authors: N. Natarajan, H. Flinck, R.M. Rosli
file:/u/tinac/97/resources/network/docs/nrim/v2.0.2/NRIM.ps

[6] The ConS Reference Point, Version 1.0, TINA-C Cons-RP review panel, Feb. 1997;
TINA-C draft.
Authors: N. Natarajan, L. Demounem
http://tinac.com:4070/97/integration/rfrs/RFR-96-02/feb1297/consRP.ps

[7] TINA Business Model and Reference Points, Version 4.0, TINA-C May 1997; TINA-C
valid baseline.
Authors: H. Mulder, M. Yates, W. Takita, L Demoudem, R. Jansson
http://tinac.com:4070/97/integration/docs/business/viewable/final_v4.0.ps

[8] TINA Object Definition Language MANUAL, Version 2.3, TINA document no.
TR_NM.002_2.2_96, TINA-C, July 1996; TINA-C draft.
Authors: A. Parhar
http://www.tinac.com/deliverable/odl96_public.ps

[9] Service Architecture, Version 5.0, TINA-C June 1997; TINA-C valid baseline.
Authors: L. Kristiansen, C. Abarca, P. Farley, J. Forslöw, J.C. García, T. Hamada, P.F.

114 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
NCS v2.2_97_12_20

Hansen, S. Hogg, H. Kamata, C.A. Licciardi, H. Mulder, E. Utsunomiya, M. Yates
http://tinac.com:4070/97/services/docs/sa/sa5.0/final/main.ps and annex.ps

[10] Service Component Specification, Version 1.0, TINA-C December 1997; TINA-C valid
baseline.

Auxiliary Project Documents

[11] VITAL, Connection Management Specifications for VITAL 2nd phase, CEC
Deliverable no. AV003/TID/CM/DS/I/002/A2, Jun. 1997; VITAL internal specification.

ITU-T Recommendation

[12] X.721

[13] H.245

Other Documents

[14] T. Hamada, S. Hogg, J. Rajahalme, C. Licciardi, L. Kristiansen, P. Hansen, “Service
Quality in TINA”, proc. in EDOC’97, Oct. 1997, Gold Coast, Australia.

Misc.

[15] Tcon-RP RFR/S Response, TINA document no. ???, TINA-C Core Team, Nov. 1996

[16] Ret-RP RFR/S Response, TINA document no. ???, TINA-C Core Team, Nov. 1996

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Acronyms

Public Document 115

12.Acronyms

ATM Asynchronous Transmission Mode

CA Resource Configuration Management Application

CC Connection Coordinator

CG Connection Graph

CM Connection Management

CMA Connection Management Architecture

CMC Connection Management Configurator

CSM Communication Session Management

CO Computational Object

CORBA Common Object Request Broker Architecture

CP Connection Performer

DPE Distributed Processing Environment

EML Element Management Layer

EML-CP Element Management Layer-Connection Performer

FC Flow Connection

IDL Interface Description Language

KTN Kernel Transport Network

LCG Logical Connection Graph

LNC Layer Network Coordinator

LNW Layer NetWork

LTP Link Termination Point

MO Managed Object

MSC Message Sequence Charts

MRCM Management Resource Configuration Manager

NCG Nodal Connection Graph

NE Network Element

NFC Network Flow Connection

NFCBranch Network Flow Connection Graph

NFEP Network Flow End Point

NML Network Management Layer

NML-CP Network Element Layer-Connection Performer

NRCM Network Resource Configuration Management

116 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Acronyms NCS v2.2_97_12_20

NRIM Network Resource Information Model

NRM Network Resource Map

NWTP Network Termination Point

NWCTP Network Connection Termination Point

NWTTP Network Connection Termination Point

NWTpPool Network Termination Point Pool

OMT Object Modelling Technique

PCG Physical Connection Graph

QoS Quality of Service

RA Resource Adapter

RC Resource Configuration

SFC Stream Flow Connection

SFEP Stream Flow End Point

SFCBranch Stream Flow Connection Branch

SG Session Graph

SI Stream Interface

SML Service Management Layer

SNC Subnetwork Connection

SNW Subnetwork

TC Tandem Connection

TCG Terminal Connection Graph

TCSM Terminal Communication Session Manager

TFC Terminal Flow Connection

TINA Telecommunication Information Networking Architecture

TLA Terminal Layer Adapter

TP Network Termination Point

TPPool TP pool

VC Virtual Channel

VCC Virtual Channel Connection

VCI Virtual Channel Identifier

VITAL Validation of Integrated Telecommunication Architecture for the Long
term

VP Virtual Path

VPC Virtual Path Connection

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Acronyms

Public Document 117

VPI Virtual Path Identifier

118 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Acronyms NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Glossary

Public Document 119

13.Glossary

Action An operation on a managed object, the semantics of which are defined
as part of the managed object class definition.

Attribute Information of a particular type concerning an object.

Behavior (Of a managed object:) The way in which managed objects, name bind-
ings, attributes, notifications and actions interact with the actual re-
sources they model and with each other.

Communication Session Manager
A computational object in the connection management functional area.
It provides clients with the service of interconnection of computational
stream interfaces.

Computational Interface
An abstraction that provides access to a subset of capabilities provided
by a computational object.

Computational Object
An abstraction that encapsulates data and processing; provides a set
of capabilities that can be used by other objects.

Connection A basic abstract concept in most communication models. A connection
is an association between two or more end points which is used to con-
vey information between these end points. The term connection can be
used recursively, so connections are usually composed of sub-connec-
tions, each of which can be managed independently. Examples of end
points are sinks/sources in stream interfaces, sink/source ports in a
connection graph and termination points of a subnetwork. The term
“connection” should be used with other clarifying adjectives in order to
have a specific meaning.

Connection Coordinator
A computational object in the connection management functional area.
It provides clients with the service of interconnection of addressable ter-
mination points, multipoint-to-multipoint bidirectional. It hides from cli-
ents the concepts of layering and partitioning of transmission networks.
The interface specification is based on the connection graph concept.

Connection Graph
An object type used in the computational interface specification of a
Communication Session Manager and a Connection Coordinator. It is
used as a container object for other object classes to model transport
abstractions.

Connection Management
One of the six TINA-C network management functional areas. Func-
tions in this category are responsible for establishing, modifying and re-
leasing connections in response to client requests.

120 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Glossary NCS v2.2_97_12_20

Connection Management Configurator
A computational object in the connection management functional area.
The Connection Management Configurator provides an interface to
Resource Configuration functions that must configure Connection
Management functions (such as a Communication Session Manager,
a Connection Coordinator, a Connection Performer) that are co-located
in one building block.

Connection Performer
A computational object in the connection management functional area.
It provides clients with the service of interconnecting termination points
of a subnetwork. Every subnetwork is managed by one Connection
Performer.

CorrelationId
Identifies the mapping between a SFC and a NFC.

Distributed Processing Environment
The Distributed Processing Environment (DPE) provides the infrastruc-
ture for computationally specified applications on top of Native Compu-
tation and Communication Environments (NCCEs). It enables the
interworking of these applications residing on different, possibly heter-
ogeneous, NCCEs in a distribution transparent way. The DPE consists
of a DPE runtime and a DPE development system.

Edge A Managed Object that represents association between a subnetwork-
Connection and a NWCTP or a NWTTP.

Element Management Layer
A sublayer of resource management functions defined in TMN stan-
dards that consists of functions that manage individual network ele-
ments or subsets of network elements (which may be viewed by
network management layer functions as subnetworks).

Federation An organizational structure involving two or more autonomous admin-
istrations in which the member administrations have an agreement on
how they will interwork with each other including the extent to which the
resources of one member can be shared by other members.

Flow Connection
Abstract class that models transport between flow end points.

Flow End Point
Abstract class that models the termination of a flow connection.

Functional Area
A task-specific grouping of required network management functions.
The OSI defines five management functional areas. The TINA-C archi-
tecture defines six TINA functional areas by dividing the OSI Configu-
ration Management functional area into Resource Configuration and
Connection Management. The six TINA functional areas are: Account-

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Glossary

Public Document 121

ing Management, Connection Management, Fault Management, Per-
formance Management, Resource Configuration Management, and
Security Management.

Layer Network
A set of transport functions which support the transfer of information of
a characteristic type. Generally, a layer network is closely tied to a spe-
cific type of network transmission and/or switching technology, e.g.,
SDH/SONET VC-4, ATM virtual channel (ATM VC) or ATM virtual path
(ATM VP).

Layer Network Coordinator
A computational object responsible for providing trails in a layer net-
work. It is associated with one domain in the layer network and feder-
ates with other Layer Network Coordinators to provide a trail across
domain boundaries.

Link Connection
An connectivity which runs between a pair of Subnetwork.

Link Termination Point
A termination point of a Link.

Managed Object
An abstract representation of a resource that can be supervised and
controlled by other objects.

Network Element Layer
The category of functions defined in TMN standards that are linked to
the technology or architecture of the network resources that provide
the basic telecommunications services. These functions may be ac-
cessed by the element management layer functions using standard or
open information specifications that may hide vendor-specific functions
within network resources.

Network Flow Connection
A point-to-point unidirectional, point-to-point bidirectional or a point-to-
multipoint unidirectional flow connection between network flow end
points.

Network Flow End Point
A network level termination point of a network flow connection, that is
always related to a network termination point.

Network Flow End Point pool
An aggregation of resource flow end points.

Network Management Layer
A sublayer of network resource management functions defined in TMN
standards that have the responsibility for the management of all the
network elements, as presented by the element management layer. It
is not concerned with how a particular network element provides ser-
vice internally. Complete visibility of the whole network is typical, and a

122 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Glossary NCS v2.2_97_12_20

vendor independent view will need to be maintained. The functions in
this layer interact with the service management layer on end-to-end
connections, performance, faults, etc. across the network.

Notification
A management operation initiated by a managed object for the purpose
of communicating the occurrence of some significant event within the
managed object.

Resource Flow End Point
Abstract class from which network flow end points and network flow
end point pools are derived.

Server Defined relative to an operational interface; the object that provides an
operational interface is the server of the interface.

Stream Flow Connection
A uni-directional point-to-point or point-to-multi-point flow connection
between stream flow end points.

Stream Flow End Point
A uni-directional (source or sink) application level end point of a stream
flow connection, which is always aggregated in a stream interface

Stream Interface
An abstraction that represents a communication endpoint that may be
a source for some stream flows and a sink for some stream flows.

Subclass (1)
One class is a subclass of another class precisely when it is a subset
of the other class.

Subclass (2)
A object class which inherits the template of another class.

Subnetwork
A subset of the network resources such that the resources, having
common operations properties (e.g., manufacturer, common function,
or common geographical location) cooperate to support some aspect
or portion of one or more telecommunications services. It may contain
resources of different suppliers, and may consist of several nodes that
are operated as a cohesive entity. In the context of Connection Man-
agement the subnetwork is used as a topological component to effect
routing and management. It can be partitioned into interconnected sub-
networks and connections.

Subnetwork Connection
A transport entity formed by a connection across a subnetwork be-
tween termination points.

Subordinate
A Managed Object instance which is placed below its Superior Man-
aged Object in the Containment relationship tree.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Glossary

Public Document 123

Superclass (1)
One class is a superclass of another class precisely when the other
class is a subset of it.

Superclass (2)
A object class whose template is inherited by another class.

Superior A Managed Object instance which is placed above its Subordinate
Managed Object.

Terminal Flow Connection
A point-to-point uni-directional flow connection between a stream flow
end point and another stream flow end point or a network flow endpoint.

Topological Link
Collection of Link Connections which are served by a trail of a server
layer network.

TP Pool A collection of termination points that is used for some management
purpose such as routing.

Trail A transport entity which spans across a Layer Network.

Trail Termination Point
A termination point of a Trail.

124 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Glossary NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: ODL-specs

Public Document 125

14.Annex: ODL-specs

This section gives the current ODL specifications for the interfaces and operations de-
scribed in previous sections.

14.1 ConnectionCoordinator.odl
/** ConnectionCoordinator.odl */
/** */
/** */
/** */
/** Author: Frank Steegmans (Alcatel) */
/** Creation date: Dec. 4th, 1997 */
/** Revised: 12-04-1997 by Takeo Hamada */
/** Reviewed: */

// ODL of object template ConnectionCoordinator

object ConnectionCoordinator {

behavior
" One such object exists for each connectivity

session that has been setup. This object is
created by the Connection CoordinatorFactory
object. This object offers two interfaces:
an interface, i_ConnSessionControl, that provides
operations for manipulating the connectivity session;
an interface, i_ConnSessionNotificationControl, that
provides flow connection notification control at
connectivity session level.

This object serves as the factory object for
flow connections that are components of the
associated connectivity session.
The capabilities offered by this object are
parts of the Connectivity Control Service.
This object is deleted when the associated
connectivity session is released using an
operation defined in the i_ConnSessionControl
interface.";

supports
i_ConnSessionControl, i_ConnSessionNotificationControl;

initial
i_ConnSessionControl;

};

14.2 ConnectionCoordinatorFactory.odl
/** ConnectionCoordinatorFactor.odl */
/** */

126 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: ODL-specs NCS v2.2_97_12_20

/** */
/** */
/** Author: Frank Steegmans (Alcatel) */
/** Creation date: Dec. 4th, 1997 */
/** Revised: 12-04-1997 by Takeo Hamada */
/** Reviewed: */

// ODL of object template ConnectionCoordinatorFactory

object ConnectionCoordinatorFactory {

behavior
" This object is the factory object for connectivity sessions.

It offers an interface, i_ConnSessionSetup, that provide an
operation for connectivity session setup,an operation for
listing all connectivity sessions belonging to a CU, and
an operation for obtaining references to i_ConnSessionControl
and i_ConnSessionNotificationControl interfaces for
controlling a specific connectivity session. The capabilities
offered by this object are parts of the Connectivity Control
Service.

";

supports
i_ConnSessionSetup;

initial
i_ConnSessionSetup;

};

14.3 ConsUserAgent.odl
/** ConsUserAgent.odl */
/** */
/** */
/** */
/** Author: Frank Steegmans (Alcatel) */
/** Creation date: Dec. 4th, 1997 */
/** Revised: 12-04-1997 by Takeo Hamada */
/** Reviewed: */

// ODL of object template ConsUserAgent

object ConsUserAgent {

behavior
" This object represents a connectivity user (CU)

that has setup a business relationship with the
connectivity provider (CP). This object is created
when the business relationship is setup and exists
as long as the business relationship exists. It
provides an interface called Cons_UA_Access that
provides operations for establishing and controlling
service sessions in this reference point, i.e.,

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: ODL-specs

Public Document 127

Connectivity service sessions.";

supports
i_ConsUAAccess;

initial
i_ConsUAAccess;

};

14.4 ContractProfileManager.odl
/** ContractProfileManager.odl */
/** */
/** */
/** */
/** Author: Frank Steegmans (Alcatel) */
/** Creation date: Dec. 4th, 1997 */
/** Revised: 12-04-1997 by Takeo Hamada */
/** Reviewed: */

// ODL of object template ContractProfileManager

object ContractProfileManager {

behavior
" This object manages the contractProfile information

associated with a Connectivity User. It offers an
interface i_ContractProfileMgmnt that provides
operations for the retrieval and modification of
contract profile information.";

supports
i_ContractProfileMgmnt;

initial
i_ContractProfileMgmnt;

};

14.5 FlowConnectionController.odl
/** FlowConnectionController.odl */
/** */
/** */
/** */
/** Author: Frank Steegmans (Alcatel) */
/** Creation date: Dec. 4th, 1997 */
/** Revised: 12-04-1997 by Takeo Hamada */
/** Reviewed: */

// ODL of object template FlowConnectionController

128 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: ODL-specs NCS v2.2_97_12_20

object FlowConnectionController {

behavior
" One such object exists for each flow connection

that has been setup. This object is created by a
ConnectionCoordinator object. This object offers
an interface, Flow_Conn_Control, that provides
operations for manipulating the associated flow
connection. The capabilities offered by this
object are parts of the Connectivity Control
Service.

