
Telecommunications

Networking

Information

Architecture

Consortium Issue Status: Publicly Released

Version: 2.3

TINA Object Definition Language Manual

Date of Issue: 22 Julyr 1996

TINA-C Deliverable

This document has been produced by the Telecommunications Information Networking
Architecture Consortium (TINA-C) and the copyright belongs to members of TINA-C.

 IT IS A DRAFT AND IS SUBJECT TO CHANGE.

The pages stated below contain confidential information of the named company who can
be contacted as stated concerning the confidential status of that information.

The document is being made available on the condition that the recipient will not make any
claim against any member of TINA-C alleging that member is liable for any result caused
by use of the information in the document, or caused by any change to the information in
the document, irrespective of whether such result is a claim of infringement of any intellec-
tual property right or is caused by errors in the information.

No license is granted, or is obliged to be granted, by any member of TINA-C under any of
their intellectual property rights for any use that may be made of the information in the doc-
ument.

Table 1:

Page Company
Company Contact

(Address, Telephone, Fax)

PROPRIETARY - TINA Consortium Members ONLY
This document contains proprietary information that shall be distributed or routed only within TINA Consortium Member

Companies, except with written permission of the Chairperson of the Consortium Management Committee

Telecommunications

Networking

Information

Architecture

Consortium

Version: 2.3

Abstract: This document presents the TINA Object Definition Language (ODL).
ODL is a language used to specify applications in the computational
viewpoint of TINA. It is a superset of OMG IDL. ODL enables the
specification of computational objects comprising operational and
stream interfaces, as well as the specification of agregations of com-
putational objects into object groups. Additional features of the lan-
guage include inheritance, quality of service specification and
interface trading support.

Date of Issue: July 22 1996

TINA-C Stream Deliverable

Editor: A. Parhar

Stream: DPE

Workplan Task: MTO1.2, 189.1, 190.1, 190.2,194.1, 198.1, 199

File Location: /u/tinac/96/dpe/viewable/odl_manual_v2.3.ps

Archiving Label: TR_NM.002_2.2_96

Issue Status: Stream Draft

TINA Object Definition Language
MANUAL

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - iii -

Extended Abstract

This document specifies the syntax of the TINA Object Definition Language (ODL). ODL is
used for the specification of TINA systems from the perspective of the TINA computational
viewpoint. It defines templates for operational interfaces, stream interfaces, multiple-inter-
face objects, and object groups. Version 2.3 of ODL, as presented in this document, is
sometimes referred to as ODL capability set 2, and supersedes version 1.3, which is also
referred to as ODL capability set 1.

ODL is an extension of the Object Management Group’s (OMG) Interface Definition Lan-
guage (IDL), with additions to support the specification of TINA architectural components.
ODL is intended to be a superset of OMG-IDL. This relationship between ODL and OMG-
IDL supports the construction of TINA systems over OMG specified Object Request Broker
(ORB) implementations.

This document should be read and used by those who deal with TINA computational spec-
ifications. This will include designers of TINA based software systems and the designers of
supporting CASE tools. The rules and definitions comprising ODL should be followed to
achieve TINA compliant computational specifications. Similarly, the rules and definitions of
ODL can be embodied in CASE tools supporting software development based on such
specifications.

The readers of this document are expected to be familiar with the TINA computational mod-
elling concepts [5], including object grouping concepts [23]. Familiarity with OMG-IDL [37]
would be helpful.

PROPRIETARY - TINA Consortium Members ONLY

 - iv -

TINA Object Definition Language MANUAL

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - v -

Changes from Last Version

Major Changes Made from Previous Version

ODL version 2.1 is defined in this document. It has evolved over time, and is founded upon
concepts outlined in previous versions of the document.

Version History

Version1.0 Initial Draft

Version 1.1 Released within the DPE stream for comment, and to some member compa-
nies for initial comment.

Version 1.2 Contained many grammatical and other corrections to Version 1.1. Most
changes between Version 1.1 and Version 1.2 were minor, although some
sections were expanded for clarification. These changes were based on in-
ternal stream reviews.

This version was released for wide review amongst member companies and
the core team.

Version 1.3 Contains changes made as a result of Core Team and member company re-
view.

Updated to conform to new TINA-C Core Team document format.

Restructured to more clearly define Capability Sets for ODL. Versions 1.x re-
ferring to Capability set 1, 2.x to Capability Set 2, and so forth

Changed the syntax for initialization of objects and removed the syntax for
usage specification at the object level.

Removed all syntax dependent on transactions from CS-1. Transaction sup-
port moved to future work.

Changed syntax for Quality of Service attributes in interfaces to apply more
explicitly to operations or flows in the interface.

Changed syntax for Quality of Service constraints in object templates.

Included description of stream interface syntax, and updated section on in-
heritance.

Version 2.0 Initial Draft of Capability Set 2, ODL specification.

Allows object inheritance, grouping and specification of interface attributes.

PROPRIETARY - TINA Consortium Members ONLY

 - vi -

TINA Object Definition Language MANUAL

Version 2.1 Revised version of Capability Set 2

ODL syntax reorganized. Mainly limited to refinement of additions in Version
2.0.

Document structure changed. Original structure presented, and related,
concepts as interfaces and objects to which is added inheritance, object
groups, and additional features. The new structure presents, and relates, in-
terfaces, objects and object groups, to which is added inheritance, quality of
service and other features.

These two changes are driven by the increasing size of ODL syntax, and a
need to better document the semantics associated with the syntax.

Version 2.2 Capability Set 2 revised to take into consideration stream review comments.
The major changes are as follows:

• quality of service for interfaces, objects and groups removed;

• reference made to quality of service architecture previously specified
in TINA-C;

• inheritance rules made more coherent and comprehensive;

• syntactic order of specifications changed to simplify the construction
of parsers, required interfaces of objects made part of object behav-
ior; behavior for interfaces, objects and groups given structure;

• future work section expanded to include major unresolved issues.

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - vii -

PROPRIETARY - TINA Consortium Members ONLY

 - viii -

TINA Object Definition Language MANUAL

Table of Contents

1. Introduction . 1
1.1 Document organization . 1
1.2 Main Inputs . 2

2. Scope and Structure of ODL . 3
2.1 TINA and ODL . 3
2.2 Objectives . 3
2.3 Overall structure of TINA ODL. . 5

3. Foundations of ODL . 9
3.1 Definitions and Conventions. . 9

3.1.1 Definitions. . 9
3.1.2 Graphical Conventions . 9

3.2 Naming and Scoping . 11
3.3 Interface, Object and Object Group Separation and Sharing 14

3.3.1 Motivation and Overview of Separation. 14
3.3.2 Sharing of Component Declarations 15
3.3.3 Naming and Scoping with respect to Sharing/Separation 22

3.4 Initialization and Configuration . 24
3.5 Behavior . 26
3.6 Quality of Service . 27
3.7 Inheritance. . 29

3.7.1 Introduction and Motivation . 29
3.7.2 Definitions. . 30
3.7.3 Inheritance in Component Declarations 31
3.7.4 Naming and Scoping with respect to Inheritance 38

3.8 Trading . 39
4. Syntax of ODL . 41

4.1 Type and Constant Declaration . 41
4.1.1 Structure . 41

4.2 Interface Template. . 42
4.2.1 Structure . 42
4.2.2 Interface Behavior Specification 43
4.2.3 Trading Attributes . 44
4.2.4 Operational interface signature . 45
4.2.5 Stream (Flow) Signature . 47
4.2.6 Interface Inheritance . 49

4.3 Object Template . 50
4.3.1 Structure . 50
4.3.2 Object Behavior Specification . 52
4.3.3 Supported Interfaces . 52
4.3.4 Object Initialization Specification 53
4.3.5 Object Inheritance . 54

4.4 Object Group template . 56
4.4.1 Structure . 56
4.4.2 Object Group Behavior and Initialization Specification 57
4.4.3 Contracts . 58
4.4.4 Component Objects and Groups 59
4.4.5 Object Group Inheritance . 61

5. How to use ODL . 63
5.1 ODL Tool . 63

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - ix -

6. Acknowledgments . 67
7. Appendix A. BNF description of ODL . 69

A.1 ODL Lexical Conventions . 69
A.2 ODL Keywords . 69
A.2 ODL extended BNF Notation . 69
A.4 ODL Syntax . 70

A.4.1 Top Level Syntax . 70
A.4.2 Module Syntax . 70
A.4.3 Group Syntax . 70
A.4.4 Object Syntax . 71
A.4.5 Interface Syntax . 71
A.4.6 (Operational) Interface Syntax . 72
A.4.7 (Stream) Interface Syntax . 73
A.4.8 Supporting Definition Syntax . 73

8. Appendix B. Further ODL development . 77
B.1 Transactions . 77

B.1.1 ODL syntax for Operational Interface Signature 77
B.1.2 Example of Operational Interface Signature 77

B.2 Contract Template supplement to Object Group Template 77
B.3 Naming . 78
B.4 Multiplicity of Interfaces on Objects, and Objects in Groups 79
B5 Synchronization of Flows . 79
B.6 Security . 79
B.7 Instance Interaction Documentation/Diagrams. 80

B.7.1 Proposed Instance Interaction Documentation Conventions 80
B.8 Operations/Flows Common to Multiple Interfaces 81

9. Appendix C. Comparison: ODL and OMG-IDL 83
C.1 ODL Objective vs. OMG-IDL Objective 83
C.2 TINA Object Model vs. OMG Object Model 83
C.3 ODL Syntax vs. OMG-IDL Syntax . 83

C.3.1 General Syntax . 83
C.3.2 Interface Syntax . 84
C.3.3 Operation Syntax . 84

References . 85
Acronyms . 89

PROPRIETARY - TINA Consortium Members ONLY

 - x -

TINA Object Definition Language MANUAL

TINA Object Definition Language MANUAL Introduction

PROPRIETARY - TINA Consortium Members ONLY
 1 - 1

1. Introduction

TINA Object Definition Language (ODL) has been developed in the TINA Core Team to:

• Document TINA computational specifications. For example, a TINA entity, such
as a User Agent, can be described from the computational viewpoint using an
ODL specification.

• Provide syntax suitable for developing software engineering support applica-
tions such as ODL parsers, computational specification editors and related
CASE tools.

ODL is an extension of the Object Management Group’s Interface Definition Language
(OMG-IDL) [37]. ODL supports features that are not (currently) covered by OMG-IDL.
These stem from the TINA computational architecture and include multiple interface ob-
jects, stream interfaces and Quality of Service (QoS) descriptions. A comparison of ODL
and OMG-IDL can be found in Appendix C.

ODL has evolved over time. The Core Team developed information and computational
specifications for TINA Services in 1994. An early version of ODL [6] was used for the com-
putational specification of (the components of) these services [18] [19]. Analysis of how
ODL was used in this endeavour, resulted in its revision, ODL v1.3. It was anticipated that
ODL would continue to develop. The notion of Capability sets were introduced to distinguish
significant changes to the language from incremental changes. For example, versions of
ODL prior to, and including, v1.3 are known as Capability Set 1, or CS1. The expressive
power of ODL has increased considerably since CS1. This document presents the most re-
cent version of ODL, v2.3, which along with the other 2.x versions of ODL, is also known as
Capability Set 2.

It should be noted that this document is intended to be a manual for ODL. It provides a syn-
tactic description of the language using BNF (see Appendix A for a description of the nota-
tion). The architecture that provides the semantics of the language is mostly presented in
additional TINA-C documents. As a starting point, “TINA Computational Modelling Con-
cepts” [5] and “Object Grouping and Configuration Management” [23] are seen as founda-
tional sources of this semantic information. Other relevant TINA-C architectural documents
are introduced in the course of this work.

1.1 Document organization

Section 2 (Scope and Structure of ODL) presents the rationale for the creation and use of
a language such as ODL.

Section 3 (Foundations of ODL) describes the overall structure of ODL and related it to the
semantic basis of the syntax. Syntax is introduced in illustrative examples.

Section 4 (Syntax of ODL) describes the syntax of ODL, giving examples and providing
brief explanations of the use of the language.

Section 5 (How to use ODL) describes the way ODL specifications are used for TINA ap-
plication development.

PROPRIETARY - TINA Consortium Members ONLY

1 - 2

Introduction TINA Object Definition Language MANUAL

Appendix A (BNF description of ODL) presents the complete syntactic rules for ODL using
the BNF notation.

Appendix B (Further ODL development) presents material relevant to possible future ver-
sions of ODL. This material is under study but not mature enough to incorporate in this ver-
sion of ODL.

Appendix C (Comparison: ODL and OMG-IDL) presents a comparison between ODL and
OMG-IDL.

1.2 Main Inputs

Early versions of the TINA baseline document “Computational Modelling Concepts” [6]1

provided the initial definition of the language and the context for its mapping to engineering
specifications. The 1994 TINA report “Mapping of TINA-C ODL to OMG-IDL” [3] provides
useful suggestions for improvement of the language based on the feedback gained from
the development of a translator from ODL to OMG-IDL. A report from the PLATyPus Auxil-
iary Project, “Programming tools for the PLATyPus experiment” [28], and an associated pa-
per “PLATyTools and ODL” [29], also provided suggestions for improving ODL. Most of the
suggestions from these documents have been incorporated in version 1.3 of this document.

A number of the concepts outlined in four Engineering Notes have also been incorporated
into this document. The first Engineering Note, “What to do with ODL?” [10], provides an
analysis of the usability of ODL and proposes some improvements. The second, “ODL In-
heritance Rules” [11], proposes new inheritance and name scoping rules for ODL. A third
engineering note, “ODL Syntax for Streams -- a description of the options” [12] introduces
stream interfaces to specify continuous bit rate data (flows), and describes some possible
syntaxes for flow types and the use of stream interface templates. The fourth Engineering
Note, “Object Grouping and Configuration Management” [23] defines a syntax for object
grouping which was adapted for inclusion into this document.

1. There are latter versions of this document [5] [27].

TINA Object Definition Language MANUAL Scope and Structure of ODL

PROPRIETARY - TINA Consortium Members ONLY
 2 - 3

2. Scope and Structure of ODL

The first and second parts of this section present the motivation and scope of ODL. The
third part introduces the structure of ODL syntax, and relates it to the underlying semantics.

2.1 TINA and ODL

The initial motivation for developing ODL was to enable the computational specification of
ubiquitous TINA architectural concepts: interfaces, objects, and object groups. Specifica-
tions of these individual concepts are combined to form the (computational) specification of
TINA systems. When enterprise, information, engineering and other specifications are add-
ed, the initial steps in the TINA software development process are underway.

This document primarily deals with the syntax of ODL. The architectural concepts and prin-
ciples underlying ODL are documented separately. These architectures provide semantics
for the ODL syntax. For example, the syntactic specification of (multi-interface) objects are
documented here, while the semantics underlying the syntax is documented in “Computa-
tional Modelling Concepts” [5].

A number of existing syntaxes are capable of supporting aspects of TINA computational
specifications. Examples include ANSA-IDL, DCE-IDL and OMG-IDL. Among them, OMG-
IDL was chosen as the most appropriate base for extension within TINA-C. A significant
factor in its adoption was that it complies with the object-oriented foundation of the TINA-C
architecture. OMG-IDL also enjoys a rapid growth in industry acceptance. Consequently,
ODL is based on OMG-IDL, with the intention that ODL be a superset of OMG-IDL.

The reader should note that OMG-IDL and other IDL languages do not fully support the con-
cepts defined in the TINA computational model. For instance, the concepts of groups,
stream interfaces, and service attributes are not supported by existing IDLs. ODL extends
OMG-IDL, providing support for these concepts.

The reader should also note that ODL is primarily a means of specifying types. Conse-
quently, this document mainly deals with types. Occasionally, instances are referred to. The
reader should be aware of the distinction, and take care to interpret descriptions as referring
to types or instances as context dictates.

2.2 Objectives

The design goals for ODL center upon three objectives. These are to provide a language
for:

1. Application specification and specification re-use (at development time).

When developing computational specifications, an application developer needs to
be able to describe a TINA application in terms of computational modelling
concepts, such as object groups, computational objects, operational and stream
interfaces, and data types. In addition, development effort can be reduced if
existing computational specifications of TINA applications can be reused in the
specification of new applications.

PROPRIETARY - TINA Consortium Members ONLY

2 - 4

Scope and Structure of ODL TINA Object Definition Language MANUAL

2. CASE tool development.

Application specification, and the application development process, can benefit
from the kind of automation typically offered by CASE tools. In order to begin
constructing such CASE tools, the language of specification needs to be available
and supportive.

3. The type specification of application components, as needed at run time.

In order to support dynamic binding to interfaces, and dynamic configuration
management of systems, a language is useful for describing the entities involved,
and for performing type checking functions. The availability of a language to
describe operational and stream interface types aids in the definition of
compatibility for interfaces. For example, when binding to a remote interface,
knowledge of its type is useful. Supervisory and control systems for distributed
applications are also aided by the availability of type (and implementation)
repositories.

ODL is required to support these three categories of requirements.

The following are not objectives of ODL development, and are characterized as non-goals:

1. To provide a language for describing the complete specification of a TINA system.

It is not the objective of ODL to provide support for the complete specification of
computational entities. For example, constraints specified from the TINA
Enterprise and Information Viewpoints are not intended to be completely
represented in ODL. An ODL specification may be augmented using additional
formalisms. For example, no formalisms are presented for the detailed behavior
specification of a computational object. Formalisms like message sequence
diagrams (also known as object interaction diagrams), SDL-92, or LOTOS, can be
used to augment ODL for this purpose.

2. To define a programming language for object implementation.

ODL is primarily a specification language. When developing programs from ODL,
the facilities of existing programming languages, such as C++ and Smalltalk, are
required. This is clearly seen when we consider the abstraction facilities
supported by ODL (see Section 3). Data abstraction is supported by the rules that
support data types. This allows simple data types to be combined into complex
data types. However, procedural abstraction is not supported in ODL1. Simple
procedures cannot be combined into complex procedures. Operational interfaces
only allow a procedure’s signature to be stated, not its composition. The
procedural abstraction mechanism of a programming language needs to be
added to ODL when developing applications.

3. To prescribe a language for describing TINA Engineering Modelling Concepts.

ODL is designed to describe computational specifications, and it is not primarily
intended to support engineering modelling concepts.2 However, it may be used for
this purpose if a mapping between Computational and Engineering viewpoints is

1. It should be noted that syntax for flow abstraction is not present in ODL either.

2. Although it must be noted that some concepts supported by ODL (such as the “object execution model”
which indicates that objects interact by sending and receiving messages or are connected by
continuous bitstream pipes) have closely related computational and engineering modelling aspects.

TINA Object Definition Language MANUAL Scope and Structure of ODL

PROPRIETARY - TINA Consortium Members ONLY
 2 - 5

documented. Such a mapping is undertaken, either implicitly or explicitly, within
any system development process.

2.3 Overall structure of TINA ODL

ODL (syntax) is composed of five major parts: data types and constants, stream interface
templates, operational interface templates, object templates, and object group templates.
These, and their inter-relations are shown in Figure 2-1. The most fundamental part of ODL
supports data type and constant definitions. These definitions can be made at any point in
ODL specifications as long as names are defined before use. Operational interface tem-
plates are used to specify procedures in ODL (as interface templates do in OMG IDL).
Stream interface templates are introduced to specify continuous-bit-rate data (flows). Ob-
ject templates represent the basic unit of distribution in ODL; namely object instances. They
incorporate stream and operational interface templates. Object group templates enable ag-
gregation of object templates to increase the conceptual level at which programs can be
designed and increase the modularity of designs.

Figure 2-1. Overview of the semantic basis of ODL syntax. Note that ODL is intended to
be used by CASE tools, and all ODL types are intended to be units of
compilation.

The semantics that underlies ODL syntax is documented in a number of places. Under-
standing these relationships is the key to understanding the structure of ODL and its future
evolution. Data type and constant syntax is directly based upon OMG-IDL [37], hence takes
on its semantic associations.

Data Types and Constants

Stream Interface Template Operational Interface Template

Object Template

Object Group Template

Can appear

Data

Flows,
procedures and
software

Finest unit of
software distribution

Higher
level software
distribution and

within the
structure of

modularity

and modularity

Module

Name space
mgmt only; not
unit of software

modularity

distribution

PROPRIETARY - TINA Consortium Members ONLY

2 - 6

Scope and Structure of ODL TINA Object Definition Language MANUAL

The semantic basis of the four templates (stream interface, operational interface, object
and object group) is more diverse and can be seen to have 2 forms of origin. The first form
of semantic basis is related to the intrinsic (compositional / signature / core) aspect of the
templates. For example, operational interface templates basically contain syntax for aggre-
gating procedures, stream interface templates basically contain syntax to aggregate flows,
object templates can be seen to contain syntax composing operational /stream interfaces
and state, while object group templates basically contain syntax to aggregate object tem-
plates. For stream and operational interfaces, and objects, the semantics of this composi-
tion, or aggregation, stems from the architecture depicted in “Computational Modelling
Concepts” [5]. For object groups, the semantics of this composition, or aggregation, stems
from the architecture originally depicted in “Computational Modelling Concepts” [5] and as
extended in “Object Grouping and Configuration Management” [23]. This first level of rela-
tionship between syntax and architecture for templates is depicted in Figure 2-2.

Figure 2-2. Diagrammatic overview of the semantic basis for the core ODL syntax.

The second form of relationship between template syntax and semantics assumes the first
is in place and builds upon it. The relationships can be understood in terms of the following
two step ideal.

1. An architecture for some aspect of TINA software is devised and documented.
For example an architecture for reuse through inheritance.

Data Types and Constants

Stream Interface Template

Operational Interface Template

Object Template

Object Group Template

Essential
architectural,
or semantic, basis
documented in:

[27] and [23]

[27]

[27] and [12]

[27]

[34]

TINA Object Definition Language MANUAL Scope and Structure of ODL

PROPRIETARY - TINA Consortium Members ONLY
 2 - 7

2. The concepts and principles of this architecture are then reflected in additional
ODL language terms, as needed. For example, ODL terms that support
inheritance in interfaces, objects and object groups.

Unfortunately the evolution of ODL has been more organic than this “ideal”, resulting in the
architectural basis of the syntax being documented in a number of places, as depicted in
Table 2-13.

On Table 2-1, the row titles indicate architectures identified through a retrospective look at
previous versions of ODL. The structure of the current version of ODL directly reflects these
architectural bases. We will briefly present the scope of these architectures below:

• The Initialization and Configuration architecture provides concepts and princi-
ples related to the creation and startup of new ODL template instances. For ex-
ample, issues of whether there should be a “special” management interface on
each object (for configuration purposes), and if so, which entities are expected
to use it, and whether it has an initialization operation on it, and what the scope
of it is, and so forth, are part of such an architecture.

3. If future additions to ODL syntax are made, they should follow the “ideal” development process to a
greater extent, thereby more simply documenting the relationship between ODL syntax and semantics.

Table 2-1. Showing the documentation of ODL template sematics. The rows indicate
the architecture expressed as ODL syntax, while the columns indicate the
major ODL structures. The table entries indicate the documents
containing the architecture underlying the syntax of the corresponding
ODL structure. Table entries indicate either: documents listed in the
references section of this document, [*] refers to this document, N/A
means not applicable, U/D means future development.

Architectural / Semantic basis of ODL syntax

Architecture Stream Interface
Template

Operational
Interface
Template

Object Template
Object Group

Template

Initialization and
Configuration

[27] [27] [27] [23]

Behavior [*] [*] [*] [*]

Quality of
Service

[*], [26] [*], [26] N/A N/A

Reuse through
Inheritance

[*], [11] [*], [11] [*], [11] [*]

Trading [*], [24] [*], [24] N/A N/A

Transaction U/D U/D U/D U/D

Security U/D U/D U/D U/D

PROPRIETARY - TINA Consortium Members ONLY

2 - 8

Scope and Structure of ODL TINA Object Definition Language MANUAL

• Behavior of an entity can be thought of as the complete set of possible interac-
tions with the entity4. The architecture for behavior deals with how those inter-
actions are documented, the extent of the documentation (which may also de-
pend upon context), the types of interactions of interest, and so forth.

• The Quality of Service architecture deals with the nature of guarantees that an
entity provides to other entities communicating with it.

• The Reuse through Inheritance architecture is concerned with how to re-use
specifications through a subtyping paradigm. It indicates what is re-used and
makes explicit the rules of inheritance.

• The Trading Architecture deals with how remote entities locate each other in a
distributed environment. Elements of this location process can be supported by
ODL.

• The Transaction Architecture deals with support of ACID5 (or more relaxed)
constrained communication. The various features of the architecture (for exam-
ple whether less than transactional semantics are defined) reflect upon how the
syntax captures those features.

• The Security Architecture deals with authorization, authentication and encryp-
tion/privacy issues associated with TINA based systems.

By viewing ODL according to the above structure, the possibilities and means for its exten-
sion are explicit. Either the existing architectural bases are extended, and corresponding
syntax added, or additional architectural bases documented, and corresponding syntax
added6. As an example of the latter case, if security constructs need to be added to ODL,
then a a security architecture should be specified, and ODL modified to support that archi-
tecture.

4. The behaviour described in ODL templates should be the minimal description required to use the
interface (in the case of interface behaviour) or to manage the object (in the case of object behaviour).
An implicit assumption in all behavioral specifications would be that implementation issues which do
not impact on the use of these templates would not be raised in behaviour specifications. This is
particularly important in terms of inheritance, where specialization should not extend the behavior of
an object or interface.

5. ACID is an acronym for the following transactional properties: atomicity, consistency, isolation,
durability.

6. The authors recognize that this is a simplified view, as there is the possibility that syntax is changed
with no architectural modification and that an element of syntax may be dependant upon multiple
architectures.

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 9

3. Foundations of ODL

This section overviews the foundations of ODL; its meta structure and semantics. During
the course of this section ODL syntax is presented for the purposes of illustration. The
meaning of this syntax is explained as it is introduced, but the reader is reminded that a de-
tailed presentation of ODL syntax is the subject of the following section.

Initially in this section, basic definitions and conventions are presented. Following this, the
rules for basic naming and scoping are introduced. Further naming and scoping rules are
added along with each architectural addition. A feature of ODL is its ability to share and re-
use existing specifications. One way in which re-use is accomplished is by building speci-
fications through composition. The principles upon which this is done are presented in Sec-
tion 3.3. When a new ODL entity is instantiated it may need to be initialized, and make itself
known in the distributed environment. This initialization and configuration architecture is
presented in Section 3.4. Following this we present the principles upon which behavior and
quality of service are specified. As stated above, one form of specification re-use is through
composition, while a second form is through specialization or inheritance. The specific in-
heritance architecture adopted in ODL is presented in the subsection 7. The final section
deals with the trading architecture as it pertains to ODL.

Throughout this section main points are highlighted by labels of the form Rn, (eg. R1, R2,
etc). Definitions of terms are indicated with labels of the form Dn (eg. D1, D2, etc).

3.1 Definitions and Conventions

3.1.1 Definitions

The following definitions are used in the remainder of this document:

D1 Component: An ODL component is either an object group template, object template,
interface template, operation, or flow. The signature specification of an ODL compo-
nent is declared in ODL.

D2 Supporting definition: Definitions of data types, constants, and exception declara-
tions, are called supporting definitions.