This object is deleted when the associated flow
connection is released using an operation defined
in the i_FlowConnControl interface. If the
operational state of the associated flow connection
changes, this object uses an interface,
i_FlowConnNotification, offered by a CU, and
reports the operational state change to the CU.
This object also offers another interface,
i_FlowConnNotificationControl, that can be used by
CUs to control the emission of operational state
change notifications.";

supports
i_FlowConnControl, i_FlowConnNotificationControl;

initial
i_FlowConnNotificationControl;

};

14.6 InitialAgent.odl
/** InitialAgent.odl */
/** */
/** */
/** */
/** Author: Frank Steegmans (Alcatel) */
/** Creation date: Dec. 4th, 1997 */
/** Revised: 12-04-1997 by Takeo Hamada */
/** Reviewed: */

// ODL of object template InitialAgent

object InitialAgent {

behavior
" This object is the initial access point to a

Connectivity Provider’s domain. It provides
the function of authenticating a Connectivity
User. It offers an interface i_ConsInitialAccess
that provides the authentication function.";

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: ODL-specs

Public Document 129

supports
i_ConsInitialAccess;

initial
i_ConsInitialAccess;

};

130 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: ODL-specs NCS v2.2_97_12_20

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 131

15.Annex: IDL-specs

This section gives the current IDL specifications for the interfaces and operations described
in previous sections.

15.1 CLNCommonDefs.idl
/*
* File: CLNCommonDefs.idl
*
* Description: This file contains all the idl definitions common to all layers
* within a connectivity layer network
*
* Comments: -
*
* History:
*
* 97/08/14: Initial Contribution
* by Frank Steegmans
* 97/12/04: Revised by Takeo Hamada
*
*/

#ifndef i_CLNCommonDefs_IDL
#define i_CLNCommonDefs_IDL

#include "NRACommonDefs.idl"
#include "naming.idl"
#include "States.idl"
#include "nfep.idl"

enum t_ActivationStatus {Activated, UnableToActivate, Deactivated,
UnableToDeactivate};

interface i_CLNCommonDefs : i_NRACommonDefs
{

/*
* Flow endpoint related definitions
*/

typedef m_NFEP::t_NfepName t_NfepRef;
typedef m_NFEP::t_NfepNameList t_NfepRefList;

enum t_NfepUse {Root, Leaf};
enum t_NfepResolveState {Partial, Full};

/*
* Flow endpoint information
*/

struct t_NfepInfo

132 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

{
m_NFEP::t_ANfep nfepDescription;
t_NfepUse nfepUsedAs;
m_STATE::t_ManagementState state;

};

struct t_NfepStatusInfo
{
t_NfepRef ref;
t_NfepResolveState resolveState;
m_NFEP::t_ANfep nfep;
m_STATE::t_OperationalState operationalState;
string additionalInfo;

};

typedef sequence <t_NfepStatusInfo> t_nfepStatusInfoSeq;

/*
* Operation request-response related definitions
*/

enum t_ParametersTag { AdminState, RelClass };

union t_ParameterValue
switch(t_ParametersTag)

{
case AdminState: m_STATE::t_AdministrativeState state;
case RelClass: t_ReliabilityClass rclass;
};

typedef sequence <t_ParameterValue> t_ParametersList;

typedef sequence <t_NfepRef> t_SuccNfepList;

enum t_FailureCode {InsufficientBandwidth,
InsufficientResources,
QoSCannotBeMet,
NoPathFound,
NetworkFailure,
KtnFailure};

/*
* Note:
* It is not clear how ’Insufficient bandwidth’and ’QoS can not be met’
* should be treated based on the new LNW TP internal specifications of
* these parameters.
*/

struct t_FailedNfep
{
t_NfepRef ref;
t_FailureCode code;

};
typedef sequence <t_FailedNfep> t_FailedNfepList;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 133

struct t_NfepDesc
{
t_NfepRef ref;
m_NFEP::t_ANfep nfepDescription;
t_NfepUse use;
t_ParametersList list; // Used for specifying only the admin state
t_TinaName tfcBranchRef; // relates resolved nfep with tfc

};
typedef sequence <t_NfepDesc> t_NfepDescSeq;

/*
* Commonly used exceptions (in alphabetical order)
*/

exception BranchesActiveAlready {
t_NfepRefList list;

};

exception BranchesDeactiveAlready {
t_NfepRefList list;

};

exception NetworkFlowEndPointsAlreadyBound {
t_NfepRefList list;

};

exception InvalidDefaultValues { };

exception InvalidBranchesInfo {
t_NfepRefList list;
string info;

};

exception NonExistentFlowEndPoints {
t_NfepRefList list;

};

exception NotificationDestinationNotSet { };

struct t_NfepActivationResponse {
t_NfepRef ref;
t_ActivationStatus status;

};

typedef sequence <t_NfepActivationResponse> t_NfepActivationResponseSeq;

};

#endif /* i_LayerNetworkCommonDefs_IDL */

15.2 ComSCommonDefs.idl
/*
* File: ComSCommonDefs.idl
*
* Description: This file contains all the idl definitions common to the

134 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

* Communication Session.
*
* Comments: -
*
* History:
*
* 97/08/14: Initial Contribution
* by Frank Steegmans
* 97/12/04: Revised by Takeo Hamada
*
*/

#ifndef i_ComSCommonDefs_IDL
#define i_ComSCommonDefs_IDL

#include "NRACommonDefs.idl"
#include "naming.idl"
#include "States.idl"
#include "nfep.idl"

interface i_ComSCommonDefs : i_NRACommonDefs
{
typedef string t_SFCName;
typedef sequence<t_SFCName> t_SFCNameList;

};

#endif /* i_ComSCommonDefs_IDL */

15.3 Common.idl
#ifndef _COMMON_IDL_
#define _COMMON_IDL_

// Generic Types

typedef string t_IntRef; // "stringified" Interface Reference.
typedef sequence <t_IntRef> t_IntRefList;

typedef string t_ApplicationInfo;

typedef string t_TermId;
// Terminal Identifier. This is used for e.g. personal mobility.
// This could contain the hostname of the terminal
typedef sequence <t_TermId> t_TermIdList;

enum t_Topology { PointToPoint, PointToMultiPoint, Broadcast };
// in VitalV2 topol will be always ptmp

enum t_SuccessCriterion {BestEffort, AllOrNone};

typedef string t_SFep_CId ;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 135

typedef sequence <t_SFep_CId> t_SFep_CIdList ;

struct t_SFepRef
{

t_IntRef tcsmRef;
t_SFep_CId SFepId;

};
typedef sequence<t_SFepRef> t_SFepRefList;

enum t_SFepDirection {SFepSource, SFepSink};

exception Error {t_ApplicationInfo applicationInfo;};

#endif

15.4 ConnectionPerf.idl
//
// Connection Performer Specific Interfaces
// OMG IDL ConnectionPerf Module
//
// Written by Wataru Takita, 1997
//
// History:
// 97/08/09 modification by Frank Steegmans
// Minor syntactical corrections for compilation
// 97/08/17 modification by Wataru Takita
// Correction of improper modification on 97/08/09
//

#include <NrimObjectConf.idl>

module ConnectionPerf {

typedef any NrimInstanceName;
typedef sequence<NrimInstanceName> NrimInstanceNames;
typedef string NrimAttributeName;
typedef sequence<NrimAttributeName> NrimAttributeNames; // Added by fste for compilation
typedef unsigned short ExceptionReason;

struct NrimAttribute {
NrimAttributeName nrim_attribute_name;
any nrim_attribute_value;

};
typedef sequence<NrimAttribute> NrimAttributes;
struct NrimInstanceException {

ExceptionReason reason;
NrimInstanceName nrim_instance_name;

};

struct NrimAttributeException {
ExceptionReason reason;
NrimAttributeName nrim_attribute_name;

};

typedef sequence<NrimInstanceException> NrimInstanceExceptions;
typedef sequence<NrimAttributeException> NrimAttributeExceptions;

136 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

exception MultipleNrimInstanceExceptions {
NrimInstanceExceptions exceptions;

};

exception MultipleNrimAttributeExceptions {
NrimAttributeExceptions exceptions;

};
//
// Virtual Interface Definitions
//

interface SubNetworkVirtual {

//
// Data Types
//

/* The ’AdministrativeState_t’definition in NRIM is different from
X.721:1992. Perhaps, some people might prefer the following commented
definition.

enum AdministrativeState_t {
locked,
unlocked,
shutingDown

};
*/

enum AdministrativeState_t {
locked,
unlocked

};

/* The ’OperationalState_t’definition in NRIM is different from
X.721:1992. Perhaps, some people might prefer the following commented
definition.

enum OperationalState_t {
disabled,
enabled

};

*/

enum OperationalState_t {
failed,
operational,
degraded

};

/* The ’ConnectionTopology_t’definition in NRIM is different from the
ways of G.853-01 and G.854-01. Perphaps, the following definition is
better for the people who really love ITU-T standards.

enum Directionality {
unidirectional,
bidirectional

};
*/

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 137

enum ConnectionTopology_t {
pt_pt_unidirectional, // ’-’--> ’_’by fste
pt_pt_bidirectional,
pt_multipt_unidirectional

};

/* ’UserLabel’ is defined in both ATMF M4 and ITU-T G.85x. It is used
for put a nick name to SubNetworkConnection. It is not a global unique
name, but should be unique in a SubNetwork. */

typedef string UserLabel;

//
// Exceptions
//

/* ’Topology Error’ is raised at the time conflicting specified SNC
topology with Edge directionality.*/

exception InvalidNwctpName {};
exception NwctpNotFound {};
exception NwctpIsInUse {};
exception InvalidTopology {};
exception TopologyError {};
exception InvalidSncIdentifier {};
exception SncNotFound {};
exception SncIsInUse {};
exception InvalidEdgeName {};
exception EdgeNotFound {};
exception EdgeIsInUse {};
exception InvalidUserLabel {};
exception UserLabelIsInUse {};

};

//
// Interface Definitions
//

interface SncServiceFactory:
NrimObjectConf::NrimInstanceVirtual, SubNetworkVirtual {

//
// Data Types
//

enum SncIdentifierType {
label,
if_ref

};

union SncIdentifier switch (SncIdentifierType) {
case label : UserLabel user_label;
case if_ref : Object snc_service;

};
//
// Exceptions
//

138 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

const ExceptionReason invalid_edge_name = 401;
const ExceptionReason edge_not_found = 402;
const ExceptionReason edge_is_in_use = 403;
const ExceptionReason topology_error = 403;

struct EdgeNamedException {
ExceptionReason reason;
NrimInstanceName edge_name;

};

typedef sequence<EdgeNamedException> EdgeNamedExceptions;

exception MultipleEdgeExceptions {
EdgeNamedExceptions exceptions;

};
//
// Attributes
//

readonly attribute NrimInstanceName subnetwork;
attribute AdministrativeState_t administrative_state;
readonly attribute OperationalState_t operational_state;

//
// Operations
//

void create_snc(
in NrimInstanceName root_edge_name,
in ConnectionTopology_t connection_topology,
in UserLabel supplied_user_label,
in NrimAttributes nrim_attributes,
out Object snc_service,
out UserLabel agreed_user_label

)raises(
InvalidEdgeName,
EdgeNotFound,
EdgeIsInUse,
InvalidTopology,
TopologyError,
InvalidUserLabel,
UserLabelIsInUse,
MultipleNrimAttributeExceptions

);

/* The exceptions (’InvalidEdgeName’, ’EdgeNotFound’, ’EdgeInUse’, ’
TopologyError’are raised for the errors related to the specified root
edge name. The errors for leaf edges is raised with ’
MultipleEdgeExceptions’. */

void create_setup_snc(
in NrimInstanceName root_edge_name,
in NrimInstanceNames leaf_edge_names,
in ConnectionTopology_t connection_topology,
in UserLabel supplied_user_label,
in NrimAttributes nrim_attributes,
out Object snc_service,
out UserLabel agreed_user_label

)raises(
InvalidEdgeName,

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 139

EdgeNotFound,
EdgeIsInUse,
TopologyError,
InvalidTopology,
MultipleEdgeExceptions,
InvalidUserLabel,
UserLabelIsInUse,
MultipleNrimAttributeExceptions

);

void delete_snc(
in SncIdentifier snc_identifier

)raises(
InvalidSncIdentifier,
SncNotFound,
SncIsInUse

);

/* The return of the following operation is a edge name. */

NrimInstanceName create_edge(
in NrimInstanceName nwctp_name,
in NrimAttributes nrim_attributes

)raises(
InvalidNwctpName,
NwctpNotFound,
NwctpIsInUse,
MultipleNrimAttributeExceptions

);

void delete_edge(
in NrimInstanceName edge_name

)raises(
InvalidEdgeName,
EdgeNotFound,
EdgeIsInUse

);

};

interface SncService:
NrimObjectConf::NrimInstanceVirtual, SubNetworkVirtual {

//
// Attributes
//

readonly attribute NrimInstanceName snc_name;
attribute AdministrativeState_t administrative_state;
readonly attribute OperationalState_t operational_state;
readonly attribute ConnectionTopology_t connection_topology;
readonly attribute UserLabel user_label;

/* NRA 3.0 specifies the following attributes. Are they really
meaningful for logical description?

attribute any traffic_description;
attribute any qos;

*/

140 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

/* Only leaf edges can be attached to SNC or detached from SNC. A root
edge cannot be attached or detached with the following operations */

void attach_edge(
in NrimInstanceName edge_name

)raises(
InvalidEdgeName,
EdgeNotFound,
EdgeIsInUse,
TopologyError

);

void detach_edge(
in NrimInstanceName edge_name

)raises(
InvalidEdgeName,
EdgeNotFound,
EdgeIsInUse

);

/* The return of the following operation is a migrated edge name. */

NrimInstanceName migrate_edge(
in NrimInstanceName edge_name,
in NrimInstanceName nwctp_name

)raises(
InvalidNwctpName,
NwctpNotFound,
NwctpIsInUse,
InvalidEdgeName,
EdgeNotFound,
EdgeIsInUse,
TopologyError,
MultipleNrimAttributeExceptions

);
};

}; // End of Module

15.5 NRACommonDefs.idl
/*
* File: NRACommonDefs.idl
*
* Description: This file contains all the idl definitions common to the
* whole Network Resource Architecture
*
* Comments: -
*
* History:
*
* 97/08/14: Initial Contribution
* by Frank Steegmans
*
*/