Additional definitions are introduced in the following sections, as additional concepts are
encountered.

3.1.2 Graphical Conventions

The following conventions are applied to the graphical representation of the examples given
in the remainder of this document. It should be noted that the diagrams are of types, and
should not be confused with diagrams of instances which appear in other TINA-C documen-
tation:

PROPRIETARY - TINA Consortium Members ONLY

3 - 10

Foundations of ODL TINA Object Definition Language MANUAL

• Objects are represented as boxes (rectangles).

• A supported operational interface is represented as a filled rectangle contigu-
ous with the box representing the object to which it belongs. Some interfaces
might be emphasized by the use of a special pattern.

• An operation is represented as an arrow pointing to the operational interface to
which it belongs. Other elements of operational interfaces are not represented.

• A supported stream interface is represented as a rectangle containing open
and/or filled circles, contiguous with the box representing the object to which it
belongs. Some interfaces might be emphasized by the use of a special pattern.

• A flow sink is represented as an arrow pointing to a filled circle on the stream
interface to which it belongs. A flow source is represented as an arrow pointing
away from an open circle on the stream interface to which it belongs. Other el-
ements of stream interfaces are not represented.

O1 O2

O1

I1
I2

O2

I1
I3

O1

I1
I2

op11 op12

op2
O2

I1

op11 op12

op3
I3

O1

S1
S2

O2

S1
S3

O1

S1
S2

O2

S1
S3

s2

s11 s12 s11 s12

S31

S32

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 11

• Object groups are represented by dashed line boxes. Containment in an object
group is represented by containment in a dashed line box.

Having introduced the basic terms and graphical conventions used throughout this docu-
ment, we will now examine the naming and scoping framework of ODL.

3.2 Naming and Scoping

Naming and scoping rules are defined to enable the unambiguous identification of compo-
nents. For a comparative analysis of related work, see also comparable rules in OMG-IDL
([37] p. 3-31).

R1 An entire ODL file forms a naming scope.

R2 The following kinds of definitions form nested scopes within a file1:

- Module

- Object Group

- Object

- Interface

- Structure

- Union

- Operation

- Exception

For example, the following ODL definitions are contained in one file. It specifies a module,
M1, containing an object group, G1, containing an object, O1, containing an interface, I1 ,
containing a data type, dataType1 , and an operation, operation1 2. M1 has global
scope. G1 is scoped inside M1. O1 is scoped inside G1. I1 is scoped inside O1. dataType1
and operation1 are scoped inside I1 3.

1. A module cannot span files.

2. An interface can either contain operations (operational interface) or flows (stream interface), but not
both.

3. Note that in practice it would be typical to define groups, objects and interfaces within the scope of a
module or within the global scope, rather than in the style of strict nesting shown here. Defining entity
types within the scope of other types, as shown here, hampers reuse of specifications, as discussed
in Section 3.3.

O1

S1
S2

O2

S1
S3

Group1

Group2

PROPRIETARY - TINA Consortium Members ONLY

3 - 12

Foundations of ODL TINA Object Definition Language MANUAL

module M1 {
...
group G1 {

...
object O1 {

...
interface I1 {

...
typedef … DataType1;
...
void operation1(in DataType1 variable11…);
...

}; // end of I1
}; // end of O1

}; // end of G1
}; // end of M1

R3 Identifiers for the following kind of definitions are scoped:

- Object Groups

- Objects

- Interfaces

- Operations

- Data Types

- Constants

- Enumeration values

- Exceptions

- Attributes

R4 An identifier can only be defined once in a scope. Identifiers can be redefined in
nested scopes.

R5 Identifiers are case insensitive.

R6 Identifiers defined in a scope are available for immediate use within that scope.

R7 A qualified name (one of the form <scoped-name>:: <identifier>) is resolved by lo-
cating the definition of <identifier> within the scope. The identifier must be defined
directly in the scope.The identifier is not searched for in enclosing scopes.

For example, based on the ODL example above, the qualified name of G1 is M1::G1. Sim-
ilarly the qualified name of dataType1 is M1::G1::O1::I1::dataType1.

R8 An unqualified name (one of the form <identifier>) can be used within a particular
scope. It will be resolved by successively searching farther out in enclosing scopes.
Once an unqualified name is used in a scope, it cannot be redefined.

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 13

For example, the ODL below shows dataType1 defined in the scope of module M1. It is then
used (as an unqualified name) within the scope of interface I1. Further within the scope of
I1, DataType1 is defined again. This second definition of DataType1 is illegal. If the second
definition was placed before the operation1 statement, the redefinition would be legal, and
this second definition would be used to resolve the unqualified name in the operation1
statement.

module M1 {
...
typedef … DataType1;

interface I1 {
...
void operation1(in DataType1 variable11…);
...
typedef … DataType1; // Illegal statement
...

}; // end of I1
}; // end of M1

R9 Every ODL definition in a file has a global name within that file.

The rule to create a global name is the same as in OMG-IDL ([37] p. 3-32):

“Prior to starting to scan a file containing an OMG IDL specification, the name of
the current root is initially empty (““) and the name of the current scope is initially
empty (““). Whenever a module keyword is encountered, the string “::” and the
associated identifier are appended to the name of the current root; upon detection
of the termination of the module, the trailing “::” and identifier are deleted from the
name of the current root. Whenever an interface , struct , union or exception
keyword is encountered, the string “::” and the associated identifier are appended
to the name of the current scope; upon detection of the termination of the
interface , struct , union or exception , the trailing “::” and identifier are deleted
from the name of the current scope. Additionally, a new, unnamed, scope is
entered when the parameters of an operation declaration are processed; this
allows the parameter names to duplicate other identifiers; when parameter
processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.”

Additionally, for this purpose, object group and object are treated similarly to
interface, struct, union, and exception.

Having introduced some of the basic components of the ODL language, we will now look at
how ODL specifications can be presented as documents, particularly with a view to reusing
ODL specifications.

PROPRIETARY - TINA Consortium Members ONLY

3 - 14

Foundations of ODL TINA Object Definition Language MANUAL

3.3 Interface, Object and Object Group Separation and Sharing

3.3.1 Motivation and Overview of Separation

Freedom is offered to the developer of computational specifications for independent decla-
ration of interfaces, objects and object groups4. Each interface template in ODL may be
self-contained, and may be reused in any number of object templates. Similarly, object tem-
plates may be specified as individual units, and reused in any number of object group tem-
plates. This is shown diagrammatically in Figure 3-1.

Figure 3-1. Showing flexibility in the development of ODL specifications.

4. The independence of interface templates and object templates in ODL v1.3 represents a major
difference from earlier versions of ODL, where the operations supported by an object were defined
directly in the object template, and the interface declarations served only to group operations.

operational
interface
template

stream
interface
template

object
template

I1 I2

O1

object
template

O2

include include

include

Developer1

Developer2

Produces

Produces

Produces

object
group

template
G1

object
group

template
G2

Developer 3

Produces include

include include

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 15

In Figure 3-1 for example, the two objects, O1 and O2, share a common definition of inter-
face I1 . Using a single specification of I1 helps ensure a consistent definition of I1 . The
interface I1 itself may have been developed by an unrelated developer, but may define a
service which objects O1 and O2 are to provide. I1 is being reused by appearing in both
object templates. The consistency and reuse of object templates with respect to object
group templates follows similarly.

As I1 is an operational interface and ODL is a superset of OMG-IDL, the mapping between
the I1 template and an equivalent OMG-IDL specification is trivial. An advantage of such
a straightforward mapping lies in the ability to use existing CORBA based tools in the soft-
ware development chain. An additional advantage is the ability to reuse existing OMG-IDL
interface definitions.

3.3.2 Sharing of Component Declarations

As seen above, an advantage of separating component declarations is that it provides a
straightforward means of sharing component declarations. Below we examine the princi-
ples of sharing in more detail.

3.3.2.1 Data type Declaration Sharing

Data type declaration sharing is intended for the sharing of ODL specified data types be-
tween several components.

R10 Data types can be declared in any ODL scope. Sharing of data type declarations
between several operations or flows of differing interface templates is allowed.

3.3.2.2 Operation Declaration Sharing

Following OMG-IDL syntax, the following rules apply to operations:

R11 Operation signatures are declared within interface templates. Because operation
signatures are not declared separate from interface templates, and there is no spe-
cific suitable sharing mechanism, sharing of an operation signature declaration be-
tween several interfaces is not possible.5

Remark: This rule is directly derived from OMG-IDL. A new version of OMG-IDL
may relax this rule. The implication of such a change for ODL is an open issue.

R12 Two operations with the same identifier declared in two distinct interface templates
are considered different.

5. Note that it is possible to re-use an operation signature declaration by inheriting from an interface
template declaring it.

PROPRIETARY - TINA Consortium Members ONLY

3 - 16

Foundations of ODL TINA Object Definition Language MANUAL

3.3.2.3 Flow Declaration Sharing

The following rules apply to flows:

R13 Flow signatures are declared within interface templates. Because flow signatures
are not declared separate from interface templates, and there is no specific suitable
sharing mechanism, sharing of a flow signature declaration between several inter-
faces is not possible.6

R14 Two flows with the same identifier declared in two distinct interface templates are
considered different.

3.3.2.4 Interface Declaration Sharing

It is assumed that interface declaration sharing is intended for the sharing of an ODL spec-
ification of an interface between several objects. ODL syntax is defined to enable the sep-
aration of interface declarations from object declarations. Interface specifications can be
included in an object template declaration as supported interfaces or as required interfaces.
Supported interfaces can exist on instances of their encompassing objects.

D3 Declared supported interfaces / offered interfaces: Interface types listed as being
supported on an object’s template (declared supported interfaces) are the only inter-
face types for which instances may be accessed on instances of the object7. The
offered interfaces of an object instance are the interfaces existing on that object in-
stance.

D4 Declared required interfaces: The declared required interfaces on an object tem-
plate lists some of the types of interfaces which an instance of the object template
can invoke operations upon8.

The rule are as follows:

R15 Operation and flow signatures are only declared within interfaces. Interface tem-
plates can be declared inside and outside object templates and, inside and outside
object group templates.

As a simple example, assume there are two object templates, O1 and O2, and that they
contain the one common interface template, I1 , and the separate interface template I2 .
This situation is depicted in the diagram below.

6. Note that it is possible to re-use a flow signature declaration by inheriting from an interface template
declaring it.

7. The declared supported interfaces on a base class (see Section 3.7) are considered (not declared)
supported interfaces on the inheriting class (class doing the inheriting).

8. The (declared) required interfaces on a base class (see Section 3.7) are considered (not declared)
required interfaces on the inheriting class (class doing the inheriting).

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 17

As a simple example, assume there are two object templates, O1 and O2, which contain
the one common interface template, I1 , and that O1 also contains the separate interface
template I2 . This situation is depicted in the diagram below.

It is possible to declare the interfaces in the manner shown below9. Note that declarations
made between a pair of horizontal bars are considered to be in one file10. The general
syntax for an operational interface template is “interface <interface_name> { <interface
body> }”. The interface body generally consists of a preamble followed by a list of oper-
ations.

interface I1{
...
typedef … DataType11;
typedef … DataType12;

void operation11 (in DataType11 …, out DataType12 …);
...

}; // end of I1

interface I2{
...
typedef … DataType2;

void operation21 (in DataType2 …);
...

}; // end of I2

It is possible to declare objects O1 and O2 in the manner shown below. The general syn-
tax of an object template is “object <object_identifier> { <object body> }”. Inside the object
body, interface identifiers listed after the keyword “supports” indicate the declared sup-
ported interfaces of the object.

9. To increase readability, operations indicated as “op...” on diagrams are indicated as “operation...” when
written in ODL code segment. For example op11 indicated in the diagram above is written as
operation11 when referred to in the corresponding code segment below.

10. Data type, interface, object and group identifiers are viewed as having global scope if there is no
scoping construct between them and the “file”.

O1

I1
I2

op11

op21 O2

I1

op11

Shared interface declarations

PROPRIETARY - TINA Consortium Members ONLY

3 - 18

Foundations of ODL TINA Object Definition Language MANUAL

object O1{
...
supports

I1, I2;
...

}; // end of O1

object O2{
...
supports

I1;
...

}; // end of O2

We will now extend the previous example to include sharing of stream interfaces. As-
sume each of the above object templates, O1 and O2, now also share a common stream
interface template S1, as depicted in the following diagram.

Assume also that each operation and flow is optionally associated with a quality of ser-
vice specification (for more detail see Section 3.6). The operational interfaces, I1 and
I2 , will be similar to those declared above, while S1 is newly defined below. Each oper-
ation and flow is followed by the keyword “with”, which in turn is followed by a datatype,
and variable identifier, specifying parameters describing the quality of service associated
with the operation or flow11:

interface I1{
...
// data types
typedef … DataType11;
typedef … DataType12;

11. Note that values of QoS types are not specifiable in the current version of ODL. This is considered a
serious limitation, expected to be remedied in future versions of ODL. When using the current syntax,
the QoS value associated with the QoS type is expected to be assigned, or negotiated, when the
interface is instantiated. It should also be noted that the semantics of each QoS type is expected to be
documented as text comments in this version of ODL.

OS1

I1
I2

op11

op21 OS2

I1

op11

Shared interface declarations

S1

voiceUpStream
voiceDownStream

S1

voiceUpStream voiceDownStream

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 19

// QoS type
// max time server allowed for operation completion
typedef … ServerResponseTime;

void operation11 (in DataType11 …, out DataType12 …)
with ServerResponseTime opResponseTime11;

...
}; // end of I1

interface I2{
...
// data types
typedef … DataType21;

// QoS type
// max time client will wait for operation completion
typedef … ResponseTime;

void operation21 (in DataType21 …)
with ResponseTime opResponseTime21;

...
}; // end of I2

The stream interface S1 may be declared as follows (for the purposes of illustrating
stream declarations, we will assume that S1 supports a voicemail service):

interface S1{
...
// flow types
typedef … VoiceFlowType;

// QoS type
typedef … VoiceQosType;

source VoiceFlowType voiceDownStream
with VoiceQosType voiceDownStreamQos;

sink VoiceFlowType voiceUpStream
with VoiceQosType voiceUpStreamQos;

}; // end of S1

It is possible to declare the new objects OS1 and OS2 in the following manner:

object OS1{
...
supports

I1, I2, S1;
...

}; // end of OS1

PROPRIETARY - TINA Consortium Members ONLY

3 - 20

Foundations of ODL TINA Object Definition Language MANUAL

object OS2{
...
supports

I1, S1;
...

}; // end of OS2

3.3.2.5 Object Declaration Sharing

It is assumed that object declaration sharing is intended for the sharing of an ODL specifi-
cation of an object between several groups. ODL syntax is defined to enable the separation
of object declarations from group declarations. Object specifications can be included in a
group template as components. Interface specifications can be included in an object group
template as contracts, which are interface types that can be used by entities external to the
object group.

D5 Declared component objects: The declared component entities of an object group
template are the object types, or object group types, which can be directly instanti-
ated by the manager object instance of an object group instance. The declared com-
ponent entities are listed as “components” on a group template.

An object group instance is integrally associated with the manager object instance
(group manager). It is expected that group managers are in the same cluster as their
component object instances, while component group instances may be in a different
cluster (and hence potentially on a different node). Upon object group instantiation,
the initial configuration (hard coded into the group manager, passed to the group
manager, read from a file or repository by the group manager, or obtained by other
means) dictates which components are initially instantiated.

D6 Declared contract: A declared contract of an object group template is one of the in-
terface templates of a component object of that object group template. The declared
contracts on an object group template represent the only interfaces able to be used
by entities external to an instance of that object group template. The declared con-
tracts are listed as “contracts” on a group template.

The rule is as follows:

R16 Object templates can be declared outside object group templates.

As a simple example, assume there are two group templates, G1 and G2 that each contain
the one common object template, O1, and separate object template O2. The objects O1 and
O2 are as defined initially in the previous section. This situation is depicted in the diagram
below.

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 21

It is possible to declare the groups in the manner shown below (assuming the objects O1
and O2, and interfaces I1 and I2 , are as defined initially in the previous section). The
general syntax for an object group template is “group <group_name> { <group body> }”.
Inside the group body, identifiers listed after the keyword “components” indicate the com-
ponent objects (and if applicable object groups) of the object group. Interface identifiers
listed after the keyword “contracts” indicate the interfaces of the object group that are vis-
ible to entities outside the group.

group G1{
...
components

O1, O2;
...
contracts

I2;

}; // end of G1

group G2{
...
components

O1;
...
contracts

I2;

}; // end of G2

O1

I1
I2

op11

op21
O2

I1

op11

Shared interface declarations

O1

I1
I2

op11

op21

G1

G2

PROPRIETARY - TINA Consortium Members ONLY

3 - 22

Foundations of ODL TINA Object Definition Language MANUAL

3.3.3 Naming and Scoping with respect to Sharing/Separation

The following scoping rules are relevant to shared specifications.

R17 In the scope of an object, an interface identifier can be defined by declaring the as-
sociated interface template inline, or used by declaring it as supported or required.
In each case, the global name of the interface will be different; something like
...<object-identifier>::<interface-identifier> in the former case and something like
...<interface-identifier> in the latter case.

In the following example, there are two interfaces, I1 and I2 , and two objects O1 and O2.
I1 is defined in its own scope in a separate file, while I2 is defined in the scope of O112.
O1 and O2 are defined in separate files. Both object O1 and O2 use interfaces I1 and I2 .
Note that it is possible to declare interface I2 within O1, before declaring that O1 will sup-
port it. Note also that in the declaration of object O2, the identifier of the interface I2 is qual-
ified by the scoped name O1:: .

interface I1{
...

}; // end of I1

object O1{
...
// inline definition of I2
interface I2{

...
}; // end of I2
...
supports

I1, I2; // supported use of I1
...

}; // end of O1

object O2{
...
supports

I1, O1::I2;
...

}; // end of O2

12. While it is permissible in ODL to define interfaces in the scope of objects (and objects in the scope of
groups), this style should be used with caution, as reuse of specifications is made somewhat
complicated.

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 23

R18 In the scope of an object group, an object identifier can be defined by declaring the
associated object template inline, or used by declaring it as a component. In each
case, the global name of the object template will be different.

R19 In the scope of an object group, an interface can be defined by declaring the asso-
ciated interface template inline, or used by declaring it as a contract. In each case,
the global name of the interface will be different.

The following example extends from the previous one. There are two interfaces, I1 and I2 ,
two objects O1 and O2, and two groups G1 and G2. I1 is defined in its own scope in a sep-
arate file, while I2 is defined in the scope of O1. O2 is defined in a separate file. O1 is de-
fined in the scope of G1. G1 and G2 are defined in separate files. Both object O1 and O2 use
interfaces I1 and I2 . Both group G1 and G2 contain objects O1 and O2. Note should be
made of the naming complexity that is demonstrated in this example. Greater readability
and flexibility would be achieved if each interface object and group template had top level
scope and were defined in their own files.

interface I1{
...

}; // end of I1

object O2{
...
supports

I1, G1::O1::I2;
...

}; // end of O2

group G1 {
object O1 {

...
interface I2 {

...
}; // end of I2
...
supports

I1, I2;
...

}; // end of O1
...
components

O1, O2;
...
contracts

I1, O1::I2;

}; // end of G1

PROPRIETARY - TINA Consortium Members ONLY

3 - 24

Foundations of ODL TINA Object Definition Language MANUAL

group G2 {
...
components

G1::O1, O2;
...
contracts

I1, G1::O1::I2;

}; // end of G2

3.4 Initialization and Configuration

Interface, object and object group instantiation is generally associated with a sequence of
activities. In this section we present the concepts and principles underlying these sequenc-
es for ODL.

In general when an interface, object or object group template is instantiated, an

• instantiating entity,

• agent of instantiation (instantiator), and

• initial configuration specification13

are required. This is shown in a representative diagram below.14 One example of an instan-
tiating entity (the entity that requests the instantiation) is an object. The instantiator may be
the programming language implementation itself (the creation process being a language
type instantiation), and the configuration information may be implied in the code implement-
ing the template.

13. The means of specification and run-time location of initial configuration information is for further study.

14. It should be noted that this is an abstract depiction.

Interface
Object or
Object Group
Template

Instantiating
Entity

Interface
Object or
Object Group
Instance

Configuration
Information

Instantiator

instructs

used

used

returns
reference

creates

to
instance

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 25

With respect to creating and initializing an entity, the following applies:

R20 An object group template must specify one object template as being the manager
object.

When an object group template is instantiated, a manager object is expected to be
automatically created, and an (operational) interface reference to its initial
interface (see R21) returned to the instantiating entity. Typically this interface and
manager object would be used to initialize and manage the object group instance.

Following is an example of the use of the manager syntax.

group OG1 {
...
components

O1,O2,O3;
manager

O1;
contracts

I1,I2;
};

R21 An object template must specify one (operational) interface template as being the
initial interface.

When an object template is instantiated, an initial operational interface is expected
to be automatically instantiated, and an interface reference to it returned to the
instantiating entity. Typically this interface would be used to initialize and manage
the object instance15 16. For example, an object factory that instantiates an object
template will recieve an interface reference to the initial interface, which it should
then pass onto the entitiy that requested creation of the new object. As another
example, when a group manager instantiates a component object, it recieves an
interface reference to its initial interface.

Following is an example of the use of the initial interface syntax.

object O1{
...
supports

I1, I2;

15. It is possible that the thread of control to initialize an object is provided via an operation on the initial
interface (eg. an init operation), or provided by the programming language’s creation mechanism (eg.
constructor methods on C++ objects).

16. It is expected that the initial interface allows navigation to the other interfaces of the object.

PROPRIETARY - TINA Consortium Members ONLY

3 - 26

Foundations of ODL TINA Object Definition Language MANUAL

initial
I1;

}; // end of O1

3.5 Behavior

The behavior of an entity, in its most general sense, consists of all the possible interactions
the entity can undertake with its environment. ODL is not sufficiently mature to provide a
complete and detailed specification for behavior in this sense17. Instead, an informal be-
havior specification is described for particular entities as follows:

- Interfaces:

This specification describes the service provided by an interface of the type
being defined. It also specifies an informal usage specification. This
specification documents the ordering (or sequencing) constraints on the
operations defined in the interface template. Invocations of operations on an
instance interface of such a template must satisfy these constraints. In the
current version of ODL this specification is a string literal, although more
formal description techniques may be supported in future revisions of ODL.

- Objects:

This specification describes the responsibilities of an object in providing
services via each of it’s interfaces as supported in ODL18. It also specifies
(declared) required interfaces types which will be used by the object to
perform its functions and provide its services.

- Object groups:

This specification describes the responsibilities of an object group in providing
services via each of it’s contracts19.

Currently in ODL, behavior specifications have structure. There is a component that sup-
ports specifications documented in any form delimited as a text string, and natural lan-
guage (e.g. English) is suggested. Additionally, interface behavior specifications support a
similar text string for documenting usage specifications, and object behavior specifications
support “requires” keyword which is followed by a list of required interface types.

An example of a behavior specification for an interface is shown below20:

17. The definition of a detailed syntax for behavior specification is left for further study. A candidate for
such a syntax has been defined in “Quality of Service Framework” [14].

18. When writing this, and the interface specifications, the developer should be aware that the object
template will almost certainly not be available to users of the services provided by the object. It is
important that all notable information on services be described in the interface templates, not the object
template.

19. When writing this, and the interface specifications, the developer should be aware that the object
group template will almost certainly not be available to users of the services provided by the object. It
is important that all important information on services be described in the interface templates, not the
object or group templates.

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 27

interface CSMConfiguration: Management::ServiceManagement {

behavior
behaviorText
“This interface serves to configure the object CSM.

The ReadState operation returns a complete
representation of the CSM state. The WriteState operation
allows the complete CSM state to be set.”;

usage
“Operation init must be invoked prior to other
operations defined on the service.

Concurrent calls to ReadState operations are permitted
but all operation invocations are blocked while a
WriteState operation is being handled.

WriteState operations will block until all current
ReadState or WriteState invocations are completed.”;

...
};

3.6 Quality of Service

Specification of the basic capabilities of an operation, or flow, may need to be augmented
with a specification of the “standard of the service” required. There are a number of ways
one might want to state information about such quality of service. For example, there may
be:

- Statements of mandatory capabilities. For example, a flow must support con-
nections of a certain bandwidth (no more and no less), otherwise it is not of-
fered.

- Statements of expectation. For example, an operation must respond within a
certain time for most cases.

- Statements of support. For example, when binding to a stream interface in-
stance the quality of service is to be negotiated using say, bandwidth and jitter.

With regard to what is “specifically the subject of quality of service information”, only a
vague definition is offered here. The quality of service associated with an operation or flow
is the, timing constraints, degree of parallelism, availability guarantees and so forth, to be
provided by that entity or component. Quality of service information deals with the provision
of the service, rather than the service itself. Quality of service specifications allow state-

20. Note that not all compilers allow line breaks in strings. For these compilers an alternative means of
declaring a string longer than a line is to specify sequences of strings such as “...” “...”, which are
treated as one large string by the compiler.

PROPRIETARY - TINA Consortium Members ONLY

3 - 28

Foundations of ODL TINA Object Definition Language MANUAL

ments about the “level of service” offered by components. In general this information may
be provided at component specification time, or dynamically by the management system
responsible for initiating entity creation. It may even be altered during the lifetime of the ser-
vice offering.

The problem of adding quality of service specifications to ODL can be seen more as a prob-
lem of semantics than syntax. This is highlighted when one considers that for a given syn-
tax it is likely that all three of the above interpretations might be possible when one guesses
at the meaning of a simple syntax. For example, a quality of service statement associated
with a flow of BandwidthType bandwidth = 3Mbits may mean that the interface with
that flow cannot be offered unless it can source/sink exactly 3Mbits, or typically connections
to the flow are made at 3Mbits, but other values may be negotiated, or the maximum band-
width of a connection is at 3Mbits, and only values lower may be negotiated, and so forth.
The particular quality of service sematics to be supported in ODL has not been finalized.

In this version of ODL, semantics is left to the programmer. ODL allows for a quality of ser-
vice type and variable identifier with any of21:

- operation

- flow

Values are not ascribed to the quality of service variables at specification time. Instead they
are to be assigned at instantiation time22. The semantics are programer dependant. This
capability is acknowledged as being severely restricted.

Following is an example of an operational quality of service specificaton. Note that the qual-
ity of service parameters are added after the keyword “with”. operation1 is expected to
be offered with a quality of service that is described using an instance of BoundedRespon-
seTime . Note that the identifier of the variable instantiating BoundedResponseTime,
op1Qos must be unique within the interface:

interface I1{
...
typedef float BoundedResponseTime;
...
void operation1 (in dataType1 var1)

with BoundedResponseTime op1Qos;
...

}; // end of I1

Following is an example of a flow quality of service specification. Again the quality of ser-
vice parameters appear after the keyword “with”. Quality of service is offered using an in-
stance of VideoQoS . An instance of VideoQoS is represented as a float, but depending
upon the value of Guarantee (either Statistical or Deterministic), the float is to
be interpreted as a “mean” or “peak” frame rate.