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 141

#ifndef i_NRACommonDefs_IDL
#define i_NRACommonDefs_IDL

#include "naming.idl"

interface i_NRACommonDefs
{

/*
* Flow Connection related information
*/

enum t_ConnTopology {PointToPoint, PointToMultipoint};
enum t_ReliabilityClass {ReleaseOnFailure, HoldOnFailure};
enum t_SuccessCriterion {AllOrNone, BestEffort};

//enum t_RoutingOption {SameRoute, DifferentRoute};
// Hyun
enum t_RoutingOption {SameRoute, DifferentRoute, SourceRoute};

// string useSpecificDomain;
// string dontUseSpecificDomain;
// unsigned long maxNumberOfHops;
// string useSpecificNwTp;
// string dontUseSpecificNwTp;

typedef t_TinaName t_NetworkFlowConnectionName;
typedef sequence <t_NetworkFlowConnectionName> t_NetworkFlowConnectionNameSeq;

};

#endif /* i_NRACommonDefs_IDL */

15.6 NrimObjectConf.idl
#ifndef _NrimObjectConf_idl_
#define _NrimObjectConf_idl_

//
// NRIM Object Configuration
// OMG IDL NrimObjectConf Module
//
// Written by Wataru Takita, 1997
//
// History:
// 97/08/09 modifications by Frank Steegmans
// Correction of syntactical errors for compilation
// 97/08/17 modification by Wataru Takita
// Correction of improper modification on 97/08/09
// 97/12/09 couldn’t be compiled by hidl, due to virtual
// interface inheritance?
// 97/12/10 hashes hidl are used to compile it - virtual
// interface inheritance is got around.

module NrimObjectConf {

142 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

//
// Virtual Interface Definitions
//

interface NrimTypeVirtual {

//
// DataTypes
//

/* In line with TINA Naming, the use of ’sequence<unsigned short>’or
’Naming::Name’is recommended for the actual type of ’NrimTypeName’. If
you like, however, ’sequence<string>’ is also possible. */

typedef any NrimTypeName;
typedef sequence<NrimTypeName> NrimTypeNames;

//
// Exceptions
//

exception InvalidTypeName {};
exception UnsupportedType {};

};

interface NrimInstanceVirtual {

//
// Data Types
//

/* According to TINA Naming, the use of ’string’ is recommended for
the actual type of ’NrimInstanceName’, stringfied RDN/DN. */

typedef any NrimTypeName;
typedef any NrimInstanceName;
typedef string NrimAttributeName;
typedef sequence<NrimAttributeName> NrimAttributeNames; // Added by fste for compilation

struct NrimAttribute {
NrimAttributeName nrim_attribute_name;
any nrim_attribute_value;

};

/* Alternative type definition of ’NrimAttribute’might be "string
NrimAttribute". This definition seems nice for interoperability but
imposes additional efforts for implementation, e.g., parser. If you
love ’yacc’or ’bison’, perhaps this thing is not a problem */

typedef sequence<NrimInstanceName> NrimInstanceNames;
typedef sequence<NrimAttribute> NrimAttributes;

//
// Exceptions
//

exception InvalidInstanceName {};
exception InstanceNotFound {};
exception InstanceIsInUse {};

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 143

exception InvalidAttributeName {};
exception InvalidAttributeVaule {};
exception UnsupportedAttribute {};
exception ReadOnlyAttribute {};
exception FixedAttribute {};
exception AttributeValueConfliction {};

//
// For Multiple Exceptions
//

/* To avoid difficulties in debugging with a poor debugger, ’const’
declaration is used instead of ’enum’. It seems easy for human beings
to distinguish the difference between ’101’and ’201’rather than ’0’
and ’0’. */

typedef unsigned short ExceptionReason;

const ExceptionReason invaild_instance_name = 101;
const ExceptionReason instance_not_found = 102;
const ExceptionReason instance_is_in_use = 103;

const ExceptionReason invalid_attribute_name = 201;
const ExceptionReason invalid_attribute_value = 202;
const ExceptionReason unsupported_attribute = 203;
const ExceptionReason readonly_attribute = 204;
const ExceptionReason fixed_attribute = 205;
const ExceptionReason attribute_value_confliction = 206;

struct NrimInstanceException {
ExceptionReason reason;
NrimInstanceName nrim_instance_name;

};

struct NrimAttributeException {
ExceptionReason reason;
NrimAttributeName nrim_attribute_name;

};

typedef sequence<NrimInstanceException> NrimInstanceExceptions;
typedef sequence<NrimAttributeException> NrimAttributeExceptions;

exception MultipleNrimInstanceExceptions {
NrimInstanceExceptions exceptions;

};

exception MultipleNrimAttributeExceptions {
NrimAttributeExceptions exceptions;

};

};

//
// Interface Definitions
//

interface NrimInstanceFactory: NrimTypeVirtual, NrimInstanceVirtual {

144 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

#ifdef hidl
typedef any NrimTypeName;
exception InvalidTypeName {};
exception UnsupportedType {};

#endif

boolean is_supported (
in NrimTypeName nrim_type_name

);

NrimInstanceName instantiate (
in NrimTypeName nrim_type_name,
in NrimAttributes nrim_attributes

) raises (
InvalidTypeName,
UnsupportedType,
MultipleNrimAttributeExceptions,
AttributeValueConfliction

);
};

interface NrimInstanceConfigurator: NrimInstanceVirtual {

void set_attribute(
in NrimInstanceName nrim_instance_name,
in NrimAttribute nrim_attribute

)raises(
InvalidInstanceName,
InstanceNotFound,
InstanceIsInUse,
InvalidAttributeName,
InvalidAttributeVaule,
UnsupportedAttribute,
ReadOnlyAttribute,
FixedAttribute,
AttributeValueConfliction

);

void set_attributes(
in NrimInstanceName nrim_instance_name,
in NrimAttributes nrim_attributes

)raises(
InvalidInstanceName,
InstanceNotFound,
InstanceIsInUse,
MultipleNrimAttributeExceptions

);

void delete_instance(
in NrimInstanceName nrim_instance_name

)raises(
InvalidInstanceName,
InstanceNotFound,
InstanceIsInUse

);
};

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 145

interface NrimInstanceQuery: NrimInstanceVirtual {

any get_attribute(
in NrimInstanceName nrim_instance_name,
in NrimAttributeName nrim_attribute_name

)raises(
InvalidInstanceName,
InstanceNotFound,
InvalidAttributeName,
UnsupportedAttribute

);

boolean get_attributes(
in NrimInstanceName nrim_instance_name,
in NrimAttributeNames nrim_attribute_names,
out NrimAttributes nrim_attributes

)raises(
InvalidInstanceName,
InstanceNotFound,
MultipleNrimAttributeExceptions

);

};

interface NrimTypeAdmin: NrimTypeVirtual, NrimInstanceVirtual {

//
// Data Types
//

enum NrimAttributeMode {
read_write,
read_only,
fixed

};

/* The following ’nrim_attribute_value_type is defined as
"string". The real content of this argument is beyond the scope of
this specification. Perhaps, string form of "short" or stringfied
’CORBA::TypeCode’will likely be used. To define this argument as ’any’
instead of ’string’is also not so bad idea. */

struct NrimAttributeDef {
NrimAttributeName nrim_attribute_name;
string nrim_attribute_value_type;
NrimAttributeMode nrim_attribute_mode;

};

typedef sequence<NrimAttributeDef> NrimAttributeDefs;

/* ’NrimTypePolicy’will be used to specify the parameters related to
administrative policies, e.g., maximum number of instances. */

struct NrimTypePolicy {
string policy_name;
any policy_value;

};

146 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

typedef sequence<NrimTypePolicy> NrimTypePolicies;
//
// Exceptions
//

exception InvalidPolicyName {};
exception UnsupportedPolicy {};
exception InvalidPolicyValue {};

//
// Operations
//

#ifdef hidl
typedef any NrimTypeName;
typedef sequence<NrimTypeName> NrimTypeNames;
exception InvalidTypeName {};
exception UnsupportedType {};

#endif

NrimInstanceNames get_instances(
in NrimTypeName nrim_type_name

)raises(
InvalidTypeName,
UnsupportedType

);

NrimInstanceNames list_all_intances();

void describe_type(
in NrimTypeName nrim_type_name,
out NrimAttributeDefs nrim_attribute_defs,
out NrimTypePolicies nrim_type_policies

)raises(
InvalidTypeName,
UnsupportedType

);

NrimTypeNames list_supported_types();

void set_type_policy(
in NrimTypeName nrim_type_name,
in NrimTypePolicy nrim_type_policy

)raises(
InvalidTypeName,
UnsupportedType,
InvalidPolicyName,
UnsupportedPolicy,
InvalidPolicyValue

);
};

}; //End of Module

#endif

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 147

15.7 NrimRelConf.idl
#ifndef _NrimRelConf_idl_
#define _NrimRelConf_idl_

//
// NRIM Relationship Configuration
// OMG IDL NrimRelConf Module
//
// Written by Wataru Takita, 1997
//

#include <NrimObjectConf.idl>

module NrimRelConf {

//
// Vitual Interface Definitions
//

interface NrimRelationshipVirtual {

//
// DataTypes
//

typedef string NrimRoleTypeName;
typedef unsigned long NrimRoleIdentifier;

typedef sequence<NrimRoleTypeName> NrimRoleTypeNames;
typedef sequence<NrimRoleIdentifier> NrimRoleIdentifiers;

//
// Exceptions
//

exception InvalidRelationshipName {};
exception RelationshipNotFound {};
exception RelationshipIsInUse {};
exception InvalidRoleTypeName {};
exception UnsupportedRoleType {};
exception InvalidRoleIdentifier {};
exception RoleNotFound {};
exception RelatedTypeError {};
exception CardinalityError {};
exception UnsupportedObjectType {};
exception RoleNotAttached {};
exception RoleIsAttached {};

};

//
// Interface Definition
//

interface NrimCompoundFactory:
NrimObjectConf::NrimInstanceFactory, NrimRelationshipVirtual {

#ifdef hidl
/* In line with TINA Naming, the use of ’sequence<unsigned short>’or

148 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

’Naming::Name’is recommended for the actual type of ’NrimTypeName’. If
you like, however, ’sequence<string>’ is also possible. */

typedef any NrimTypeName;
typedef sequence<NrimTypeName> NrimTypeNames;

//
// Exceptions
//

exception InvalidTypeName {};
exception UnsupportedType {};

/* According to TINA Naming, the use of ’string’ is recommended for
the actual type of ’NrimInstanceName’, stringfied RDN/DN. */

// typedef any NrimTypeName;
typedef any NrimInstanceName;
typedef string NrimAttributeName;
typedef sequence<NrimAttributeName> NrimAttributeNames; // Added by fste for compilation

struct NrimAttribute {
NrimAttributeName nrim_attribute_name;
any nrim_attribute_value;

};

/* Alternative type definition of ’NrimAttribute’might be "string
NrimAttribute". This definition seems nice for interoperability but
imposes additional efforts for implementation, e.g., parser. If you
love ’yacc’or ’bison’, perhaps this thing is not a problem */

typedef sequence<NrimInstanceName> NrimInstanceNames;
typedef sequence<NrimAttribute> NrimAttributes;

//
// Exceptions
//

exception InvalidInstanceName {};
exception InstanceNotFound {};
exception InstanceIsInUse {};

exception InvalidAttributeName {};
exception InvalidAttributeVaule {};
exception UnsupportedAttribute {};
exception ReadOnlyAttribute {};
exception FixedAttribute {};
exception AttributeValueConfliction {};

//
// For Multiple Exceptions
//

/* To avoid difficulties in debugging with a poor debugger, ’const’
declaration is used instead of ’enum’. It seems easy for human beings
to distinguish the difference between ’101’and ’201’rather than ’0’
and ’0’. */

typedef unsigned short ExceptionReason;

const ExceptionReason invaild_instance_name = 101;
const ExceptionReason instance_not_found = 102;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 149

const ExceptionReason instance_is_in_use = 103;

const ExceptionReason invalid_attribute_name = 201;
const ExceptionReason invalid_attribute_value = 202;
const ExceptionReason unsupported_attribute = 203;
const ExceptionReason readonly_attribute = 204;
const ExceptionReason fixed_attribute = 205;
const ExceptionReason attribute_value_confliction = 206;

struct NrimInstanceException {
ExceptionReason reason;
NrimInstanceName nrim_instance_name;

};

struct NrimAttributeException {
ExceptionReason reason;
NrimAttributeName nrim_attribute_name;

};

typedef sequence<NrimInstanceException> NrimInstanceExceptions;
typedef sequence<NrimAttributeException> NrimAttributeExceptions;

exception MultipleNrimInstanceExceptions {
NrimInstanceExceptions exceptions;

};

exception MultipleNrimAttributeExceptions {
NrimAttributeExceptions exceptions;

};

#endif

//
// Exceptions
//

const ExceptionReason invalid_role_type_name = 301;
const ExceptionReason unsupported_role_type = 302;
const ExceptionReason related_type_confliction = 303;
const ExceptionReason cardinality_error = 304;
const ExceptionReason unsupported_object_type = 305;

struct NrimRoleException {
ExceptionReason reason;
NrimRoleTypeName nrim_role_type_name;
NrimInstanceName nrim_instance_name;

};

typedef sequence<NrimRoleException> NrimRoleExceptions;

exception MultipleNrimRoleExceptions {
NrimRoleExceptions exceptions;

};
//
// Operations
//

/* The return of the following operation is the instance name of

150 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

a created relationship. */

NrimInstanceName instantiate_relationship(
in NrimTypeName nrim_relationship_type,
in NrimAttributes nrim_relationship_attributes

)raises(
InvalidTypeName,
UnsupportedType,
MultipleNrimAttributeExceptions

);

void setup_relationship(
in NrimTypeName nrim_relationship_type,
in NrimAttributes nrim_relationship_attributes,
in NrimRoleTypeNames nrim_role_types,
in NrimInstanceNames nrim_instance_names,
out NrimInstanceName nrim_relationship_name,
out NrimRoleIdentifiers nrim_role_identifiers

)raises(
InvalidTypeName,
UnsupportedType,
MultipleNrimAttributeExceptions,
MultipleNrimRoleExceptions

);
};

interface NrimCompoundConfigurator:
NrimObjectConf::NrimInstanceConfigurator, NrimRelationshipVirtual {

#ifdef hidl
/* In line with TINA Naming, the use of ’sequence<unsigned short>’or
’Naming::Name’is recommended for the actual type of ’NrimTypeName’. If
you like, however, ’sequence<string>’ is also possible. */

typedef any NrimTypeName;
typedef sequence<NrimTypeName> NrimTypeNames;

//
// Exceptions
//

exception InvalidTypeName {};
exception UnsupportedType {};

/* According to TINA Naming, the use of ’string’ is recommended for
the actual type of ’NrimInstanceName’, stringfied RDN/DN. */

// typedef any NrimTypeName;
typedef any NrimInstanceName;
typedef string NrimAttributeName;
typedef sequence<NrimAttributeName> NrimAttributeNames; // Added by fste for compilation

struct NrimAttribute {
NrimAttributeName nrim_attribute_name;
any nrim_attribute_value;

};

/* Alternative type definition of ’NrimAttribute’might be "string
NrimAttribute". This definition seems nice for interoperability but

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 151

imposes additional efforts for implementation, e.g., parser. If you
love ’yacc’or ’bison’, perhaps this thing is not a problem */

typedef sequence<NrimInstanceName> NrimInstanceNames;
typedef sequence<NrimAttribute> NrimAttributes;