21. Quality of service statements associated with interfaces, objects and groups are for further study.

22. Note that if there is a need to assign values, for the sake of recording this information, this can be
done as comment statements in the present version of ODL.

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 29

struct VideoQoS {
 union Throughput switch (Guarantee) { /* in frames/s */

case Statistical: float mean;
case Deterministic: float peak;

 };
}; // end of VideoQoS

interface I3 {
...
sink VideoFlowType display with VideoQoS requiredQoS;
...

}; // end of I3

Chapter 4 of the document “Quality of Service Framework” [26] presents an architectural
framework useful for providing sematics to operation quality of service terms like response
time, minimum invocation interval and maximum invocation interval. These terms can be
defined in terms of events associated with operation invocation, such as invocation emis-
sion, invocation receipt, response emission and response receipt. The reader is referred to
this work as an input to defining quality of service parameters for operations. ODL does not
specify standard quality of service parameters for operations.

3.7 Inheritance

3.7.1 Introduction and Motivation

Interfaces, Objects and Object Group templates are considered units of specification mod-
ularity. Since these 3 templates also represent types it is convenient to define a reusability
mechanism where ([34] p.62):

1. A module can directly rely on the entities defined in another module (of the same
kind of template). For example, a data type defined in one interface is used within
another interface.

2. A type is derived from another type (of the same kind of template). For example,
one object template specification is derived from another object template
specification.

In classic object based literature such a reuse mechanism is known as inheritance. In the
case of ODL, defining rules for inheritance will allow new interface, object and object group
templates to be declared as extensions or restrictions of previously defined ones.

The remainder of this subsection describes the principles underlying ODL’s reuse of spec-
ifications through inheritance. First the essential elements of interface inheritance, object
inheritance and object group inheritance are presented. This is then followed by an eluci-
dation of naming and scoping rules related to inheritance.

PROPRIETARY - TINA Consortium Members ONLY

3 - 30

Foundations of ODL TINA Object Definition Language MANUAL

3.7.2 Definitions

The following definitions are relevant to inheritance.

D7 Base / derived / specialized component: A component (group, object or interface) is
said to be derived from or specializing another component, called a base component
of the derived component, if it inherits from this base component.

D8 Most specialized: The most specialized objects (groups, or interfaces) within a set
of objects (groups, or interfaces) are the elements of the set from which no other
components within the set are derived (i.e., which are not the base of any other com-
ponent of the set).

D9 Direct / indirect base: A component is called a direct base of a component (group,
object or interface) if it is mentioned in the inheritance specification of the component
declaration, and an indirect base if it is not a direct base but the base of a direct or
indirect base (sub-inheritance).

D10 Inheritance graph / partial inheritance graph: The inheritance graph of objects
(groups, or interfaces) is the directed acyclic graph representing the inheritance re-
lationships between objects (groups, or interfaces). A partial inheritance graph of a
given type (groups, objects or interfaces) is an inheritance graph restricted to a set
of components.

Remark: The leaves of the inheritance graph for a given type of component (i.e.,
for groups, objects or interfaces) are the most specialized components of this
type.

D11 Restriction / restricted set: The restriction of a set of components (set of groups, set
of objects, or set of interfaces) is constructed by removing from this set any compo-
nent which is the base of any other component from the set. The result of the restric-
tion of a set is called a restricted set.

Remark: A restricted set can also be seen as the set of leaves of the partial
inheritance graph.

Remark: The restricted set of all the components of type object (group or
interface) is the set of most specialized objects (groups or interfaces).

Example A: Assume that the following interfaces with the following inheritance relationship
are defined:

• Interface I1 ,

• interface I2 , which inherits from interface I1 ,

• interface I3 , which inherits from interface I1 ,

• Interface I4 .

The following inheritance graph exists for interfaces:

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 31

The restriction of the set of interfaces (I1 , I2 , I3 , I4) is the set (I2 , I3 , I4).

3.7.3 Inheritance in Component Declarations

3.7.3.1 Interface Inheritance

It is assumed that interface inheritance provides “re-use by specialization” of (an ODL spec-
ification of) an interface. The interface that is inherited from is called a base interface. The
interface that does the inheriting is called the derived interface. This specialization can take
two forms:

• addition of new operations, or flows, to the list of the base interface.

• redefinition of the signatures of operations or flows in the base interface.

Remark: Note that the current version of OMG-IDL does not allow this kind of
inheritance for operational interface templates (as reflected in rule 27), hence
neither does ODL.

Remark: Note that all derived interfaces of a base interface are considered
“compatible with” the base interface.

The syntax defined for ODL fully supports OMG-IDL interface inheritance rules, and adopts
consistent rules for both operational and stream interfaces. The ODL interface inheritance
rules are as follows:

General and signature

R22 An interface template can be derived from one or several other interface templates,
each of which is called a base interface (of base interface template) of the derived
interface template. In the case of derivation from multiple base interfaces (multiple
inheritance), the order of derivation is not significant.

R23 An interface template may not be specified as a direct base interface template of a
derived interface template more than once. It may be an indirect base interface
template more than once. (i.e. a “diamond shape” inheritance graph is possible.)

R24 A derived interface template may declare new sub-components (data types, oper-
ations or flows). Unless redefined, the sub-components of the base interface tem-
plate can be referred to as if they were sub-components of the derived interface
template. Interface inheritance causes all identifiers in the closure of the inheritance
tree to be imported into the current naming scope.

R25 It is illegal to inherit from two interface templates having the same operation identi-
fiers23, or having the same flow identifiers, or same data type identifiers.

R26 It is illegal to redefine an operation in the derived interface template24.

Inherits from

I1 I4

I2 I3

PROPRIETARY - TINA Consortium Members ONLY

3 - 32

Foundations of ODL TINA Object Definition Language MANUAL

R27 It is illegal to redefine an flow in the derived interface template.

R28 A derived interface template may redefine data type identifiers inherited. A data
type identifier from an enclosing scope can be redefined in the current scope.

Behavior

R29 The behaviorText of base interfaces are not available in a derived interface.

R30 The usage attribute of base interfaces are not available in a derived interface.

Trading attributes (see Section 3.8)

R31 The trading attributes on a derived interface is the union of the trading attributes on
all of the base interfaces, plus any additional trading attributes specific to the de-
rived interface.

As an illustrative example (see diagram below) assume that object O4 declares as support-
ed:

• interface I4 , a specialization of interface I1 constructed by the addition of
operation41 , and

• interface S2, a specialization of interface S1, with the addition of source
videoFlow21 .

It is possible to declare interface I4 inheriting operation11 from I1 , and adding opera-
tion operation41 . Similarly, S2 may inherit from S1 the source flow voiceDownStream
and the sink flow voiceUpStream , and add the source flow videoFlow21 :

Following are the ODL definitions of I1 and S1 .

23. This is directly derived from OMG-IDL. A new version of OMG-IDL might relax this rule. The effect of
this on TINA ODL is for further study.

24. This is directly derived from OMG-IDL. A new version of OMG-IDL might relax this rule. The effect of
this on TINA ODL is for further study.

O1

I1
I2

op11

op21 O4

I4

o
p

1
1

Shared interface declarations

o
p

4
1

S1 S2

voiceUpStream

voiceDownStream

voiceUpStream
voiceDownStream

videoFlow21

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 33

interface I1{
...
// data types
typedef … DataType11;
typedef … DataType12;

// QoS type
// max time server allowed for operation completion
typedef … ServerResponseTime;

void operation11 (in DataType11 …, out DataType12 …)
with ServerResponseTime opResponseTime11;

}; // end of I1

interface S1{
...
// flow types
typedef … VoiceFlowType;

// QoS type
typedef … VoiceQosType;

source VoiceFlowType voiceDownStream
with VoiceQosType voiceDownStreamQos;

sink VoiceFlowType voiceUpStream
with VoiceQosType voiceUpStreamQos;

}; // end of S1

The inheriting interfaces can then be defined as follows:

interface I4: I1{
...
typedef … DataType41;
void operation41 (in DataType41 …);

}; // end of I4

interface S2: S1{
...
typedef … FlowTypeS21;
source FlowType21 videoFlow21

with FlowQosType11 flowQos21;
}; // end of S2

Object O4, using the inherited specialized interfaces, can be defined as follows:

PROPRIETARY - TINA Consortium Members ONLY

3 - 34

Foundations of ODL TINA Object Definition Language MANUAL

object O4{
behavior
...
supports

I4, S2;
...

}; // end of O4

3.7.3.2 Object Inheritance

It is assumed that object inheritance is intended to provide “re-use by specialization” of (an
ODL specification of) an object. The object that is inherited from is called a base object. The
object that is doing the inheriting is called the derived object.This specialization can take
either of two basic forms:

• Addition of interfaces: new interfaces may be added to the list of supported in-
terfaces of the base object.

• Refinement of interfaces: supported interfaces on the base objects may be spe-
cialized in the derived object.

The inheritance rules for objects are as follows:

General and supported interfaces

R32 An object template can be derived from one or several other object templates, each
called a base object (or base object template) of the derived object template. In the
case of derivation from multiple base object templates (multiple inheritance), the or-
der of derivation is not significant.

Remark: The inheritance tree for object templates is completely separated from
the inheritance tree for interface templates.

R33 A derived object template may declare new sub-components (data types, interface
templates). Unless redefined, the sub-components of the base object template can
be referred to as if they were sub-components of the derived object template. Ob-
ject inheritance causes all identifiers in the closure of the inheritance tree to be im-
ported into the current naming scope.

R34 An object template may not be specified as a direct base object template of a de-
rived object template more than once. It may be an indirect base object template
more than once (“diamond shape” inheritance graph).

R35 The interface templates which may be offered on a derived object is the union of
the interface templates supported on all of the base objects, plus any additional in-
terface templates declared supported on the derived object.

Remark: To add a new interface to the list of interface templates inherited from the
base object templates, it is sufficient to declare an additional supported interface
template in the object template (addition of interface).

Remark: To refine an interface template supported by an object’s base object
templates, it is sufficient to declare a supported interface template in the object

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 35

template, where that supported interface template is derived from the former one
(refinement of interface). The object may then offer instances of either of these
interface templates.

R36 It is illegal to inherit from two object templates with the same interface template
identifier declared separately in the scope of the two object templates.

Remark: If two interface templates defined in two object templates have the same
identifier but are declared in the two different places (i.e., the interface declaration
is not shared between the two objects), they are considered different.

R37 A derived object template may redefine data type identifiers inherited. A data type
identifier from an enclosing scope can be redefined in the current scope.

Behavior

R38 The behaviorText of base objects are not available in a derived object.

R39 The required interfaces of the base object is the union of the required interfaces of
the base objects, plus any additional required interfaces specific to the derived ob-
ject.

Initial

R40 The initial interfaces of base objects are not available in a derived object; initial in-
terfaces are not inherited.

Note that the initial interface type of a derived object must be derived from (or may
be identical to, in the case of single object inheritance) the initial interface types of
direct base object types. Otherwise, a management system (for instantiation) will
have difficulty seeing the derived object type as equivalent to it's base types.

As an illustrative example, consider object O6 which supports the following:

• interface I1 identical to the interface I1 of O1 and O2 (3.3.2.4),

• interface I5 supporting operation operation21 as defined on interface I2 of
O1 (3.3.2.4), and in addition operation51 ,

• interface I3 similar to the interface I3 of O2 (3.3.2.4),

• interface I6 , supporting operation operation61 .

The following inheritance relationships can be established between objects O1, O2, and O6:

PROPRIETARY - TINA Consortium Members ONLY

3 - 36

Foundations of ODL TINA Object Definition Language MANUAL

In this case, the definition of O6 can be constructed from O1 and O2 with the aid of inherit-
ance rules, and the addition of new entities.

Interface template I5 is declared as derived from interface I2 , and interface template I6
is declared in isolation:

interface I5: I2{
...
typedef … DataType51;
void operation51(in DataType51 …);

}; // end of I5

interface I6{
...
typedef … DataType61;
void operation61(in DataType61 …);

}; // end of I6

Object O6 is declared as derived from objects O1 and O2, and interfaces I5 and I6 are de-
clared in the list of supported interfaces of O6:

object O6: O1, O2{
...
supports

I5, I6;
...

}; // end of O6

Since there is no relationship of inheritance from interface I6 with any interface declared
in the base objects O1 or O2, interface I6 is simply considered a supported interface of O6.

O1

I1
I2

op11

op21

O6

I1
I5

op11

op21
op51

op31

I3

Inheritance

Re-used interface declarations

O2

I1

op11

op31
I3

Shared interface declaration

I6

op61

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 37

Since there is a relationship of inheritance from interface I2 to interface I5 , the interface
I2 from O2 is not considered as supported on O6, and instead interface I5 , the refine-
ment of O2 is considered as supported on O6. If I2 was to be supported it would have to be
explicitly listed as being supported.

Interface I3 appears on O2, and through the rules of inheritance is also considered as a
supported interface of O6.

Interface I1 appears on both O1 and O2, and through the rules of inheritance is also con-
sidered as a supported interface of O6.

3.7.3.3 Object Group Inheritance

It is assumed that group inheritance provides “re-use by specialization” of (an ODL specifi-
cation of) a group. The group that is inherited from is called a base group. the group that
does the inheriting is called the derived group. This specialization can take either of two ba-
sic forms:

• Addition of objects/groups: new objects may be added to the list of component
objects of the base groups.

• Refinement of objects/groups: component objects/groups on the base groups
may be specialized in the derived group.

The inheritance rules for groups are as follows:

General and component objects

R41 A group template can be derived from one or several other group templates, each
called a base group (or base group template) of the derived group template. In the
case of derivation from multiple base group templates (multiple inheritance), the or-
der of derivation is not significant.

Remark: The inheritance tree for object templates is completely separated from
the inheritance trees for object and interface templates.