//
// Exceptions
//

exception InvalidInstanceName {};
exception InstanceNotFound {};
exception InstanceIsInUse {};

exception InvalidAttributeName {};
exception InvalidAttributeVaule {};
exception UnsupportedAttribute {};
exception ReadOnlyAttribute {};
exception FixedAttribute {};
exception AttributeValueConfliction {};

//
// For Multiple Exceptions
//

/* To avoid difficulties in debugging with a poor debugger, ’const’
declaration is used instead of ’enum’. It seems easy for human beings
to distinguish the difference between ’101’and ’201’rather than ’0’
and ’0’. */

typedef unsigned short ExceptionReason;

const ExceptionReason invaild_instance_name = 101;
const ExceptionReason instance_not_found = 102;
const ExceptionReason instance_is_in_use = 103;

const ExceptionReason invalid_attribute_name = 201;
const ExceptionReason invalid_attribute_value = 202;
const ExceptionReason unsupported_attribute = 203;
const ExceptionReason readonly_attribute = 204;
const ExceptionReason fixed_attribute = 205;
const ExceptionReason attribute_value_confliction = 206;

struct NrimInstanceException {
ExceptionReason reason;
NrimInstanceName nrim_instance_name;

};

struct NrimAttributeException {
ExceptionReason reason;
NrimAttributeName nrim_attribute_name;

};

typedef sequence<NrimInstanceException> NrimInstanceExceptions;
typedef sequence<NrimAttributeException> NrimAttributeExceptions;

exception MultipleNrimInstanceExceptions {
NrimInstanceExceptions exceptions;

};

152 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

exception MultipleNrimAttributeExceptions {
NrimAttributeExceptions exceptions;

};

#endif

#ifdef hidl
//
// DataTypes
//

typedef string NrimRoleTypeName;
typedef unsigned long NrimRoleIdentifier;

typedef sequence<NrimRoleTypeName> NrimRoleTypeNames;
typedef sequence<NrimRoleIdentifier> NrimRoleIdentifiers;

//
// Exceptions
//

exception InvalidRelationshipName {};
exception RelationshipNotFound {};
exception RelationshipIsInUse {};
exception InvalidRoleTypeName {};
exception UnsupportedRoleType {};
exception InvalidRoleIdentifier {};
exception RoleNotFound {};
exception RelatedTypeError {};
exception CardinalityError {};
exception UnsupportedObjectType {};
exception RoleNotAttached {};
exception RoleIsAttached {};

#endif

//
// Operations
//

NrimRoleIdentifier attach_role(
in NrimInstanceName nrim_relationship_name,
in NrimRoleTypeName nrim_role_type_name,
in NrimInstanceName nrim_instance_name

)raises(
InvalidRelationshipName,
RelationshipNotFound,
RelationshipIsInUse,
InvalidRoleTypeName,
UnsupportedRoleType,
UnsupportedObjectType,
InvalidInstanceName,
InstanceNotFound,
RelatedTypeError,
CardinalityError,
InstanceIsInUse

);

void detach_role(
in NrimInstanceName nrim_relationship_name,
in NrimRoleIdentifier nrim_role_identifier

)raises(

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 153

InvalidRelationshipName,
RelationshipNotFound,
RelationshipIsInUse,
InvalidRoleIdentifier,
RoleNotFound,
RoleNotAttached,
CardinalityError,
InstanceIsInUse

);

void delete_relationship(
in NrimInstanceName nrim_relationship_name

)raises(
InvalidRelationshipName,
RelationshipNotFound,
RelationshipIsInUse

);

};

interface NrimCompoundQuery:
NrimObjectConf::NrimInstanceQuery, NrimRelationshipVirtual {

#ifdef hidl
/* In line with TINA Naming, the use of ’sequence<unsigned short>’or
’Naming::Name’is recommended for the actual type of ’NrimTypeName’. If
you like, however, ’sequence<string>’ is also possible. */

typedef any NrimTypeName;
typedef sequence<NrimTypeName> NrimTypeNames;

//
// Exceptions
//

exception InvalidTypeName {};
exception UnsupportedType {};

/* According to TINA Naming, the use of ’string’is recommended for
the actual type of ’NrimInstanceName’, stringfied RDN/DN. */

// typedef any NrimTypeName;
typedef any NrimInstanceName;
typedef string NrimAttributeName;
typedef sequence<NrimAttributeName> NrimAttributeNames; // Added by fste for compilation

struct NrimAttribute {
NrimAttributeName nrim_attribute_name;
any nrim_attribute_value;

};

/* Alternative type definition of ’NrimAttribute’might be "string
NrimAttribute". This definition seems nice for interoperability but
imposes additional efforts for implementation, e.g., parser. If you
love ’yacc’or ’bison’, perhaps this thing is not a problem */

typedef sequence<NrimInstanceName> NrimInstanceNames;
typedef sequence<NrimAttribute> NrimAttributes;

//

154 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

// Exceptions
//

exception InvalidInstanceName {};
exception InstanceNotFound {};
exception InstanceIsInUse {};

exception InvalidAttributeName {};
exception InvalidAttributeVaule {};
exception UnsupportedAttribute {};
exception ReadOnlyAttribute {};
exception FixedAttribute {};
exception AttributeValueConfliction {};

//
// For Multiple Exceptions
//

/* To avoid difficulties in debugging with a poor debugger, ’const’
declaration is used instead of ’enum’. It seems easy for human beings
to distinguish the difference between ’101’and ’201’rather than ’0’
and ’0’. */

typedef unsigned short ExceptionReason;

const ExceptionReason invaild_instance_name = 101;
const ExceptionReason instance_not_found = 102;
const ExceptionReason instance_is_in_use = 103;

const ExceptionReason invalid_attribute_name = 201;
const ExceptionReason invalid_attribute_value = 202;
const ExceptionReason unsupported_attribute = 203;
const ExceptionReason readonly_attribute = 204;
const ExceptionReason fixed_attribute = 205;
const ExceptionReason attribute_value_confliction = 206;

struct NrimInstanceException {
ExceptionReason reason;
NrimInstanceName nrim_instance_name;

};

struct NrimAttributeException {
ExceptionReason reason;
NrimAttributeName nrim_attribute_name;

};

typedef sequence<NrimInstanceException> NrimInstanceExceptions;
typedef sequence<NrimAttributeException> NrimAttributeExceptions;

exception MultipleNrimInstanceExceptions {
NrimInstanceExceptions exceptions;

};

exception MultipleNrimAttributeExceptions {
NrimAttributeExceptions exceptions;

};

#endif

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 155

//
// Operations
//

/* The return of the following operation is a list of role identifiers
with the specified role type and bound to the specified
relationship. */

NrimRoleIdentifiers get_roles(
in NrimInstanceName nrim_relationship_name,
in NrimRoleTypeName nrim_role_type_name

)raises(
InvalidRelationshipName,
RelationshipNotFound,
InvalidRoleTypeName,
UnsupportedRoleType

);

/* The return of the following operation is a list of the other roles
in the specified relationship. */

NrimRoleIdentifiers get_other_related_roles(
in NrimInstanceName nrim_relationship,
in NrimRoleIdentifier nrim_role_identifier

)raises(
InvalidRelationshipName,
RelationshipNotFound,
InvalidRoleIdentifier,
RoleNotFound

);

/* The return of the following operation is a role type name of the
specified role. */

NrimRoleTypeName get_role_type (
in NrimInstanceName nrim_relationship,
in NrimRoleIdentifier nrim_role_identifier

)raises(
InvalidRelationshipName,
RelationshipNotFound,
InvalidRoleIdentifier,
RoleNotFound

);

/* The return of the following operation is a list of the relationship
names relavant to the specified NRIM object. */

NrimInstanceNames get_relationship(
in NrimInstanceName nrim_instance_name

)raises(
InvalidInstanceName,
InstanceNotFound

);

};

}; // End of Module

156 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

#endif

15.8 PLATyToolsFix.idl
#ifndef PLATyToolsFix
#define PLATyToolsFix

//
// to get around problem of nested modules in
// RP0.7/TINACommonTypes.idl
//

module CosTrading {
typedef string Istring;
typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {

PropertyName name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

enum HowManyProps {none, some, all};
union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;
};

}; // module CosTrading

#endif

15.9 RACommon.idl
#ifndef _RACOMMON_IDL_
#define _RACOMMON_IDL_

//
// RACommon.idl
//
// History:
// 97/08/?? Initial contribution from VITAL
// 97/11/?? Modified by Frank Steegmans?
// 97/12/05 Revised by Takeo Hamada
//

#include <States.idl>
#include <naming.idl>
#include <Common.idl>

// ---------------
// VITALCommon.idl
// ---------------

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 157

enum Directionality {Unidirectional, Bidirectional};

enum Direction {Source, Sink, SourceSink};

// ----------------------
// End of VITALCommon.idl
// ----------------------

// -----------------
// NetworkCommon.ild
// -----------------

typedef string CharacteristicInfo;
// VITAL Definition for LNType. This enumerated will be extended as new LNs are incorporated.
// enum LNType {ATM_VC, ATM_VP};

// -----------------
// Added by fste
// -----------------

#include <capability.idl>

///
// Data Structure: t_NFEPDescription
// Members: t_NFEPReference, t_CapabilitySet
// The reference part is used to identify the NFEP concerning in NFEP in
// the context of the different COs. (e.g. crossreferences composed of
// an "identifier=value" pair)
// The capability set is used to identify a complete NFEP pool or just one
// NFEP.
// E.g. NFEPDescriptions are passed down as an inout parameters from the
// CSM to the CC and further (possible as a subset) to the LNBM to
// identify the several end-points of a NFC and respective a LNB.
// In the return of the operation, the NFEPDescription will identify the
// particular capability that has been choosen.
///

typedef string t_IP_ReferenceType;
const t_IP_ReferenceType DNS_IP_ReferenceType="DNS";
const t_IP_ReferenceType Plain_IP_ReferenceType="IP";

typedef string t_IP_ReferenceVersion;
const t_IP_ReferenceVersion IP_DNSVersion="DNS"; // :)
const t_IP_ReferenceVersion IP_AddressVersion_4="IPv4";
const t_IP_ReferenceVersion IP_AddressVersion_6="IPv6";

typedef string t_IP_ActualReference; // 192.4.160.1 or redbank.tinac.com

struct t_IP_HostReference {
t_IP_ReferenceType type;
t_IP_ReferenceVersion version;
t_IP_ActualReference reference;
};

158 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

struct t_IP_NWInterfaceReference {
t_IP_ReferenceType type;
t_IP_ReferenceVersion version;
t_IP_ActualReference reference;
};

typedef string t_IP_ProtocolType;
const t_IP_ProtocolType TCP_IP_ProtocolType="TCP";
const t_IP_ProtocolType UDP_IP_ProtocolType="UDP";
const t_IP_ProtocolType RTP_TCP_IP_ProtocolType="RTP_TCP"; // ???

typedef unsigned short t_TCPPortNumber;
typedef unsigned short t_UDPPortNumber;

// -----------------
// End added by fste
// -----------------

// New VITAL definition:
enum ConnType {PointToPointUni, PointToPointBi, PointToMultipointUni};
// New VITAL definition. Included to simplify the parameters in CP operations.
enum TrafficDirection {Reception, Transmission};

// typedef Direction TPDirection;
// typedef any StreamIFref; // still to be defined

// Traffic definitions
struct PacketStreamQos {
unsigned long errorRatio; // magnitude order (10exp-)
unsigned long lossRatio; // magnitude order (10exp-)
unsigned long misinsertionRate; // mag order (10exp-)
unsigned long delay; // end-end delay (msec)
unsigned long jitter; // delay variation (msec)

};

struct PacketStreamTrafficDescription {
unsigned long maxLength; // bits
unsigned long averageRate; // bits/sec
unsigned long peakRate; // bits/sec
unsigned long burstiness; // no. of packets

};

struct ConnectionDescription {
ConnType type;
PacketStreamTrafficDescription recBw;
PacketStreamTrafficDescription transBw;
PacketStreamQos recQos;
PacketStreamQos transQos;

};

struct NatureOfSyncGroup {
boolean sameRoute;
boolean lipSynchronization;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 159

boolean sameLife;
boolean sameDeath;
boolean differentRoute;
boolean sameNwTp;

};

struct FaultPolicies {
boolean sendNotification; // default true
boolean selfRecovery; // default false

};

struct AccountingPolicies {
string currency;
unsigned long maxCost;

};

struct RoutingPolicies {
string useSpecificDomain;
string dontUseSpecificDomain;
unsigned long maxNumberOfHops;
string useSpecificNwTp;
string dontUseSpecificNwTp;

};

struct ConfigPolicies {
RoutingPolicies routingPolicies;
boolean aliveWoLeafEdges;

};

// Changes with v1 because imcompatibility with t_SuccessCriterion
//enum QosCommit {BestEffort, Deterministic, Statistical};
enum QosCommit {QoSBestEffort, QoSDeterministic, QoSStatistical};

struct QosCommitClass {
QosCommit commitType;
unsigned short percentage;

};

struct PerformancePolicies {
QosCommitClass error;
QosCommitClass loss;
QosCommitClass misinsertion;
QosCommitClass avgDelay;
QosCommitClass varDelay;

};

typedef any SecurityPolicies; // still to be defined

// New VITAL definitions. Added to allow for the definition of default configurations
// for CM Policies.
// Types of Policies:
enum PolicyType { Fault, Configuration, Accounting, Performance, Security };
typedef sequence<PolicyType> PolicyTypeList;

// VITAL Definition. Modification of previous TINA definition.
struct CMpolicies {

// New field added. It indicates the policies which configuration is indicated in

160 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

// the structure. If not included the policy will adopt a default value.
PolicyTypeList policiesUsed;
FaultPolicies fault;
ConfigPolicies configuration;
AccountingPolicies accounting;
PerformancePolicies performance;
SecurityPolicies security;

};

// End-point in a SNW (Ep):
// VITAL Definition: A new type is added.
// The Tp specified by the user will be UserTp.
// The Tp from the network point of view will be NwTp.

enum EndPointType {NwTp, NwTpPool, Ltp, NwAddress, UserTp};

typedef t_TinaName TpName;
typedef t_TinaName TpPoolName;
typedef t_TinaName LinkTermPointName;
typedef t_TinaName UserTpName;
typedef string t_NetworkAddress;
typedef string ServiceState;

typedef sequence<t_NetworkAddress> t_NFEPpools;

union EpRef switch (EndPointType) {
case NwTp: TpName tp;
case NwTpPool: TpPoolName tpPool;
case Ltp: LinkTermPointName linktp;
case NwAddress: t_NetworkAddress naddr;
case UserTp: UserTpName usertp;
};
typedef sequence <EpRef> EpRefList;

// Edge: used by SNCs, tandem connections and trails
typedef long EdgeId;
typedef sequence <EdgeId> EdgeIdList;

// Maps a logical id "id" with the physical end-point "physicalId".
struct EdgeIdentity {
EdgeId id;
t_TinaName physicalId;

};
typedef sequence <EdgeIdentity> EdgeIdentityList;

enum EdgeType {Root, Leaf};

struct EdgeInfo {
EpRef ep;
EdgeType type;
ServiceState state;

};
typedef sequence <EdgeInfo> EdgeInfoList;

// To BE DEFINED
typedef string BandwidthType;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 161

typedef string EndPointGroup;
typedef sequence <EndPointGroup> EndPointGroupList;

/* Domains */
typedef string AdministrationDomain;
typedef string CMdomain;

typedef boolean WaitInd;

// ---------------------------
// -- END OF NetworkCommon.idl
// ---------------------------

// ----------------
// TCSM definitions
// ----------------

typedef string LNType;

typedef sequence<LNType> LayerNetworkList;

enum t_CNSBoolean {True, False};

typedef string t_NProviderId;

enum t_MFStatusType { MFOn_Line, OSFailure, HWFailure, UnspecifiedFailure };

enum t_NFEPStatusType { NFEPOn_Line, NormalTermination, Failure };

enum t_NotifyPolicy { Warning, Fatal };

enum t_NotifyObjectType { NfepNotify, MfNotify};

union t_NotifyData switch(t_NotifyObjectType)
{
case NfepNotify: t_NFEPStatusType newNfepStatus;
case MfNotify: t_MFStatusType newMfStatus;
};

struct t_CnsNotifyRecord
{

t_NotifyPolicy policy;
t_NotifyData data;

};

struct t_UserTpDescr
{

UserTpName usertp;
ConnectionDescription connDescr;

};
typedef sequence<t_UserTpDescr> t_UserTpList;

// -----------------------
// End of TCSM definitions

162 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

// -----------------------

// ----------------------
// CSM and CC definitions
// ----------------------

typedef string t_CorrelationId;
typedef t_IntRef t_TLARef;

// -----------------------------
// End of CSM and CC definitions
// -----------------------------

#endif

15.10Security.idl
#ifndef _security_idl_
#define _security_idl_

//
// File Name: Security.idl
// Decription: definitions for security components.
// Revision Histroy:
// 9-17-97 v0.1 by Takeo Hamada
// 9-18-97 v0.2 by Takeo Hamada
// module structure revised, passed hidl
// compiler.
//

#ifdef debug
module Security {

typedef sequence <octet> Opaque;
// same as Security::Opaque, CORBA security 15-76.