R42 A derived group template may declare new sub-components (data types, interface
templates, object templates). Unless redefined, the sub-components of the base
group template can be referred to as if they were sub-components of the derived
group template. Group inheritance causes all identifiers in the closure of the inher-
itance tree to be imported into the current naming scope.

R43 A group template may not be specified as a direct base group template of a derived
group template more than once. It may be an indirect base group template more
than once (“diamond shape” inheritance graph).

R44 The object/group templates which may comprise a derived group template is the
union of the component object/group templates (declared) supported on all of the
base group templates, plus any additional object/group templates declared sup-
ported on the derived group template.

Remark: To add a new object/group to the list of component templates inherited
from the base group templates, it is sufficient to declare an additional component
object/group template in the group template (addition of object/group).

PROPRIETARY - TINA Consortium Members ONLY

3 - 38

Foundations of ODL TINA Object Definition Language MANUAL

Remark: To refine an object/group template supported by a group’s base group
templates, it is sufficient to declare a component object/group template in the
group template, where that component object/group template is derived from the
former one (refinement of object/group). The group may then include instances of
either of these object/group templates.

R45 It is illegal to inherit from two group templates with the same object template iden-
tifier declared separately in the scope of the two group templates.

Remark: If two object templates defined in two group templates have the same
identifier but are declared in two different places (i.e., the object declaration is not
shared between the two groups), they are considered different.

R46 It is illegal to inherit from two group templates with the same interface template
identifier declared separately in the scope of the two group templates.

Remark: If two interface templates defined in two group templates have the same
identifier but are declared in two different places (i.e., the interface declaration is
not shared between the two groups), they are considered different.

R47 A derived group template may redefine data type identifiers inherited. A data type
identifier from an enclosing scope can be redefined in the current scope.

Behavior

R48 The behaviorText of base groups are not available in a derived group.

Initial

R49 The manager object of base groups are not available in a derived group.

Note that the initial object type of a derived group template must be derived from
(or may be identical to, in the case of single object group inheritance) the initial ob-
jet types of direct base group types. Otherwise, the management system (for in-
stantiation) is unlikely to see the derived object group type as equivalent to it's base
types.

Contracts

R50 The contracts which comprise a derived group template is the union of the con-
tracts comprising the base group templates, plus any additional contracts declared
supported on the derived group template.

3.7.4 Naming and Scoping with respect to Inheritance

The following scoping rules are added to support inheritance capabilities.

R51 Inheritance introduces identifiers into the derived interface template, object tem-
plate or object group template.

R52 Inheritance of interface templates, object templates or object group templates in-
troduces multiple global ODL identifiers for the inherited identifiers.

TINA Object Definition Language MANUAL Foundations of ODL

PROPRIETARY - TINA Consortium Members ONLY
 3 - 39

R53 A qualified name (one of the form <scoped-name>:: <identifier>) is resolved by lo-
cating the definition of <identifier> within the scope. The identifier must be defined
directly in the scope or (if the scope is an object group, object or interface) inherited
into the scope.The identifier is not searched for in enclosing scopes.

3.8 Trading

The DPE component of the TINA architecture supports the notion of a Trading service [24].
Entities with server interfaces can advertise their interface references at the Trading ser-
vice. Potential clients of server interfaces can perform lookup operations at the Trading ser-
vice. Typically, it is expected that clients base their search on one or more of:

1. interface reference type (eg. return all interfaces of type CsmConfiguration),

2. context, a logical, hierarchical partitioning of the search space (eg. return all
interfaces of type CsmConfiguration in the context someTelcoAdminDomain)

3. attribute value pairs (eg. return all interfaces of type CsmConfiguration in the
context someTelcoAdminDomain with an admissionPolicy of
someTelcoAuthorizationLevel)

The interface reference type is intrinsic to the interface, and the value of context is generally
specified at run time, as are attribute values. From the application developer’s point of view
one can think of context as a “well known” attribute value, while from the Trading service
developer’s point of view it facilitates more efficient storage and retrieval of interface refer-
ences. In general, attribute types and values are specified on a per server instance basis.
ODL supports the specification of general trading attribute types and variable identifiers.
These attributes are intended to be utilized in application code when importing and export-
ing interfaces to the trader. Such attributes and variables are specified on a per interface
template basis. It is expected that trading attribute variable identifiers, as specified in the
interface templates, will be visible to application developers. In addition, these will be as-
signed values before being passed to the Trading service.

Trading attributes are specified in the scope of interfaces, and take the form of a “trAttribute”
keyword followed by the string keyword and variable identifier. All trAttributes are of type
string. The following example shows how trading attributes can be specified:

interface S1{
...

// Trading attribute specification for interface
trAttribute string owner;
trAttribute string colorCapability;

// flow types
typedef … VoiceFlowType;

// QoS type
typedef … VoiceQosType;

PROPRIETARY - TINA Consortium Members ONLY

3 - 40

Foundations of ODL TINA Object Definition Language MANUAL

source VoiceFlowType voiceDownStream
with VoiceQosType voiceDownStreamQos;

sink VoiceFlowType voiceUpStream
with VoiceQosType voiceUpStreamQos;

}; // end of S1

The interface has two trading attributes, owner (name of the entity that owns the display)
and colorCapability (whether the display associated with the sink flow is color or mono-
chrome), of type string. The values of these attributes are expected to be assigned by the
application developer before the interface reference is published in the trading service.

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 41

4. Syntax of ODL

This section defines the syntax of ODL. It is divided into four parts which deal with the major
components of ODL: type and constant declaration; interface templates; object templates;
object group templates.

Note that example code segments in this document use lexical conventions, and include
preprocessor directives (aka. compiler directives) in addition to ODL language statements.
lexical conventions follow those of OMG IDL ([37], section 3.2). For example, “//” is fre-
quently used to indicate comments, but is not a part of ODL. The preprocessor directives
also follow those of OMG IDL ([37], section 3.3), which in turn follow those of ANSI C++. It
should be noted that ODL is independent of language mappings, and the use of compiler
directives from a C++ mapping are incidental to the description of ODL presented here.

4.1 Type and Constant Declaration

4.1.1 Structure

Data types and constants, can be declared in almost any scope within an ODL specifica-
tion. These types or constants can be used for declaration of operation, exception, flow, and
other template components. As for any template declaration, it is required that a type or
constant be declared prior (i.e. earlier in the file) to its use.

4.1.1.1 ODL Syntax for Type and Constant Declarations

The syntax supported by ODL for type and constant declaration is identical to the one of
OMG-IDL. The reader can find in Appendix A a description of this syntax. Rules 68 to 81
define constant declarations, while rules 82 to 120 define type declarations.

4.1.1.2 Example of Type and Constant Declarations

The following example shows the declaration of three data types: Bps, which is a synonym
for float; Guarantee , which is an enumeration; and AudioQoS , which is a structure.

typedef float Bps;

enum Guarantee {
Deterministic,
Statistical,
BestEffort

};

struct AudioQoS {
union Throughput switch (Guarantee) {

case Statistical: Bps mean;
case Deterministic: Bps peak;
case BestEffort :

struct Interval {

PROPRIETARY - TINA Consortium Members ONLY

4 - 42

Syntax of ODL TINA Object Definition Language MANUAL

Bps min;
Bps maxd;

};
};
union Jitter switch (Guarantee) {

case Statistical: Bps mean;
case Deterministic: Bps peak;

};
};

4.2 Interface Template

4.2.1 Structure

The reader is assumed to have a knowledge of the interface architecture [5]. A computa-
tional interface template comprises:

• A behavior specification,

• A trading attribute specification,

• As appropriate, either:

- an operational interface signature,

- a stream interface signature.

This structure is reflected in the ODL rule for <interface_body> (see following sub-section).
The subsequent sections of this document examine the elements of this structure in more
detail.

4.2.1.1 ODL Syntax for Interface Template Declaration

The following syntax is defined for interface template declaration:

<interface_template> ::=<interface_header> “{“ <interface_body> “}”

<interface_header> ::= “interface ” <identifier>
[<interf_inheritance_spec>]

<interf_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

<interface_body> ::= [<interf_behavior_spec>]
 [<trading_attributes_spec>]
 { <op_sig_defns> | <stream_sig_defns> }

<interf_behavior_spec> ::= “behavior ” {
{<interf_behavior_text> [<interf_usage_spec>]}
| <interf_usage_spec> }

<interf_behavior_text> ::=“behaviorText ” <string_literal> “;”

<interf_usage_spec> ::=“usage ” <string_literal> “;”

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 43

<trading_attributes_spec> ::= { <trading_attribute_spec> “;” }*

<trading_attribute_spec> ::= “trAttribute ” “string ” <trading_attr_name>

<trading_attr_name>::= <simple_declarator>

4.2.1.2 Example of Interface Template Declaration

Below is an example of an interface CSMConfiguration that is derived by inheritance
from an interface ServiceManagement as defined in the module Management .

interface CSMConfiguration: Management::ServiceManagement{
...

} // end CSMConfiguration

4.2.2 Interface Behavior Specification

The interface signature describes only the syntactic structure of an interface. Signature
compatibility is less discerning than behavior compatibility. It is indeed possible that two in-
terfaces have compatible signatures but differ completely in their behavior. This section de-
scribes how behavior is specified in ODL.

4.2.2.1 ODL Syntax for Interface Behavior and Usage Specification

The following syntax is defined for the interface behavior specification:

<interf_behavior_spec> ::= “behavior ” {
{<interf_behavior_text> [<interf_usage_spec>]}
| <interf_usage_spec> }

<interf_behavior_text> ::=“behaviorText ” <string_literal> “;”

<interf_usage_spec> ::=“usage ” <string_literal> “;”

4.2.2.2 Example of Interface Behavior Specification

Below is an example of an interface CSMConfiguration , which includes a behavior spec-
ification comprising behavior text as well as a usage specification.

interface CSMConfiguration: Management::ServiceManagement {

behavior
behaviorText
“This interface serves to configure the object CSM.

The ReadState operation returns a complete
representation of the CSM state. The WriteState operation

PROPRIETARY - TINA Consortium Members ONLY

4 - 44

Syntax of ODL TINA Object Definition Language MANUAL

allows the complete CSM state to be set.”;

usage
“Operation init must be invoked prior to other
operations defined on the service.

Concurrent calls to ReadState operations are permitted but
all operation invocations are blocked while a WriteState
operation is being handled.

WriteState operations will block until all current
ReadState or WriteState invocations are completed.”;

...
}; // end of CSMConfiguration

4.2.3 Trading Attributes

“Trading attributes” describe properties of an interface used in constraint specifications
when trading or for particular interface references. For each interface type (whether an op-
erational or stream interface), it is possible to specify a list of parametrized qualities, each
of which is associated with an operation or stream interface. These quantities are typically
specified by a server (or another object acting on behalf of the server) and used when ex-
porting an interface reference to the trader. A client of that interface type may express its
requirements to the trader using this set of parameters.

4.2.3.1 ODL syntax for Interface Trading Attributes

The following syntax is defined for trading attribute specifications:

<trading_attributes_spec> ::= { <trading_attribute_spec> “;” }*

<trading_attribute_spec> ::= “trAttribute ” “string ” <trading_attr_name>

<trading_attr_name>::= <simple_declarator>

4.2.3.2 Example of Interface Trading Attribute

The following example shows the use of an interface attribute declaration.

Below is an example of an interface CSMConfiguration , which includes trading attribute
specification.

interface CSMConfiguration: Management::ServiceManagement {

behavior
behaviorText
“This interface serves to configure the object CSM.

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 45

The ReadState operation returns a complete
representation of the CSM state. The WriteState operation
allows the complete CSM state to be set.”;

usage
“Operation init must be invoked prior to other
operations defined on the service.

Concurrent calls to ReadState operations are permitted but
all operation invocations are blocked while a WriteState
operation is being handled.

WriteState operations will block until all current
ReadState or WriteState invocations are completed.”;

// Trading attribute specification
typedef enum { easyAccess , secureAccess } AccesType ;

trAttribute string owner;
trAttribute string SecurityKeyLength;

...
} // end of CSMConfiguration

4.2.4 Operational interface signature

An operational interface signature comprises a set of interrogation and announcement sig-
natures, one for each operation type in the interface. An operational interface signature
specifies the following information (similar to OMG-IDL):

• An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked (interro-
gation or announcement).

• The type of the operation return result (void otherwise).

• The operation identifier.

• A parameter list (zero or more parameters to the operation).

• An optional operation quality of service parameter

• An optional “raises” expression which indicates which exceptions may be raised
as a result of an invocation of this operation.

Support similar to OMG-IDL’s attribute declaration is provided to simplify the specification
of get and set operations.1

1. This should not be confused with “Trader Attributes.”

PROPRIETARY - TINA Consortium Members ONLY

4 - 46

Syntax of ODL TINA Object Definition Language MANUAL

4.2.4.1 ODL syntax for Operational Interface Signature

The following syntax is defined for the signature of operational interfaces. It is similar to the
OMG-IDL syntax for interface template declaration. Note that the operational signature def-
inition is extended with service attribute definitions to enable the expression of QoS con-
straints on each operation.

<op_sig_defns> ::= { <op_sig_defn> “;” }+

<op_sig_defn> ::= {<announcement> | <interrogation>} [“with” <QoS_attribute>]

<QoS_attribute> ::= <QoS_attr_type> <QoS_attr_name>

<QoS_attr_type> ::= <simple_type_spec>

<QoS_attr_name> ::= <simple_declarator>

<announcement> ::= “oneway ” “void ” <identifier> <parameter_dcls>

<interrogation> ::=<attr_dcl>
| <oper_dcl>

<attr_dcl> ::= [“readonly ”] “attribute ” <simple_type_spec>
<declarators>

<oper_dcl> ::= <op_type_spec> <identifier>
<parameter_dcls>
[<raises_expr>] [<context_expr>]

<op_type_spec> ::=<simple_type_spec>
| “void ”

<parameter_dcls> ::= “(“ <param_dcl> { “,” <param_dcl> }* “)”
| “(“ “)”

<param_dcl> ::=<param_attribute> <simple_type_spec>
<declarator>

<param_attribute> ::= “in ”
| “out ”
| “inout ”

<raises_expr> ::= “raises ”
“(“ <scoped_name> { “,” <scoped_name> }* “)”

<context_expr> ::= “context ”
“(“ <string_literal> { “,” <string_literal> }* “)”

4.2.4.2 Operational Interface Attributes

Operational interface attributes are logically equivalent to defining a pair of accessor func-
tions; one to set the value of the attribute and one to get the value of the attribute. These
attribute declarations should not be confused with the trading or quality of service attributes
defined above.

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 47

4.2.4.3 Example of Operational Interface Signature

Below is an example of an interface, Trail . It has three interface attributes (nml_cp ,
neighbors , state) and five operations (create_trail , destroy_trail ,
modify_traffic_description , modify_qos , modify_trail_policies).

interface Trail {
...
attribute CP::SNC nml_cp;
attribute LncNeighborList neighbors;
attribute ManagementState state;

void create_trail (
in TTPoint origin,
in TTPlist destination,
in TrailDescription desc,
in TrailPolicies policies,
out TrailId trail);

void destroy_trail (in TrailId trail);
void modify_traffic_description(

in TrailId trail,
in PacketFlowTrafficDescription trafficDescr);

void modify_qos(in TrailId trail, in PacketFlowQos qos);
void modify_trail_policies(

in TrailId trail,
in TrailPolicies policies);

};

4.2.5 Stream (Flow) Signature

A stream interface is comprised of a set of flow types. Each flow type contains the identifier
of the flow, the information type of the flow, and an indication of whether it is a producer or
consumer (but not both) with respect to the object which provides the service defined by the
template.

It should be noted that the syntax defined here presupposes a directionality with respect to
the stream interface template definitions. If two objects are involved in a stream binding,
then one is designated a service provider, or server, and the other a service consumer, or
client. The interface template describing interactions between them is expressed from the
viewpoint of the client (defining the server). In many ways, particularly where flows travel in
both directions, the choice of client and server may appear rather arbitrary. However, this
model is consistent with many familiar service models as shown in Figure 4-1. Note that the
server type includes a declaration that it “supports” the stream interface, while the client
type includes a declaration that it “requires” the stream interface.

For example, in order to play a video game, a client (the Player) locates an appropriate
interface (VideoGame) to the server (the Game). The service is defined naturally in terms
of information sources (the picture and sound) and sinks (the controls labelled
joystick1 and joystick2). However, all of these definitions presuppose a directionality,
or point of view, namely that of the client. The service view held by the game itself, involving

PROPRIETARY - TINA Consortium Members ONLY

4 - 48

Syntax of ODL TINA Object Definition Language MANUAL

a source of control functions and a sink of video and audio information, can easily be ob-
tained from the other definition via a simple mapping. As a result, one of these service def-
initions is redundant. Stubs for either the Player object (as a client) or the Game object (as
a server) may be produced from a single interface specification, as shown in Figure 4-1.

Figure 4-1. Example of stream interface template usage.

In ODL, stream interfaces are defined as the client’s view on the server. Each flow is spec-
ified as a source if information flows from the server to the client, and as a sink if it flows in
the opposite direction. In the object definition of the server, the stream interface is listed as
a supported interface, while on the client, the interface is listed as a required interface.

4.2.5.1 ODL syntax for Stream (Flow) Signature Declaration

<stream_flow_defns>::=<flow_direction> <flow_type> <identifier>
[“with ” <QoS_attribute>]

<flow_direction> ::= “source ” | “sink ”

<flow_type> ::= <type_spec>

4.2.5.2 Example of Flow Signature Declaration

Following is an example of a stream interface, gameServer , with 4 flows (joystick,
joystick2, picture, sound).

interface gameServer {
...
sink JoystickFlowType joystick1 with JoystickQos joystick1Qos;

Player Game

picture
sound

joystick1
joystick2

interface VideoGame
{

...
}

client stub
development

server stub
development

binding

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 49

sink JoystickFlowType joystick2 with JoystickQos joystick2Qos;
source VideoFlowType picture with VideoQos pictureQos;
source AudioFlowType sound with AudioQos soundQos;

};

4.2.6 Interface Inheritance

The rules which apply to interface inheritance are those specified for OMG-IDL, with exten-
sions to deal with flows.

4.2.6.1 ODL Syntax for Interface Inheritance

The following syntax is defined for interface inheritance:

<interface_header> ::= “interface ” <identifier> [<interf_inheritance_spec>]

<interf_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

4.2.6.2 OMG Implications

It should be noted that the OMG-IDL specification, in its current form [37], prohibits redefi-
nition of an operation identifier in a derived interface type specification and prohibits inher-
itance of two operations of the same identifier. Initially, ODL will be restricted according to
this limitation of OMG-IDL in operational and stream interface definitions.

4.2.6.3 Use of Inheritance

Consistent with OMG-IDL, interface inheritance is the equivalent of simple inclusion of all
attributes (including interface attributes), operations and flows from the base interface types
into the derived interface type. This inclusion involves all attributes, operations and flows of
the base interface types, including those obtained by inheritance from other interface spec-
ifications. Hence a derived type should always be capable of providing the services of the
base interface type.

It should be noted that a stream interface cannot inherit from an operational interface and
vice versa.

4.2.6.4 Example of Interface Inheritance

Following is an example of an interface CSMConfiguration that is derived by inheritance
from an interface ServiceManagement that is defined in the module Management .

module Management{
interface ServiceManagement{

behavior

PROPRIETARY - TINA Consortium Members ONLY

4 - 50

Syntax of ODL TINA Object Definition Language MANUAL

behaviorText
“This allows management of a service....”

...
attribute short edge_nb;
oneway create_edge (in EdgeRef leaf);
void attach_edge (in EdgeId leaf)

with BoundedResponseTime attach_edgeQos;
...

}; // end of interface ServiceManagement
}; // end of module Management

interface CSMConfiguration: Management::ServiceManagement{
behavior

behaviorText
“This allows configuration of the CSM object...”

...
}; // end of interface CSMConfiguration

The specification of the CSMConfiguration interface in this example is consistent with
the following example specification:

interface CSMConfiguration{
behavior

behaviorText
“This allows management of a service....
This allows configuration of the CSM object...”

...
attribute short edge_nb;
oneway create_edge (in EdgeRef leaf);
void attach_edge (in EdgeId leaf)

with BoundedResponseTime attach_edgeQos;
... // definitions specific to ServiceManagement
... // additional definitions specific to CSMConfiguration

}; // end of interface CSMConfiguration

4.3 Object Template

4.3.1 Structure

The reader is assumed to have a knowledge of the object architecture as presented in [5].
An object template specification comprises two high level parts. The first supports inherit-
ance, and is associated with the declaration of the object’s identifier. The second part is the
object body, which comprises the main sub-parts of the template as follows:

• A behavior specification,

• A specification of supported interfaces.

• An initialization specification,

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 51

Below we will examine these specifications in more detail, as well as the syntax that sup-
ports inheritance.

4.3.1.1 ODL Syntax for Object Template Declaration

The following syntax is defined for object template declaration:

<object_template> ::=<object_template_header>
“{“ <object_template_body> “}”

<object_template_header> ::= “object ” <identifier>
[<object_inheritance_spec>]

<object_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

<object_template_body> ::= [<object_behavior_spec>]
<suptd_interf_templates>
[<object_init_spec>]

<object_behavior_spec> ::=“behavior ” {
{<object_behavior_text> [<reqrd_interf_templates>] }
| <reqrd_interf_templates> }

<object_behavior_text> ::=“behaviorText ” <string_literal> “;”

<reqrd_interf_templates> ::= “requires ” <req_interf_defn>
{“,” <req_interf_defn> }* “;”

<req_interf_defn> ::= <scoped_name>

<suptd_interf_templates> ::= “supports ” <suptd_interf> “;”

<suptd_interf> ::= <suptd_interf_defn> {“,” <suptd_interf_defn> }*

<suptd_interf_defn> ::= <scoped_name>

<object_init_spec> ::=“initial ” <scoped_name> “;”

4.3.1.2 Example of Object Template Declaration

Following is an example showing how an object template is declared. It begins with the key-
word “object”, which is then followed by the identifier of the object type, acmeCsmFactory .
This template doesn’t inherit from any other, as indicated by the absence of any inheritance
specifications. The body of the template is then declared between the braces.

object AcmeCsmFactory {
…

};

PROPRIETARY - TINA Consortium Members ONLY

4 - 52

Syntax of ODL TINA Object Definition Language MANUAL

4.3.2 Object Behavior Specification

The behavior of an object is specified in two parts. The first is a text string that should de-
scribe the role of an object in providing services via each of its interfaces. The second com-
prises the (declared) required interfaces which specifies interface types used by instances
of the object to perform their functions and provide their services.

4.3.2.1 ODL Syntax for Object Behavior Template

The following syntax is defined for object behavior specification:

<object_behavior_spec> ::= “behavior ” {
{<object_behavior_text> [<reqrd_interf_templates>] }
| <reqrd_interf_templates> }

<object_behavior_text> ::=“behaviorText ” <string_literal> “;”

<reqrd_interf_templates> ::= “requires ” <req_interf_defn>
{“,” <req_interf_defn> }* “;”

<req_interf_defn> ::=<scoped_name> | <interface_template>

4.3.2.2 Example of Object Behavior Declaration

Following is an example of the use of the behavior specification. A Timer object, calls an
operation tick on the TimeInterrupt interface of another object.

object Timer{

behavior
behaviorText
“Instances of this object periodically call the
tick function of a specified TimerInterrupt
interface.”;

requires
TimeInterrupt;

...
};

4.3.3 Supported Interfaces

The (declared) supported interfaces of an object are the interfaces listed as supported in
its template specifications. Instances of interfaces of types declared as supported may be
offered by instances of objects of the types being defined.

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 53

4.3.3.1 ODL Syntax for an Object’s Supported Interfaces

The following syntax is defined for supported interface declaration:

<suptd_interf_templates> ::= “supports ” <suptd_interf> “;”

<suptd_interf> ::= <suptd_interf_defn> {“,” <suptd_interf_defn> }*

<suptd_interf_defn> ::= <scoped_name> | <interface_template>

4.3.3.2 Example of Object Supported Interfaces

Below is an example which shows the use of the supported interfaces specification.

object Timer{

behavior
behaviorText
“Instances of this object periodically call the
tick function of a specified TimerInterrupt
interface.”;

requires
TimeInterrupt;

supports
PeriodicMgmt,
TimerService;

...
};

4.3.4 Object Initialization Specification

The initialization specification identifies an interface template, a reference to which will be
returned to the instantiator of the object template being defined. This interface may be used
to initialize the newly instantiated object. It should be noted that the initial interface must
also be one of the supported interfaces (see below).

4.3.4.1 ODL Syntax for Object Initialization Specification

The following syntax is defined for the initialization specification:

<object_init_spec> ::= “initial ”
{ <scoped_name> | <interface_template> } “;”

PROPRIETARY - TINA Consortium Members ONLY

4 - 54

Syntax of ODL TINA Object Definition Language MANUAL

4.3.4.2 Example of Object Initialization Specification Declaration

Below is an example of the use of the object initialization specification. It extends from the
previous example of a Timer object. An instance of the initial interface template, Period-
icMgmt , is returned to the creator of the object. This interface is used to manage the object
instance.

object Timer{

behavior
behaviorText
“Instances of this object periodically call the
tick function of a specified TimerInterrupt
interface.”;

requires
TimeInterrupt;

supports
PeriodicMgmt,
TimerService;

initial
PeriodicMgmt;

};

4.3.5 Object Inheritance

Object inheritance is intended to support specification reuse and to provide a mechanism
for defining compatibility via sub-typing relationships.

4.3.5.1 ODL Syntax for Object Inheritance

The following syntax is defined for object inheritance:

<object_template_header> ::= “object ” <identifier>[<object_inheritance_spec>]

<object_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

Object inheritance is the equivalent of simple inclusion of all constraint attributes, type def-
initions, required and supported operational and stream interface specifications from the
base object types into the derived object type. This inclusion involves all attributes, types
and interfaces of the base object, including those obtained by inheritance from other object
specifications.

There are no restrictions on the names of interfaces or types inherited from ODL base ob-
ject templates.

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 55

The initial interface specified in a derived object template must be of a type which is the
same as, or derived from, all initial interface types of the corresponding base object classes.

In the case of required and supported interface types, the derived object type can be con-
sidered to require or support the “restricted set” of interface types as this set is defined in
Section 3.7.

4.3.5.2 Example of Object Inheritance.

Below is an example which shows an object MyCSMfactory derived from the object CSM-
factory :

object CSMfactory {

behavior
requires

QoSmanagerIF;

supports
Management,
LcgFactory,
CSMConfiguration;

initial
Management;

}; // end CSMfactory

interface MyManagement: Management{
...

}; // end MyManagement

interface MyCSMConfiguration: CSMConfiguration{
...

}; // end MyCSMConfiguration

object MyCSMfactory: CSMfactory{

behavior
requires

AccountingEventIF;

supports
MyManagement,
MyCSMConfiguration;

initial

PROPRIETARY - TINA Consortium Members ONLY

4 - 56

Syntax of ODL TINA Object Definition Language MANUAL

MyManagement;

}; // end MyCSMfactory

The interface MyManagement inherits from the initial interface of the base object class. It
should be noted that the derived object supports an interface type, MyCSMConfigura-
tion , which is derived from an interface type supported by the base class, CSMConfig-
uration . The instantiation of either or both of these types at any particular time is an
implementation decision. An implementation of the MyCSMfactory object may instantiate
zero or more instances of CSMConfiguration for example, and still conform to this spec-
ification. The number of instances of any particular interface type may be constrained by
the object behavior specification.