};
#endif

#endif

15.11States.idl
#ifndef _STATES_IDL_
#define _STATES_IDL_

// DESCRIPTION:
// State Management Definitions.
//
// COMMENTS: Based in TINA Defs file (deviations are commented)

/* 1. Generic Attributes --------------------------------------- */

/* 1.1. State Attributes --------------------------------------- */

module m_STATE {

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 163

enum t_OperationalState { /* single-valued and read-only */
Disabled, /* resource totally inoperable and unable to

provide service to the users */
Enabled /* resource partially or fully operable and

available for use */
};

enum t_UsageState { /* single-valued and read-write */
/* Not all values are applicable to every class of managed object */
Idle, /* resource not currently in use */
Active, /* resource in use,

and with sufficient spare operating capacity */
Busy, /* resource in use, but no spare operating capacity */
Reserved /* resource reserved. This is NOT an ISO state */

};

enum t_AdministrativeState { /* single-valued and read-write */
/* Not all values are applicable to every class of managed object */
Locked, /* prohibited from performing services for its users */
ShuttingDown, /* permitted to existing instances of use only */
Unlocked /* permitted to perform services for its users.

This is independent of its inherent operability */
};

struct t_ManagementState {
t_OperationalState operational;
t_UsageState usage;
t_AdministrativeState administrative;

};

/* 1.2. Status Attributes (qualify the state attribute) -------- */

enum AlarmStatus { /* set-valued and read-write */
UnderRepair, /* resource currently being repaired */
Critical, /* some critical alarms have not yet been cleared */
Major, /* some major alarms have not yet been cleared */
Minor, /* some minor alarms have not yet been cleared */
AlarmOutstanding /* see additional attributes */

};

enum ProceduralStatus { /* set-valued and read-write */
InitializationRequired, /* the resource requires

initialization to be invoked by the manager */
NotInitialized, /* the resource initializes ifself autonomously */
Initializing, /* initialization procedure not yet completed */
Reporting, /* the resource is notifying the results of an

operation. Its operational state is Enabled */
Terminating /* the resource is in termination phase */

};

enum AvailabilityStatus { /* set-valued and read-only */
InTest, /* the resource is undergoing a test procedure */
Failed, /* the resource has an internal fault.

Its operational state is Disabled */
PowerOff, /* the resource is not powered on.

Its operational state is Disabled */
OffLine, /* the resource requires to be placed on-line.

164 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

Its operational state is Disabled */
OffDutty, /* the resource has been made inactive internally.

Its operational state is Disabled or Enabled */
Dependency, /* the resource cannot operate because some other

resource on which it depends is unavailable.
Its operational state is Disabled */

Degraded, /* but its operational state is Enabled */
NotInstalled, /* the resource represented by the managed

object is not present or is incomplete.
Its operational state is Disabled */

LogFull /* log full condition (see Rec. X.735) */
};

enum ControlStatus { /* set-valued and read-write */
SubjectToTest, /* available for users, but tests may be

conducted on it */
PartOfServicesLocked, /* administrative state = Unlocked */
ReservedFortest, /* administrative state = Locked */
Suspended /* administrative state = Unlocked */

};

enum StandByStatus { /* set-valued and read-only */
/* its value is only meaningful when the back-up relationship

role exists (see Rec. X.732) */
HotStandBy, /* Not providing service, but operating in synchronism

with the resource that is to be backed-up */
ColdStandBy, /* Not providing service. Take-over

requires some initialization activity */
ProvidingService /* */

};

/* From ETSI/NA4, Network Level View: ServiceState ------------- */
/* ServiceState values are defined as a combination of OperationalState,

UsageState, AdministrativeState, AvailabilityStatus and ControlStatus */

enum ServiceState {
Planned,
InServiceAssignedBusy,
InServiceAssignedActive,
InServiceReserved,
InServiceSpare,
UnavailableFaultyAssigned,
UnavailableFaultyReserved,
UnavailableFaultySpare,
UnavailableLockedAssigned,
UnavailableLockedReserved,
UnavailableLockedSpare,
UnderTestAssigned,
UnderTestReserved,
UnderTestSpare,
CeasingShuttingDown,
CeasingShutDown,
Decommissioned

};

}; // module m_STATE

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 165

#endif

15.12UMLogManager.idl
#ifndef _UmLogManager_idl_
#define _UmLogManager_idl_

//
// File Name: UMLogManager.idl
// Decription: usage metering log manager in NCS
// Comments:
// Original VITAL inputs were provided by
// George Pavlou, UCL, UK.
// Revision Histroy:
// 7-31-97 v0.1 by Takeo Hamada
// 9-17-97 v0.2 by Takeo Hamada
// module structure revised, passed hidl
// compiler.

//
// NVList definition
//

#ifdef debug
module CORBA {

// bogus definition just for compiler. See 4-10 of
// CORBA v2.0.
interface NVList {
};

};
#endif

#include "TINAScsAmcCommon.idl"
#include "Security.idl"

module UMLogManager {

exception e_X721operation {
enum t_X721error {

cannotStart,
cannotStop,
cannotSuspend,
cannotResume

} error;
string reason;

};
exception e_unsupportedAttributeName {

CORBA::NVList errorList;
};
exception e_unsupportedAttributeValue {

CORBA::NVList errorList;
};

interface i_X721LogOperation {
boolean start() raises (e_X721operation);
boolean stop() raises (e_X721operation);
boolean suspend() raises (e_X721operation);

166 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

boolean resume() raises (e_X721operation);
boolean set_log_attributes(

in CORBA::NVList arg_list
) raises (

e_unsupportedAttributeName,
e_unsupportedAttributeValue

);
};

exception e_UMLogOperation {
enum t_UMLogOperation {

cannotStore,
cannotGetUserLogEntries,
cannotRemoveUserLogEntries,
cannotGetSessionLogEntries,
// the following error codes are inherited from
// original VITAL spec. from George.
unknownUserId,
invalidLoggingPeriod,
logBusy,
unknownSessionId

} error;
string reason;

};

interface i_UMLogOperation {
boolean storeEvent (

in TINAScsAmcCommon::t_AccountingEvent event
) raises (e_UMLogOperation);

boolean storeEventList (
in TINAScsAmcCommon::t_AccountingEventList events

) raises (e_UMLogOperation);

boolean removeEvent (
in TINAScsAmcCommon::t_AccountingEvent event

) raises (e_UMLogOperation);

boolean removeEventList (
in TINAScsAmcCommon::t_AccountingEventList events

) raises (e_UMLogOperation);

boolean getUserLogEntries (
in TINACommonTypes::t_UserId userId,
in TINAScsAmcCommon::t_DateTime from,
in TINAScsAmcCommon::t_DateTime to,
out TINAScsAmcCommon::t_AccountingEventList events

) raises (e_UMLogOperation);

boolean removeUserLogEntries (
in TINACommonTypes::t_UserId userId,
in TINAScsAmcCommon::t_DateTime from,
in TINAScsAmcCommon::t_DateTime to

) raises (e_UMLogOperation);

boolean getSessionLogEntries (
in TINACommonTypes::t_SessionId sessionId,

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 167

out TINAScsAmcCommon::t_AccountingEventList events
) raises (e_UMLogOperation);

};
};

#endif

15.13accPolicyManager.idl
#ifndef _accPolicyManager_idl_
#define _accPolicyManager_idl__

#ifdef debug
#include "PLATyToolsFix.idl"
#endif

//
// File Name: accPolicyManager.idl
// Decription: policy manager of
// accounting management domain
// Revision Histroy:
// 8-1-97 v0.1 by Takeo Hamada
// 12-10-97 v0.2 by Takeo Hamada
// successfully compiled by hidl
//

module AccPolicyManager {

enum t_AccPolicyManagerCode {
cannotStart,
cannotStop,
cannotSuspend,
cannotResume,
cannotUpdatePolicy,
cannotDeletePolicy,
cannotPropagatePolicy,
noAuthorization

};
exception e_AccPolicyManager {

t_AccPolicyManagerCode error;
string reason;

};

// it is assumed that policy rules can be
// represented by an NVList, name-value pairs.

interface i_AccountingPolicyManager {
// control operations
boolean start() raises (e_AccPolicyManager);
boolean stop() raises (e_AccPolicyManager);
boolean suspend() raises (e_AccPolicyManager);
boolean resume() raises (e_AccPolicyManager);
boolean update_policy(

in CosTrading::PropertySeq rules
) raises (e_AccPolicyManager);
boolean delete_policy(

in CosTrading::PropertySeq rules

168 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

) raises (e_AccPolicyManager);
boolean propagate_policy() raises (e_AccPolicyManager);

};
};

#endif

15.14attribute.idl
#ifndef _ATTRIBUTE_IDL_
#define _ATTRIBUTE_IDL_

//
// Created by Jarno Rajahalme
// Updates:
// 97/08/06 by Frank Steegmans
// Replace ’TinaAttrib’with ’Attrib’
//

#include "naming.idl"

//
// Attribute Data Types
//
// An attribute consists of a pair of an identifier and a
// value. The identifier identifies the semantics of the attribute,
// and in particular, the actual data type of the value.
//
// The "tag" is defined as t_TinaName to follow the TINA naming
// conventions. The value is defined as any to allow carriage of
// IDL structured values without explicit parsing etc. (which would
// be required, if e.g. string would be used).
//

struct t_Attrib {
t_TinaName id;
any value;

};

//
// Attribute list
//
typedef sequence <t_Attrib> t_AttribList;

#endif // _ATTRIBUTE_IDL_

15.15capability.idl
#ifndef _CAPABILITY_IDL_
#define _CAPABILITY_IDL_

//
// Created by Jarno Rajahalme
// Updates:
// 97/08/06 by Frank Steegmans
// Added ’;’ to solve syntax error

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 169

//

//
// IDL definition for terminal capability information. This is
// based on ASN.1 code given in ITU-T H.245, with following
// extensions:
//
// 1. Capability set can also have session and transport protocol
// capabilities.
//
// 2. Each codec, protocol, etc. capability is explicitly
// identified with ASN.1 OBJECT IDENTIFIER. This will identify the
// semantics of the capability and the semantics of the associated
// attributes. This is like the non-standard capability in H.245.
//
// 3. A capability can require other capabilities. For example, a
// codec may only be supported over RTP session protocol over UDP
// transport. Another instance of the same codec could be
// available over ATM interface only, etc.
//
// See H.245 section 7.2.1 for overview on terminal capabilities
//
// Problems:
//
// 1. Usage of ’any’(via t_AttribList)
//
// TODO:
//
// 1. Full example of capability information
//
// HISTORY
//
// 07/24/97 Jarno Rajahalme Initial Contribution
//

#include "naming.idl" // t_TinaName
#include "attribute.idl" // t_AttribList

//
// Type for capability unique semantic identifier. This should
// from a subtree of ASN.1 OBJECT IDENTIFIER name space
//
typedef t_TinaName t_CapabilityId;

//
// Type for terminal unique capability key
//
typedef unsigned long t_CapabilityKey;
typedef sequence<t_CapabilityKey> t_CapabilityKeyList;

//
// Capability dependencies
//
// t_AlternativeDependencies is a sequence of alternative
// t_CapabilityKeyLists. If the contained list has more than one
// t_CapabilityKey, then all those are required at the same

170 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

// time. This is useful to express dependency of a multi-channel
// ISDN link, for example.
//
typedef sequence<t_CapabilityKeyList> t_AlternativeDependencies;

//
// High-level type of the capability.
//
// This information should be contained in the capability semantic
// identifier (a certain subtree of OBJECT IDENTIFIERS would be
// reserved for codec capabilities, subrees of which would be
// reserved for audio, video, data, etc.)
//
// The problem with this enumeration is that it is most probably
// not exhaustive, and would require updating every now and
// then. By containing this information into the capability
// semantic name, neither this type, nor the corresponding field
// below, would be needed anymore.
//
enum t_CapabilityType {
audioCapability, videoCapability, dataCapabilty,
sessionProtocolCapability, transportCapabilty

};

//
// Directionality of the capability.
//
// NOTE: This is not related to the directionality of an SFEP! Two
// SFEPs would be needed for e.g. video receive and transmit, even
// if only one capability with directionality
// ’receiveAndTransmitCapability’is indicated.
//
enum t_CapabilityDir {
receiveCapability,
transmitCapability,
receiveAndTransmitCapabilty

};

//
// Capability
//
struct t_Capability {
t_CapabilityKey key; // Terminal unique id
t_CapabilityId name; // unique semantic identifier
t_CapabilityType type; // High-level Capability Type
t_CapabilityDir dir; // Capability directionality
t_AttribList attributes; // Capability attributes
t_AlternativeDependencies dependencies; // Required capabilities

};
// list of capabilities:
typedef sequence<t_Capability> t_CapabilityList;

//
// Capability Combinations
//

//

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 171

// Terminal unique id for a CapabilityDescriptor.
//
// The number indicates preference of mode of operation by the
// terminal: descriptors with lower numbers are preferred (i.e. 0
// == most preferred)
//
typedef unsigned long t_CapabilityDescriptorNumber;

//
// List of alternative capabilities. Any ONE of these can be done
// at one time - list items are mutually exclusive (within this
// list only)
//
typedef t_CapabilityKeyList t_AlternativeCapabilities;

//
// Capability Descriptor. This contains a terminal unique
// identifier for this set of capabilities and a set of
// capabilities supported simultaneously
//
struct t_CapabilityDescriptor {

t_CapabilityDescriptorNumber capabilityDescriptorNumber;
sequence<t_AlternativeCapabilities> simultaneousCapabilities;

};

//
// Capability Set
//

struct t_CapabilitySet {
sequence<t_CapabilityDescriptor> capabilityDescriptors;
t_CapabilityList capabilityTable;

};

#endif // _CAPABILITY_IDL_

15.16csm.idl
#ifndef _CSM_IDL_
#define _CSM_IDL_

//
// Still needs to be sorted out!!!!!!!!!
//

// NAME: CSM.idl
// DESCRIPTION:
// Communication Session Manager Interfaces.
//
// IDL INTERFACES
// Supported:
// Name: CSM::i_ComSSetup
// Name: CSM::i_ComSCtrl
// Requested:
// Name: TCSM::i_TerminalFlowControl

172 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

//
//
// SPECIFICATION REF:
// Document: Network Resource Architecture Version 3.0
//
// SCENARIOS REF:
// Document: Network Resource Architecture Version 3.0
//
//----------------------END DESCRIPTION HEADER----------------------------

/*
* REMARK:
* 97/08/20 Modified by Frank Steegmans
* VITAL specification has been used as source
* Sfep description has been changed to take mediadescription
* into account. Furthermore an operation is added to change
* this description for a nubmer of SFEPs.
* Minor modifications have been done to make it compilable.
* 97/12/05 Revised by Takeo Hamada
*/

// #include "Common.idl"
#include "sfepcoms.idl"
#include "nfep.idl"
#include "States.idl"
#include "exceptions.idl"
#include "ComSCommonDefs.idl"

module RET_CSM
{

interface i_CSMCommonDefs : i_ComSCommonDefs
{

typedef string t_ComSessionName;
typedef sequence<t_ComSessionName> t_ComSessionNameList;

//enum t_SFepDirection {SFepSource, SFepSink}; - Common.idl
//enum t_Topology {PointToPoint, PointToMultipoint, Broadcast}; - Common.idl
//enum AdministrativeState {Locked, ShuttingDown, Unlocked} - States.idl

//struct t_SFep
//{
// t_IntRef tcsmRef;
// t_SFep_CId SFepId;
//};
//typedef sequence<t_SFEPName> t_SFEPNameList; - Common.idl

/*
struct t_SFepDesc
{
t_SFEPName sfepRef;
m_STATE::t_AdministrativeState sfepState;
t_SFepDirection sfepDir;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 173

};
typedef sequence<t_SFepDesc> t_SFepDescList;
*/

typedef t_SFEPComDesc t_SFepDesc;
typedef t_SFEPComDescList t_SFepDescList;

struct t_SFCDesc
{
t_SuccessCriterion sfcSuccCrit;
t_SFCName sfcName;
t_ConnTopology sfcTopology;
t_SFepDescList SFeps;

};
typedef sequence<t_SFCDesc> t_SFCDescList;

struct t_SFCResponse
{
t_SFCName sfcName;
t_SFEPNameList boundList;

};
typedef sequence<t_SFCResponse> t_SFCRespList;

}; // i_CSMCommonDefs

interface i_ComSCtrl : i_CSMCommonDefs {

//...Flow Connection related Operations

void setup_flow_connections
(in t_SuccessCriterion criterion,
in t_SFCDescList sfcDescList,
out t_SFCRespList sfcSetList)

raises (e_Error) ;

void release_flow_connections
(in t_SuccessCriterion criterion,
in t_SFCNameList sfcList,
out t_SFCRespList sfcRelList)

raises (e_Error);

void activate_flow_connections
(in t_SuccessCriterion criterion,
in t_SFCNameList sfcList,
out t_SFCRespList sfcActList)

raises (e_Error);

void deactivate_flow_connections
(in t_SuccessCriterion criterion,
in t_SFCNameList sfcList,
out t_SFCRespList sfcDeactList)

raises (e_Error);

//...Branch related Operations

174 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

void add_branches
(in t_SuccessCriterion criterion,
in t_SFCName sfcName,
in t_SFepDescList sfepDescList,
out t_SFEPNameList boundList)
raises (e_Error);

void delete_branches
(in t_SuccessCriterion criterion,
in t_SFCName sfcName,
in t_SFEPNameList list,
out t_SFEPNameList dellist)
raises (e_Error);

void activate_branches
(in t_SuccessCriterion criterion,
in t_SFCName sfcName,
in t_SFEPNameList list,
out t_SFEPNameList actList)
raises (e_Error);

void deactivate_branches
(in t_SuccessCriterion criterion,
in t_SFCName sfcName,
in t_SFEPNameList list,
out t_SFEPNameList deactList)
raises (e_Error);

struct t_SFEPMediaDesc {
t_SFEPName name;
t_MediaDesc media;

};
typedef sequence<t_SFEPMediaDesc> t_SFEPMediaDescList;

void modify_branches_media_desc
(in t_SuccessCriterion criterion,
in t_SFCName sfcName,
in t_SFEPMediaDescList list,
out t_SFEPNameList succList)
raises (e_Error);

//Get operations

void list_all_SFCs
(out t_SFCNameList sfcList)
raises (e_Error);

void get_flow_conn_info
(in t_SFCName sfcName,
out t_SFCDesc sfcDesc)
raises (e_Error);

}; // i_ComSCtrl

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 175

interface i_ComSSetup : i_CSMCommonDefs {
void setup_communication_session
(in t_SuccessCriterion criterion,
in t_SFCDescList sfcDescList,
out t_ComSessionName comSessionName,
out i_ComSCtrl comSCtrl,
out t_SFCRespList sfcRespList)

raises (e_Error);

void release_com_session
(in t_ComSessionName comSessionName)
raises (e_Error);

void activate_communication_session
(in t_ComSessionName comSessionName)
raises (e_Error);

void deactivate_communication_session
(in t_ComSessionName comSessionName)
raises (e_Error);

void list_all_communication_sessions
(in t_ComSessionNameList comSessionNameList)
raises (e_Error);

};

}; // end of module RET_CSM

#endif // i_ComSSetup

15.17exceptions.idl
#ifndef _EXCEPTIONS_IDL_
#define _EXCEPTIONS_IDL_

//
// Created by Jarno Rajahalme
// Updates:
// 97/08/06 by Frank Steegmans
// type identifier ’t_error’added to solve syntax problem
//

//
// Generic exceptions to be used by all Tina code
//
// NOTE: I’m not 100% sure whether enum usage below is actually
// allowed...
//

//
// Generic non-trancient error, typically indicates a bug in the
// client code

176 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

//

exception e_Error {
enum t_error {
Unknown, // Reason unknown
InvalidArgs, // Invalid arguments for the operation
InvalidState // Incorrect operation sequencing

} error;
string message;

};

//
// Generic error on the server side
//

exception e_ServerError {
enum t_ServerError {
Unknown, // Reason unknown
NoResources, // Computing resource shortage
ObjectNotFound, // Addressed object not found
ObjectStateInvalid, // Addressed object not in suitable state
ObjectInUse // Object name etc. is already in use

} error;
string message;

};

#endif

15.18lnc.idl
/*
* File: LN.idl
*
* Description: This file contains all the IDL files related to the
* Layer Network
*
* Comments: UNDER CONSTRUCTION
*
* History:
*
* 97/08/11: Initial Contribution
* by Frank Steegmans
* 97/12/01: Second Contribution
* by Hyun
* 97/12/10: Revised by Takeo Hamada
*
*
* TO DO: - Take out common definitions
* - Take out ’allFlag’and replace by success criterium were necessary
* - Review exceptions and add lists in were appropriate.
*
*/

#ifndef i_LayerNetworkCommonDefs_IDL
#define i_LayerNetworkCommonDefs_IDL

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 177

#include "CLNCommonDefs.idl"

// Forward declarations
interface i_LnbNotification;
interface i_LnbControl;
interface i_LnbNotificationControl;

// added by Takeo Hamada - 12/10/97
interface i_LayerNetworkBindingNotification;
interface i_LayerNetworkBindingControl;
interface i_LayerNetworkBindingNotificationControl;
typedef string t_LayerNetworkBindingName;

interface i_LayerNetworkCommonDefs : i_CLNCommonDefs
{

typedef t_TinaName t_LayerNetworkBindingName;
typedef sequence <t_LayerNetworkBindingName> t_LayerNetworkBindingNameSeq;

struct t_RoutingConstraint
{
t_LayerNetworkBindingName refConn;
t_RoutingOption routingoption;

};

exception InvalidLayerNetworkBindingDesc {
t_LayerNetworkBindingName lnbName;
string info;

};

exception InvalidLayerNetworkBindingName {
t_LayerNetworkBindingNameSeq lnbNameList;

};

struct t_LayerNetworkBindingInfo
{
t_LayerNetworkBindingName lnbName;
t_ConnTopology topology;
m_STATE::t_AdministrativeState adminState;
m_STATE::t_OperationalState opState;
t_ReliabilityClass relClass;
t_RoutingConstraint routeConstraint;
i_LayerNetworkBindingNotification notifIf;
sequence <t_NfepInfo> nfepInfoList;

};

struct t_LayerNetworkBindingDesc
{
t_LayerNetworkBindingName lnbName;
t_ConnTopology topology;
t_ParametersList parameterList;
t_RoutingConstraint routeConstraint;

178 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

t_NfepDescSeq nfepDescList;
};

typedef sequence <t_LayerNetworkBindingDesc> t_LayerNetworkBindingDescSeq;

struct t_LayerNetworkBindingResponse
{
t_LayerNetworkBindingName lnbName;
i_LayerNetworkBindingControl ctrlIf;
i_LayerNetworkBindingNotificationControl notifCtrlIf;
t_SuccNfepList boundLlist;
t_FailedNfepList unboundList;

};

typedef sequence <t_LayerNetworkBindingResponse> t_LayerNetworkBindingResponseSeq;

struct t_ActivationResponse {
t_LayerNetworkBindingName lnbName;
t_ActivationStatus lnbStatus;
t_NfepActivationResponseSeq nfepActivationResponseList;

};

typedef sequence <t_ActivationResponse> t_ActivationResponseSeq;

struct t_LayerNetworkBindingInterfaces {
t_LayerNetworkBindingName lnbName;
i_LayerNetworkBindingControl ctrlIf;
i_LayerNetworkBindingNotificationControl notifCtrlIf;

};

typedef sequence <t_LayerNetworkBindingInterfaces> t_LayerNetworkBindingInterfacesSeq;

};

#endif /* i_LayerNetworkCommonDefs_IDL */

/* IDL of interface i_LayerNetworkBindingNotification */

#ifndef i_LayerNetworkBindingNotification_IDL
#define i_LayerNetworkBindingNotification_IDL

// #include "i_LayerNetworkCommonDefs.idl"

/*
* This interface is used by a LayerNetworkBinding object
* as a client for sending notifications to the connectivity layer
* regarding changes in the operational state of the associated
* layer network binding.
*/

interface i_LnbNotification : i_LayerNetworkCommonDefs
{

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 179

void lnb_StatusChange
(in t_LayerNetworkBindingName lnbName,
in t_nfepStatusInfoSeq nfepStatusList);

};

#endif /* i_LayerNetworkBindingNotification_IDL */

/* IDL of interface i_LayerNetworkBindingNotificationControl */

#ifndef i_LayerNetworkBindingNotificationControl_IDL
#define i_LayerNetworkBindingNotificationControl_IDL

// #include "i_LayerNetworkBindingNotification.idl"

/*
* This interface is used by the Connectivity layer to control the emission
* of notifications by a LayerNetworkBinding object regarding changes in the
* operational state of the associated binding.
*/

interface i_LnbNotificationCtrl : i_LayerNetworkCommonDefs
{

void enable_LNB_Notification ()
raises(NotificationDestinationNotSet);

void disable_LNB_Notification();

void set_LNB_Destination
(in i_LayerNetworkBindingNotification destination);

};

#endif /* i_LayerNetworkBindingNotificationControl_IDL */

/* IDL of interface i_LayerNetworkBindingControl */

#ifndef i_LayerNetworkBindingControl_IDL
#define i_LayerNetworkBindingControl_IDL

// #include "i_LayerNetworkBindingNotificationControl.idl"

/*
* This interface provides operations for manipulating the associated
* layer network binding
*/

interface i_LnbControl : i_LayerNetworkCommonDefs
{

180 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

void add_LNB_Branches
(in t_SuccessCriterion criterion,
in t_NfepDescSeq descList,
out t_SuccNfepList boundList,
out t_FailedNfepList unboundList)

raises(NonExistentFlowEndPoints,
NetworkFlowEndPointsAlreadyBound,
InvalidBranchesInfo);

void delete_LNB_Branches
(in t_SuccessCriterion criterion,
in boolean allFlag, // set to true if all branched are to be deleted
in t_NfepRefList list,
out t_SuccNfepList succList,
out t_FailedNfepList failList)

raises(NonExistentFlowEndPoints);

void activate_LNB_Branches
(in t_SuccessCriterion criterion,
in boolean allFlag, // set to true if all branched are to be activated
in t_NfepRefList list,
out t_SuccNfepList succList,
out t_FailedNfepList failedList)

raises(NonExistentFlowEndPoints,
BranchesActiveAlready);

void deactivate_LNB_Branches
(in t_SuccessCriterion criterion,
in boolean allFlag, // set to true if all branched are to be deactivated
in t_NfepRefList list,
out t_SuccNfepList succList,
out t_FailedNfepList failedList)

raises(NonExistentFlowEndPoints,
BranchesDeactiveAlready);

void modify_LNB_Branches
(in t_SuccessCriterion criterion,
in t_NfepDescSeq descList,
out t_SuccNfepList succList,
out t_FailedNfepList failedList)

raises(NonExistentFlowEndPoints,
InvalidBranchesInfo);

void get_LNB_Info
(out t_LayerNetworkBindingInfo lnbInfo);

};

#endif /* i_LayerNetworkBindingControl_IDL */

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 181

#ifndef i_LayerNetworkCoordinator_IDL
#define i_LayerNetworkCoordinator_IDL

// #include "i_LayerNetworkCommonDefs.idl"

/*
* This interface provides operations for manipulating a connectivity
* session. One such interface is associated with each connectivity
* session
*
*/

/*
* interface i_LayerNetworkCoordinator : i_LayerNetworkCommonDefs
*/

interface i_LnbSetup : i_LayerNetworkCommonDefs
{

/*
* This operation is used for creating a layer network binding
* The LNC is typically associated with large number of LNBs.
*/
void setup_LNBs
(in t_ParametersList list,
in t_SuccessCriterion criterion,
in t_LayerNetworkBindingDescSeq LayerNetworkBindingDescList,
out t_LayerNetworkBindingResponseSeq resp)

raises(InvalidLayerNetworkBindingDesc);

/*
* This operation is used for activating a number of bindings
* Note:
* The returned boolean indicates the succes of the operation
* with respect to the succes criterion. The ActivationResponse
* has to be checked for further details in all cases except
* when the exception is thrown.
*/

boolean activate_LNBs
(in t_SuccessCriterion criterion,
in t_LayerNetworkBindingNameSeq LayerNetworkBindingList,
out t_ActivationResponseSeq resp)

raises(InvalidLayerNetworkBindingName);

/*
* This operation is used for deactivating a number of bindings
*/

boolean deactivate_LNBs
(in t_SuccessCriterion criterion,
in t_LayerNetworkBindingNameSeq LayerNetworkBindingList,
out t_ActivationResponseSeq resp)

raises(InvalidLayerNetworkBindingName);

/*
* This operation is used for releasing a number of bindings

182 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

*/

void release_LNBs
(in boolean allFlag, // set to true if all bindings have to be released
in t_LayerNetworkBindingNameSeq LayerNetworkBindingList)

raises(InvalidLayerNetworkBindingName);

/*
* This operation is used for retrieving the references to the
* i_LayerNetworkBindingControl and
* i_LayerNetworkBindingNotificationControl interfaces
* associated with particular bindings.
*/

void get_LNB_ctrl_interfaces
(in boolean allFlag, // set to true if control interfaces for

// all bindings have to be retrieved
in t_LayerNetworkBindingNameSeq LayerNetworkBindingList,
out t_LayerNetworkBindingInterfacesSeq lnbIfList)

raises(InvalidLayerNetworkBindingName);

/*
* Operation for determining if two given ANfeps
* satisfy the Can Be Bound relationship
* Note:
* This operation might be expanded in further release to support
* multiple anfeps. The output would be groups of interconnectable
* afneps.
*/

boolean canBeBound
(in m_NFEP::t_ANfep anfep1,
in m_NFEP::t_ANfep anfep2)

raises(NonExistentFlowEndPoints);

};

#endif /* i_LayerNetworkCoordinator_IDL */

/* IDL of interface i_LayerNetworkBindingNotificationControl_IDL */

#ifndef i_LayerNetworkBindingNotificationControl_IDL
#define i_LayerNetworkBindingNotificationControl_IDL

// #include "i_LayerNetworkBindingNotification.idl"

/*
* One such interface is associated with each layer network coordinator.
* This interface is used by the connectivity level to control the
* emission of notifications by LayerNetworkBinding objects regarding
* changes in the operational state of a number of previously specified
* layer network bindings.
*/

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 183

interface i_LNBNotificationCtrl : i_LayerNetworkDefs
{

void enable_LNBNotifications
(in boolean allFlag, // set to true if notifications for all specified

// bindings are to be enabled
in t_LayerNetworkBindingNameSeq LayerNetworkBindingList)

raises(NotificationDestinationNotSet);

void disable_LNB_Notifications
(in boolean allFlag, // set to true if notifications for all specified

// bindings are to be disabled
in t_LayerNetworkBindingNameSeq LayerNetworkBindingList)

raises(NotAuthenticated, NotAuthorized);

/*
* This operation is used for setting the default destination notification
* interface in the CS Profile object
*
*/

void set_LNB_NotificationDestination
(in t_LayerNetworkBindingNameSeq LayerNetworkBindingList)
in i_LayerNetworkBindingNotification destination)

raises(NotAuthenticated, NotAuthorized);

};

#endif /* i_LayerNetworkBindingNotificationControl_IDL */

15.19lncfed.idl
#ifndef _LNCFED_IDL_
#define _LNCFED_IDL_

// To do:
// ======
// 1. Clean out datatypes (to appropriate headers)
// 2. Change towards Cons-RP approach on success and return of exceptions
// 3. Define appropriate exceptions
// 4. Verify operations on all interfaces
// 5. Verify parameter, exception lists of all operations

/*
* Comments: UNDER CONSTRUCTION
*
* History:
*
* 97/08/11: Initial Contribution
* 97/12/01: Second Contribution
* by Hyun
* 97/12/10: Revised by Takeo Hamada
*
*/

#include <RACommon.idl>

184 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

#include <States.idl>

module m_LNCFED
{

/* Exceptions */
exception unknownEdge {
EdgeId e;

};

enum WrongEndPointCause {unknownEP, busyEP, unreachable};
exception wrongEndPoint {
EpRef ep;
WrongEndPointCause cause;

};

exception toomuchBandwidth {
unsigned long maxAvailableBw;

};

exception qosNotAvailable { };

exception notSupported { };

/* local and remote is always from the callers viewpoint. */
/* parameters for local and remote LTP have to be added such as */
/* transmit and receive bandwidth as well as transmission delays */

// The t_LTP and t_FedLink datastructures are used for exchanging information
// between the different involved COs concerning the topological link and its
// terminationpoints used for federation. These structures may be complete or
// partially filled-in dependent on the context.

struct t_LTP{
m_STATE::t_ManagementState state;
PacketStreamTrafficDescription txPSTD;
PacketStreamTrafficDescription rxPSTD;
};

struct t_FedLink {
t_NetworkAddress local_add;
t_LTP local_ltp;
t_NetworkAddress remote_add;
t_LTP remote_ltp;
};

typedef sequence<t_FedLink> t_FedLinkList;

interface i_TCControl { // used by peer LNC

void add_tc_branches (inout EpRefList leaves,
in t_IntRefList TLArefleaves)

raises (wrongEndPoint, toomuchBandwidth);

void delete_tc_branches (in EdgeIdList leaves)
raises (unknownEdge);

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 185

/* Activate/Deactivate operations */
void activate_tc_branches (in EdgeIdList leaves)
raises (unknownEdge);

void deactivate_tc_branches (in EdgeIdList leaves)
raises (unknownEdge);

/* Activate/Suspend tc (all edges) */
void activate_tc () ;

void deactivate_tc ();

/* Modification of tc bandwidth parameters */
void modify_tc_traffic_description (

in PacketStreamTrafficDescription newBwin,
in PacketStreamTrafficDescription newBwout)

raises (toomuchBandwidth, notSupported);

/* Get tandem connection information */
void get_tc_info(

out t_CorrelationId correlation_id,
out EpRef a,
out EdgeId root,
out t_IntRef TLArefroot,
out EpRefList z,
out EdgeIdList leaves,
out t_IntRefList TLArefleaves,
out ConnType trailtype,
out PacketStreamTrafficDescription txbw,
out PacketStreamTrafficDescription rxbw,
out string notification_owner);

}; /* end of m_LNCFED::i_TCControl interface */

interface i_TCSetup { // used by peer LNC

i_TCControl setup_tc(
in t_CorrelationId correlation_id,
inout EpRef a,
out EdgeId root,
in t_IntRef TLArefroot,
inout EpRefList z,
out EdgeIdList leaves,
in t_IntRefList TLArefleaves,
in ConnType trailtype,
in PacketStreamTrafficDescription txbw,
in PacketStreamQos txqos,
in PacketStreamTrafficDescription rxbw,
in PacketStreamQos rxqos,
in string notification_owner)

raises (wrongEndPoint, toomuchBandwidth, qosNotAvailable);

void release_tc (in i_TCControl t);
/* suspend; detach and delete all edges; delete tc */

186 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

}; /* end of m_LNCFED::i_TCSetup interface */

//
///* This interface will be used for inter-LND configuration management */
////interface i_interLND_CM {
////
//// readonly attribute i_TCSetup federation;
////
//// /* Returns a list of reachable (prefix) domains through this Federation */
//// DomainList get_reachable_domains(...);
////
//// /* Used by foreign LNC to request federation */
//// /* Returns true if federation is active for all requested toplinks */
//// /* The returned toplinks list should be examinated if returns false */
//// // This operation is used both ways, which means that also already
//// // pending federation requests (links that are not federated yet
//// // because the called party hadn’t an LTP yet) will be completed
//// // by calling this operation at the other side.
////
//// boolean FederationRequest(
//// in t_SuccessCriterion sc,
//// in string foreignLnc,
//// in i_interLND_CM foreignCm,
//// in DomainList foreignDomains,
//// inout t_FedLinkList toplinks,
//// in string localLnc,
//// out DomainList localDomains,
//// out i_TCSetup localFed)
//// raises(FedReqError);
////
//// // Used by foreign LNC to or check the current status concerning federation links */
//// boolean GetFedLinkLTPsState(inout t_FedLinkList toplinks)
//// raises();
////
//// // Used by foreign LNC to announce a status change concerning federation links
//// // In other words, allthough this might change in the future,
//// // this operation will be used to do link management.
//// boolean SetFedLinkLTPsState(
//// in t_SuccessCriterion sc,
//// inout t_FedLinkList toplinks)
//// raises();
////
//// boolean AbortFederation (
//// in t_SuccessCriterion sc,
//// in string localLnc,
//// out t_FedLinkList toplinks)
//// raises(UnknownLNC, NoFederation);
////
////
//// }; /* end of m_LNCFED::i_interLND_CM interface */
//
// /* This interface will be used by NRCM for federation configuration management */
// interface i_CM {
//
// enum t_FedPolicy {
// OnlyAcceptLocalInitializedLinks, // local federate already happened
// AcceptNonInitializedLinks // only local ltps exist

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 187

// };
//
//// readonly attribute m_LNCFED::i_interLND_CM inter_LND_CM;
//
// void set_fed_policy(t_FedPolicy policy);
//
//
// // The federate operation is used by local configuration management to request a LNC
// // to federate with a neigbour.
// // If the local LTPs have already been created the information local t_LTP maybe empty.
// // Else local t_LTP has to be complete so that it the points can be created.
// // The operation returns true if the federation was completely successful.
// // If false is returned while ’BestEffort’ is requested, the toplinks should
// // be checked for individual states.
// // This operation maybe called multiple times by local NRCM for the same foreign LND.
// boolean federate (
// in t_SuccessCriterion sc,
// in string lnc,
// in EndPointGroupList prefixes,
// inout t_FedLinkList toplinks)
// raises(UnknownLNC, DomainConflict);
//
// boolean GetFedLinkLTPsState(inout t_FedLinkList toplinks)
// raises();
//
// boolean SetFedLinkLTPsState(
// in t_SuccessCriterion sc,
// inout t_FedLinkList toplinks)
// raises();
//
// boolean RemoveFedLink(
// in t_SuccessCriterion sc,
// inout t_FedLinkList toplinks)
// raises();
//
// boolean AbortFederation (
// in t_SuccessCriterion sc,
// in string lnc,
// out t_FedLinkList toplinks)
// raises(UnknownLNC, NoFederation);
//
// }; /* end of m_LNCFED::i_CM interface */

}; /* end of module CNP_LNCFED */

#endif

15.20media.idl

#ifndef _MEDIA_IDL_
#define _MEDIA_IDL_

// FILE:
// sbcriteria.idl
// DESCRIPTION:
// Stream Binding Criteria

188 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

// Operational success criteria and recovery action and success
// criteria for stream bindings.
// AUTHOR:
// Stephanie Hogg
// CREATION DATE:
// 18/08/97
// UPDATES:
//

#include "attribute.idl"

// General type identifiers
typedef string t_Identifier;
typedef t_Identifier t_TypeId;

// Stream Binding type identifier
typedef t_TypeId t_SBType;

// General type descriptor
typedef t_Attrib t_TypeAttrib;
typedef t_AttribList t_TypeList;
struct t_TypeDesc
{

t_TypeId id; // type of type
t_TypeList desc; // type attributes list

};
typedef sequence<t_TypeDesc> t_TypeDescList;

// Media descriptors
typedef t_TypeDesc t_MediaDesc;
typedef t_TypeDescList t_MediaDescList;

#endif // _MEDIA_IDL_

15.21naming.idl
#ifndef _NAMING_IDL_
#define _NAMING_IDL_

//
// IDL type definitions for TINA naming conventions
//

//
// TINA name is a sequence of strings, each having format
// "attribute=value". Both the attribute names, and value
// semantics have to be documented for each named object when such
// object is defined.
//
// NOTE: Possible typedefs for various object name types must be
// done where the object is specified, NOT HERE!
//

typedef sequence<string> t_TinaName;
typedef string t_TinaNameAttribute;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 189

typedef string t_TinaNameValue;

#endif // _NAMING_IDL_

15.22nfep.idl
#ifndef _NFEP_IDL_
#define _NFEP_IDL_

//
// Created by Frank Steegmans (1997)
// History:
// 97/08/08 initial contribution by Frank Steegmans
//

#include "attribute.idl" // t_AttribList

// The datastructures defined in this file are compliant with the NRA v3.0 and NRIM v2.1
// Minor additions have been done for passing the information in operations.
// Context:
// NFEP = Network Flow End Point (end point of a Network Flow Connection (NFC))
// An ANfep is the abstract superclass from which both the NfepPool and the
// plain NFEP are derived.
// The NFEP represents a specific Termination Point in a specific Layer Network.
// This is either a TP or TPpool. LNW specific details may be passed in the
// attribute list and will only be interpreted by the LNC level.
// However the t_LNType has to be specified and be different from ’NotDefined’.
// The NFEP pool is a collection of NFEPs and NFEP pools. The t_LNType may be
// specified if all contained NFEPs and NFEP pools are of the same t_LNType.
// (This is for processing optimizations.)

module m_NFEP {

typedef t_TinaName t_NfepName;

typedef string t_LNType;

// Folowing list of predefined LN types is not exhaustive and may be expanded
// in the future. This is the main reason for using a string as identifier
// and not an enum. The reason why a string and not an ordenary number is
// that it allows a bigger name space to be used.
// Therefore, following constants should be moved to some
// implementation specific file.

const t_LNType ND_LNType="NotDefined";
// NFEP pool containing NFEPs refering to different LNWs

const t_LNType IP_LNType="IP";
const t_LNType ATM_VC_LNType="ATM_VC";
const t_LNType ATM_VP_LNType="ATM_VP";

enum t_ANfepType {
NFEPPool, NFEP

};

enum t_NfepDir {

190 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

receiveNfep,
transmitNfep,
receiveAndTransmitCapabilty

};

// The following structure represent the nfep datastructures.
// It contains the attributes for the two derived classes because it is not
// possible to do any forward declarations in IDL except in a ’struct’.
// Otherwise the structure would have looked like the one defined in the
// comments below the actual structure.
// The attribute list of a nfep will contain more information related to
// the TP the nfep represents and is therefore layer network dependent.
// E.g. required Traffic and QoS parameters for the selected codecs.
// Hence, the symantics have to be specified in layer network dependent
// idls.
// Representing an ANfep as just an attribute list has not been done
// because it also requires that the syntax is specified somewhere else.

struct t_ANfep {
t_NfepName name;
t_LNType lnType;
t_ANfepType nfepType;

// Following two attributes are only valid if the nfepType is NFEP
t_NfepDir dir;
t_AttribList attributes;

// Following attribute is only valid if the nfepType is NFEPPool
#ifndef hidl

sequence<t_ANfep> pool;
#endif
};

/***

Following structure would be a better representation of the inheritance
relationship but it is not compliant with the IDL grammar.

struct t_Nfep {
t_NfepDir dir; // Nfep directionality
t_AttribList attributes; // Nfep attributes

};

struct t_ANfep {
t_NfepName name;
t_LNType lnType;
union t_NfepSpecialization

switch (t_NfepSubClass) {
case Pool: sequence<t_ANfep> pool;
case Plain: t_Nfep nfep;

} nfepSpec;
};

***/

typedef sequence<t_ANfep> t_ANfepList;

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 191

typedef sequence<t_NfepName> t_NfepNameList;

}; // m_NFEP

#endif // _NFEP_IDL_

15.23sfep.idl
#ifndef _SFEP_IDL_
#define _SFEP_IDL_

#include "naming.idl"

//
// Stream Flow End Point type definitions
//

//
// At the moment only naming of SFEPs is included here (nothing else
// is required by the TCSM).
//

typedef t_TinaName t_SFEPName;
typedef sequence<t_SFEPName> t_SFEPNameList;

#endif // _SFEP_IDL_

15.24sfepcoms.idl

#ifndef _SFEP_COMS_IDL_
#define _SFEP_COMS_IDL_

// FILE:
// sfepcoms.idl
// DESCRIPTION:
// SFEP Communication Session Descriptor
// Gives the SFEP description structure used by the communication
// session. This structure is included in the service session
// descriptor.
// AUTHOR:
// Stephanie Hogg
// CREATION DATE:
// 18/08/97
// UPDATES:
// 19/08/97 by Frank Steegmans
// Removed dependency to TINACommonTypes.idl (too much overhead)
// 05/12/97 by Takeo Hamada
//

// #include "TINACommonTypes.idl"
#include "sfep.idl"
#include "States.idl"
#include "media.idl"

192 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

enum t_SFlowDirection { SFlowSink, SFlowSource };
// It might make sense to replace ’SFlow’in this definition
// with ’Sfep’.

// typedef TINACommonTypes::t_Interface t_Interface;
typedef m_STATE::t_AdministrativeState t_AdministrativeState;
typedef /*CORBA::*/Object t_Interface;

struct t_SFEPComDesc {
t_SFEPName name; // Unique SFEP id for terminal/local domain
t_SFlowDirection dir; // sink, source, etc.
t_AdministrativeState adState; // Current state: active/inactive
t_MediaDesc media; // High level typing, qos parameters
t_Interface ifRef; // Associated TCSM interface ref (cast to tfcontrol)
//i_TerminalFlowControl ifRef; // Associated TCSM interface

};
typedef sequence<t_SFEPComDesc> t_SFEPComDescList;

#endif // _SFEP_COMS_IDL_

15.25tcsm.idl
#ifndef _TCSM_IDL_
#define _TCSM_IDL_

//
// IDL interface specifications for the TCSM component
//
// Created by Jarno Rajahalme
// Updates:
// 97/08/06 by Frank Steegmans
// Changes to get the file compiled
// 97/08/08 by Frank Steegmans
// Complete part with respect to NFEPs
// 97/08/20 by Frank Steegmans
// Updated to support multiple SFC to multiple NFC mapping
//
//
// REMARK:
// This version is not compiled yet.
// Detailed exceptions have to be worked out.

#include "exceptions.idl"
#include "media.idl"
#include "sfep.idl"
#include "capability.idl"
#include "naming.idl"
#include "nfep.idl"
#include "ComSCommonDefs.idl"
#include "CLNCommonDefs.idl"

module m_RetComS {

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 193

interface i_RetComSCommonDefs : i_ComSCommonDefs {

// Data structure used at Ret-RP ComS to exchange the SFEP related info
struct t_SFEPDesc {
t_SFEPName name;
t_MediaDesc media;
t_SFCName sfc;

};

typedef sequence<t_SFEPDesc> t_SFEPDescList;

// Data structure that describes the capability set of a SFEP with
// a particular mediaQoS within a terminal.
// The sfc is used as a crossreference across the communication
// session for capability matching.
struct t_SFCCapabilityMapping {
t_SFCName sfc;
t_CapabilitySet capabilitySet;

};

// If more than one SFEP in a terminal is hooked up to the same SFC
// this following list will of course contain more than one mapping
// related to one SFC. This will not be a problem since the SFEP
// instance as such is not important in the matching of capabilities
// related to one SFC.
typedef sequence<t_SFCCapabilityMapping> t_SFCCapabilityMapList;

// t_NFCUsage indicates the purpose of the NFC in the sfc to nfc mapping.
// The terminal that requests the creation of nfc has to fill out the
// purpose if there is more than one nfc involved in the mapping.
// The purpose string has to be recognizable by the other terminals
// so that they can add the appropriate nfeps.
struct t_NFCUsage {
t_NetworkFlowConnectionName nfcName; // Naming might be aligned.
string purpose;

};
typedef sequence<t_NFCUsage> t_NFCUsageList;

struct t_SfcNfcMapping {
t_SFCNameList sfcList;
t_NFCUsageList nfcList;

};
typedef sequence<t_SfcNfcMapping> t_SfcNfcMappingList;

struct t_NFCInfo
{
t_NetworkFlowConnectionName nfcName;
t_ConnTopology topology;
t_ReliabilityClass relClass;

// t_RoutingConstraint routeConstraint;
};
typedef sequence<t_NFCInfo> t_NFCInfoList;

#ifdef debug

194 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

enum t_NfepUse {Root, Leaf};
#endif

// The tfcBranchRef is assigned by the terminal and will be used
// to associate the finally selected nfep with the tfc branch.
// As such it replaces the correlationId, which is not adequate
// in the current situation were multiple sfcs may be mapped to
// multiple nfcs
struct t_NFCBranch
{

t_NetworkFlowConnectionName nfcName;
m_NFEP::t_ANfep nfepDescription;
t_NfepUse use;
t_TinaName tfcBranchRef;

};
typedef sequence <t_NFCBranch> t_NFCBranchList;

// t_NetworkRequirements
// The terminals will add their network requirements to this
// structure. It is up to the CSM to pass or drop information
// from these requirements from one terminal to the other.
// Either way, the CSM has to compile the returned requirements so
// that it can do the appropriate calls to the connectivity
// providers.
// The CSM has to figure the deletion of NFCs out by relating
// the deletion of branches.
struct t_NetworkRequirements {

t_NFCInfoList existingNfcs;
t_NFCInfoList createNewNfcs;
t_NFCBranchList addNfcBranches;
t_NFCBranchList deleteNfcBranches;
t_NFCBranchList modifyNfcBranches;

};

typedef sequence <t_SFEPNameList> t_SuccSfepList;

enum t_SfepFailureCode {SfepUnknown,
SfepLocked,
SfepActive,
SfepInactive,
QoSCanNotBeSupported};

// These failure codes should be reviewed.

struct t_FailedSfep
{

t_SFEPName sfep;
t_SfepFailureCode code;

};
typedef sequence <t_FailedSfep> t_FailedSfepList;

}; // interface i_RetComSCommonDefs

interface i_TerminalComSControl : i_RetComSCommonDefs
{

// The selectCapabilities operation is used to add additional
// SFEPs to the session or to modify the mediumQoS.

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 195

void selectCapabilities
(in t_SuccessCriterion criterion,
in t_SFEPDescList sfeps,
inout t_CapabilityList capabilitySetList,
inout t_SfcNfcMappingList sfcNfcMappinglist,
inout t_NetworkRequirements networkRequirements)
raises(e_Error, e_ServerError);

// The releaseSFEPs operation disconnects the SFEPs from the
// TFC and will indicate the changes to the network part.
// The TFC will be deleted when the last associated SFEP is
// released.
void releaseSFEPs

(in t_SuccessCriterion criterion,
in t_SFEPNameList sfeps,
inout t_NetworkRequirements networkRequirements,
out t_SuccSfepList succList,
out t_FailedSfepList failList)
raises(e_Error, e_ServerError);

void ActivateSFEPs
(in t_SuccessCriterion criterion,
in t_SFEPNameList sfeps,
out t_SuccSfepList succList,
out t_FailedSfepList failList)
raises(e_Error, e_ServerError);

void DeactivateSFEPs
(in t_SuccessCriterion criterion,
in t_SFEPNameList sfeps,
out t_SuccSfepList succList,
out t_FailedSfepList failList)
raises(e_Error, e_ServerError);

void ActivateTerminalCommunicationSession
(in t_SuccessCriterion criterion,
out t_SuccSfepList succList,
out t_FailedSfepList failList)
raises(e_Error, e_ServerError);

void DeactivateTerminalCommunicationSession
(in t_SuccessCriterion criterion,
out t_SuccSfepList succList,
out t_FailedSfepList failList)
raises(e_Error, e_ServerError);

}; // interface i_TerminalComSControl

interface i_TerminalComSSetup : i_RetComSCommonDefs
{

// The queryCapabilities operation returnes a list of capability
// sets related to a certain SFEP with a particular mediaQoS.
// However this relationship is expressed in terms of the SFC.
void queryCapabilities (in t_SFEPDescList sfeps,

out t_CapabilityList capabilities)

196 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

raises (e_Error, e_ServerError);

// The setupTerminalCommunicationSession creates a terminal
// communication session and creates the related TFC based on
// the sfep description list and the combined list of capabilities
// comming from all terminals.
// It modifies the combined list of capabilities based on the
// local mapping. This means that capabilities related to a SFC not
// terminated in this terminal will not be changed. The capabilities
// related to a terminated SFC will be reduced to reflect the
// local selection. (e.g. all capability sets related to one SFC
// are replaced by one set per mediaQoS). This modified used list
// will be used for setting up the TFCs (session) in other terminals.
// The CSM will create the first input list by combining the results
// of the query operation.
// Furthermore, the operation modifies the network
// requirements list and returns a reference to the control interface
// of the session.
void setupTerminalCommunicationSession
(in t_SuccessCriterion criterion,
in t_SFEPDescList sfeps,
inout t_CapabilityList capabilitySetList,
inout t_SfcNfcMappingList sfcNfcMappinglist,
inout t_NetworkRequirements networkRequirements,
out i_TerminalComSControl tcsmControlIf)

raises(e_Error, e_ServerError);

}; // interface i_TerminalComSSetup

}; // module m_RetComS

//
// Following module can be removed for the Ret specs
//

module m_TcsmTermInt { // Terminal internal interfaces of the tcsm

interface i_TlaTcsm {

// This operation is used to announce the resolved NFEP to the tcsm.
// This will complete the (part of the) network part of the TFC.
// It still needs to be activated with activateTFC().
void associateNFEP (in t_TinaName tfcBranchRef,

in m_NFEP::t_ANfep nfep)
raises(e_Error, e_ServerError);

// Following operation is used to release an associated NFEP from
// the TFC. Hence, the related TFC branch will become not operational.
void releaseNFEP (in t_TinaName tfcBranchRef)
raises(e_Error, e_ServerError);

}; // i_TlaTcsm

}; // module m_TcsmTermInt

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 197

#endif // _TCSM_IDL_

15.26tla.idl
// The file Tla.idl contains the idl specification of the TLA.
// The module Ifs_TLA contain the specifications of the interfaces that
// constitute the CNS_TLA CO

#ifndef _TLA_IDL
#define _TLA_IDL

// Updates:
// 97/11/06 by Hyun C. Kim

#include <RACommon.idl>
#include <naming.idl>
#include <States.idl>

module m_TLA
{

enum CorrelationErrorType { corrIdIsAlreadyUsed,
corrIdIsNoValid,
NFEPisNotCorrelated

};

enum TTPErrorType {InsufficientResources,
InsufficientBandwidth,
QoSCannotBeMet,
NonExistentEndPoint,
EndPointAlreadyInUse,
EndPointAlreadyInActive,
EndPointNotActive,
ResourceError };

enum tlaErrorType { SWError,
HWError,
ApplicationError,
MemoryFailure,
SocketFailure,
UAPisNotResponding,
TCSMisNotResponding,
TLAisNotResponding,
NullReference,
DeviceNotSupported,
ResourceNotAvailable };

enum IllegalOperationType {OperationalStateError,
UsageStateError,
ResolutionStateError };

exception IllegalOperation {
IllegalOperationType error;

};

198 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

exception nfepError {
tlaErrorType error;

};

exception CorrelationError
{

CorrelationErrorType errorType;
};

exception TTPError
{

TTPErrorType errorType;
};

/*
* Data structures
*/

struct t_CorrelationRelation
{
t_CorrelationId correlation;
long nfepIndex;

};

typedef sequence<t_CorrelationRelation> t_CorrelationTable;
typedef long t_CnsElementId;

//
//
// Interface I_tcontlaNfepControl
//
// required interfaces:
// supported operations: NfepModifyTtpDescr
// NfepModifyTtpName
// NfepModifyTtpQos
//
// provided to: LNC
//
//

interface I_tcontlaNfepControl
{

enum t_NegotiationErrors { QoS, EpRef, Both };

typedef string t_QoSErrorType;

typedef string t_EpRefErrorType;

struct t_QosEprefType {
t_QoSErrorType QoSError;
t_EpRefErrorType EpRefError;

};

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 199

union t_NfepNegotiationErrorType switch(t_NegotiationErrors)
{

case QoS: t_QoSErrorType QoSError;
case EpRef: t_EpRefErrorType EpRefError;
case Both: t_QosEprefType QoSEpRefError;

};

exception t_NfepNegotiationError
{

t_NfepNegotiationErrorType errorType;
};

// void NfepModifyTtpName (in t_CorrelationId correlId,
// inout UserTpName tpName)
// raises(nfepError, CorrelationError, TTPError,
// t_NfepNegotiationError,
// IllegalOperation);

void activate_nfep (in t_CorrelationId corrid)
raises(nfepError, CorrelationError);

void deactivate_nfep (in t_CnsElementId nfepId)
raises(nfepError, CorrelationError);

void modify_nfep_qos (in t_CorrelationId corrId,
in ConnectionDescription nfepQos)

raises(nfepError, CorrelationError, IllegalOperation);

};

//
//
// Interface I_tlaNfepSetup
//
// required interfaces:
// supported operations: SetupNfep
// ReleaseNfep
// NfepEnableOperation
// NfepDisableOperations
//
// provided to: TCSM
//
//

interface I_tlaNfepSetup
{

typedef string t_MediaType;

void setup_nfep (
in t_CorrelationId corrId,

200 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

in t_MediaType mt,
in Direction ndir,
in ConnectionDescription nfepQos,
out t_NetworkAddress netAdrs)

raises(nfepError, CorrelationError);

void release_nfep (in t_CorrelationId corrId)
raises(nfepError, CorrelationError);

};

interface I_tcontlaConfQuery
{

void get_nfep_pools (out t_NFEPpools nfeps)
raises(nfepError);

};

interface I_tcontlaNotification
{

oneway void NfepStatusChange (in t_CorrelationId correllId,
in t_NFEPStatusType newStatus);

};

};

//
//
// INTERFACE: CNS_TLA
//
// BEHAVIOR: This interface models the "TLA" Computational Object.
// It inherits all the interfaces declared in the "TLA" module
//
// OPERATIONS:
// All included in the "Ifs_TLA::I_tcontlaNfepControl" interface.
// All included in the "Ifs_TLA::I_tlaNfepSetup" interface.
// All included in the "Ifs_TLA::I_tcontlaConfQuery" interface.
// All included in the "Ifs_TLA::I_tcontlaNotification" interface.
//
//

//interface CNS_TLA : Ifs_TLA::I_tcontlaNfepControl,
// Ifs_TLA::I_tlaNfepSetup,
// Ifs_TLA::I_tcontlaConfQuery,
// Ifs_TLA::I_tcontlaNotification
//{};

#endif

Network Component Specifications v 2.2 Public Document Dec. 20, 1997
NCS v2.2_97_12_20 Annex: IDL-specs

Public Document 201

202 Public Document

Dec. 20, 1997 Network Components Specification Version 2.2 Public Document
Annex: IDL-specs NCS v2.2_97_12_20