4.4 Object Group template

4.4.1 Structure

The reader is assumed to have a knowledge of the object group architecture [5], [23]. A
group template specification comprises two high level parts. The first supports inheritance,
and is associated with the declaration of the group’s identifier. The second part is the group
body, which comprises the main sub-parts of the template as follows:

• A behavior specification,

• A specification of supported objects and object groups.

• An initialization specification,

• A specification of interfaces visible outside the group,

Below we will examine these specifications in more detail, as well as the syntax that sup-
ports inheritance.

4.4.1.1 ODL Syntax for Group Template Declaration

The following syntax is defined for object group template declaration:

<group_template> ::=<group_template_header>
“{“ <group_template_body> “}”

<group_template_header> ::= “group ” <identifier>
[<group_inheritance_spec>]

<group_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

<group_template_body> ::= [<group_behavior_spec>]
<supp_comp_templates>
[<group_init_spec>]
[<contract_interfaces>]

<group_behavior_spec> ::= “behavior ” <group_behavior_text>

<group_behavior_text> ::=“behaviorText ” <string_literal> “;”

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 57

<supp_comp_templates>::= “components ” <suptd_comp> “;”

<suptd_comp> ::=<suptd_comp_defn> {“,” <suptd_comp_defn> }*

<suptd_comp_defn> ::= <scoped_name>

<group_init_spec> ::= “manager ” <scoped_name> “;”

<contract_interfaces> ::= “contracts ” <scoped_name> { “,” <scoped_name> }* “;”

4.4.1.2 Example of Group Template Declaration

Below is an example showing how a group template is declared. The example presented is
an object group subnetManager .

group subnetManager {
...

};

4.4.2 Object Group Behavior and Initialization Specification

The behavior specifications of an object group strongly parallels that of an object. The ini-
tialization specification of an object group is slightly different to that of an object in that it
specifies an object template to be instantiated instead of an interface template. In both cas-
es an interface template is expected to be returned to the creator. It should be noted that
the manager object must be one of the component objects and the returned interface, one
of the contracts (see below).

4.4.2.1 ODL Syntax for Group Behavior and Initialization Declaration

The following syntax is defined for group behavior and initialization specification:

<group_behavior_spec> ::= “behavior ” <group_behavior_text>

<group_behavior_text> ::= “behaviorText ” <string_literal> “;”

<group_init_spec> ::= “manager ” <scoped_name> “;”

4.4.2.2 Example of Group Behavior and Initialization Declaration

Following is an example of an object group specification for the group subnetManager .

interface Configuration {...};

interface Configurator {...};

PROPRIETARY - TINA Consortium Members ONLY

4 - 58

Syntax of ODL TINA Object Definition Language MANUAL

object CMC {
behavior

requires
Configuration;

supports
Configurator ;

...
};

group SubnetManager {

behavior
behaviorText
“This group manages a subnetwork”

...

manager
CMC;

...
};

4.4.3 Contracts

Contracts are the interfaces of the object group that are visible to entities outside the object
group. In the object group specification these interfaces are indicated as a simple list of (op-
tionally scoped) identifiers.

4.4.3.1 ODL Syntax for Contract Declaration

Following is the syntax supporting contracts.

<contract_interfaces> ::= “contracts ” <scoped_name> { “,” <scoped_name> }* “;”

4.4.3.2 Example of Contract Declaration

Below we extend the previous example to include contracts.

interface Configuration {...};

interface Configurator {...};

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 59

interface Trail {...};

interface TC {...};

object CMC {
behavior

requires
Configuration;

supports
Configurator ;

...
};

group SubnetManager {

behavior
behaviorText
“This group manages a subnetwork”

...

manager
CMC;

contracts
Configurator,
Trail,
TC;

};

4.4.4 Component Objects and Groups

Component objects and object groups are the object and object group templates that can
be instantiated within the object group.

4.4.4.1 ODL Syntax for Component Declaration

Following is the syntax supporting component objects.

<supp_comp_templates>::=“components ” <suptd_comp> “;”

<suptd_comp> ::=<suptd_comp_defn> {“,” <suptd_comp_defn> }*

<suptd_comp_defn> ::= <scoped_name>
| <object_template>
| <group_template>

PROPRIETARY - TINA Consortium Members ONLY

4 - 60

Syntax of ODL TINA Object Definition Language MANUAL

4.4.4.2 Example of Component Declaration

Below we extend the previous example to include contracts.

interface Configuration {...};

interface Configurator {...};

interface Trail {...};

interface TC {...};

object CMC {
behavior

requires
Configuration;

supports
Configurator ;

...
};

object NetworkCoordinator {
behavior

requires
TC, SncService, SncServiceFactory;

supports
Trail, TC, Configuration;

...
};

object NetworkCP {
supports

SncService, SncServiceFactory, Configuration;
...

};

object ElementCP {...};

group SubnetManager {

behavior
behaviorText

TINA Object Definition Language MANUAL Syntax of ODL

PROPRIETARY - TINA Consortium Members ONLY
 4 - 61

“This group manages a subnetwork”

components
CMC, NetworkCoordinator, NetworkCP, ElementCP;

manager
CMC;

contracts
Configurator, Trail, TC;

};

4.4.5 Object Group Inheritance

Object group inheritance is intended to support specification reuse and to provide a mech-
anism for defining compatibility via sub-typing relationships. The purpose of such compati-
bility for object specifications is to support the use of object framework specifications.

4.4.5.1 ODL Syntax for Group Inheritance Declaration

The following syntax is defined for group inheritance:

<group_template_header> ::= “group ” <identifier> [<group_inheritance_spec>]

<group_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

Group inheritance is the equivalent of simple inclusion of all type definitions, contracts and
component specifications from the base group types into the derived group type. This in-
clusion involves all attributes, types and objects of the base group, including those obtained
by inheritance from other group specifications.

There are no restrictions on the identifiers of objects or types inherited into group templates.

The manager object specified in a derived object template must be of a type which is de-
rived from all manager object types of the corresponding base object classes.

PROPRIETARY - TINA Consortium Members ONLY

4 - 62

Syntax of ODL TINA Object Definition Language MANUAL

TINA Object Definition Language MANUAL How to use ODL

PROPRIETARY - TINA Consortium Members ONLY
 5 - 63

5. How to use ODL

This chapter discusses ways in which ODL specifications can be used.

5.1 ODL Tool

This section describes one use of ODL specifications, and their position in the overall pro-
cess of application development (see Figure 5-1.).

Figure 5-1. Use of ODL specifications in a C++ development environment

Following the ODP approach, TINA applications are viewed from 5 viewpoints (enterprise,
information, computational, engineering, and technology).1 In principle a language for each
of the viewpoints can be specified. ODL has been developed to enable the computational
viewpoint of an application to be described. There are a number of ways that a language
such as ODL (and languages pertinent to other viewpoints) can be used in a software en-
gineering methodology. For example the enterprise viewpoint language can take on the role
of the requirements specification language, and include policies on issues like accounting
and security. The information viewpoint language can be used to represent the conceptual
domain of the intended system. The Engineering viewpoint language may be used to spec-

1. TINA defines modelling concepts for the information, computational, and engineering viewpoints.

Requirements

Information
Model

Computational
Model

Engineering
Model

Stub code

ODL
specs

Object code

C++
code

Enterprise
Model

Technology
Model

ODL
Tool C++

headers

Spec.
Library

C++
Compiler

PROPRIETARY - TINA Consortium Members ONLY

5 - 64

How to use ODL TINA Object Definition Language MANUAL

ify configuration and distribution information. The technology viewpoint language may be
used to specify particular technology information underlying the system. The computational
viewpoint language may be used to drive the bulk of the programming language implemen-
tation of the system. The entities that appear in the computational viewpoint language may
be derived from those in the information viewpoint language, and be influenced by the
specifications in the enterprise and engineering viewpoint languages.

Ultimately the system specification in ODL needs to be mapped to a programming lan-
guage, such as C++, for implementation of the application. Languages other than C++ can
be used to implement ODL specified systems. However, for illustrative purposes, the fol-
lowing compilation chain deals with the processing ODL specification with a C++ language
mapping and C++ application files.

Once the system specifications have been written in ODL, a tool called ODL tool, processes
them. It produces three types of outputs:

• Object group, object, and interface descriptions, that can be stored in a repos-
itory/library, for future re-use.

• Stub code for the interfaces described (in a form that is compilable, see [9]).

• Text files (for example in the form of C++ header files) enabling the linking of
the stub codes with object implementation code.

ODL tool can operate by initially passing input through a standard C++ preprocessor, sup-
porting macro expansion and file inclusion. Preprocessing may or may not be performed
by a distinct application.

A C++ compiler can then take as input the C++ description of the application implementa-
tion, and the C++ header files, in order to produce executable code.

As stated in section 3, interfaces objects and groups can be specified independently. One
possible way in which ODL specifications can be documented is to separate interface, ob-
ject and group declarations into three different kinds of files. These three different source
files can be used at compile time as input for the ODL tool (see Figure 5-2.).

This approach offers several advantages [28], the main two being:

• Clear separation between group, object and interface declaration;

• Possibility to re-use directly OMG-IDL specifications.

TINA Object Definition Language MANUAL How to use ODL

PROPRIETARY - TINA Consortium Members ONLY
 5 - 65

Figure 5-2. Inputs to ODL tool.

object_tmpl.odl

object O1{
…
supports
...

}

Objects description

interface_tmpl.odl

interface i1{
…
operation o1;
operation o2;

}

Interfaces description

ODL Tool

object_tmpl.odl

group G1{
...
components
...
contracts
...

}

Groups description

PROPRIETARY - TINA Consortium Members ONLY

5 - 66

How to use ODL TINA Object Definition Language MANUAL

TINA Object Definition Language MANUAL Acknowledgments

PROPRIETARY - TINA Consortium Members ONLY
 6 - 67

6. Acknowledgments

The editor acknowledges the valuable cumulative input of review comments, prior editor-
ships and authorships, and contributions from related documents received from:

- Martin Chapman (BT)

- Heine Christensen (Tele Danmark)

- Eric Colbern (Telenor)

- Fabrice Dupuy (CNET)

- Frederic Dang-Tran (CNET)

- Ennio Grasso (CSELT)

- Takao Hamada (Fujitsu)

- Tom Handegard (Telenor)

- Nigel Hooke (Telstra)

- Mikael Jorgensen (Tele Danmark)

- Barry Kitson (Telstra)

- Peter Leydekkers (PTT Nederland)

- Henry Lockyer (Ericsson)

- Subrata Mazumdar (IBM)

- Nicholas Mercouroff (Acatel)

- Corrado Moiso (CSELT)

- Osamu Miyagishi (NTT)

- Chris Mugden (Telstra)

- Narayanan Natarajan (Bellcore)

- Ajeet Parhar (Telstra)

- Juan Pavón (Acatel)

- Stephane Pensivy (France Telecom)

- Fernando Ruano (Telefonica)

- Nikolaus Singer (Acatel)

- Vincent Stinesen (PTT Nederland)

- Joe Sventek (Hewlett-Packard)

- Paul Vickers (Hewlett-Packard)

- Geoff Wheeler (Telstra)

Ajeet Parhar.
Telstra
TINA-C Core Team

PROPRIETARY - TINA Consortium Members ONLY

6 - 68

Acknowledgments TINA Object Definition Language MANUAL

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 A - 69

Appendix A. BNF description of ODL

A.1 ODL Lexical Conventions

The lexical and preprocessor conventions of OMG-IDL are assumed [37]. It should be not-
ed that OMG-IDL extends the 52 alphabetic characters used on English keyboards using
the ISO Latin-1 character set. The graphic characters are also unusually rich, extending the
familiar 32 character set to a 65 character set. The decimal digits, formatting characters and
escape sequences are not unusual.

A.2 ODL Keywords

Most keywords are imported from OMG-IDL but several are added to support the exten-
sions of ODL with respect to OMG-IDL. These keywords are underlined.

any attribute behavior behavorT ext
boolean case char components
const context contracts default
double enum exception FALSE
float group in initial
inout interface long manager
module Object object octet
oneway out raises requires
readonly sequence short sink
source string struct supports
switch trAttribute TRUE typedef
unsigned union usage void
with

A.3 ODL extended BNF Notation

The following meta-symbols are use to describe ODL’s syntax. The description is an ex-
tended Backus Naur Form (BNF)1.

Symbol Meaning

::= Defined to be

 | Alternatively

 <text> non-terminal

 “text” terminal (i.e., literal)

* the preceding syntactic unit may be repeated zero or more times

+ the preceding syntactic unit may be repeated one or more times

1. Note that concatenation of symbols has a higher precedence than |. For example, X X X | Y Y Y is
equivalent to {X X X} | {Y Y Y}

PROPRIETARY - TINA Consortium Members ONLY

A - 70

TINA Object Definition Language MANUAL

{} the enclosed syntactic units are grouped as a single syntactic unit

[] the enclosed syntactic unit is optional - may occur zero or one time

A.4 ODL Syntax

The syntax for ODL is presented below. Expressions taken from OMG IDL are marked with
a *.

A.4.1 Top Level Syntax

1. <odl_spec> ::= <definition>*

2. <definition> ::= <module> “;”
| <group_dcl> “;”
| <object_dcl> “;”
| <interface_dcl> “;”
| <supporting_def> “;”

A.4.2 Module Syntax

3.* <module> ::= “module ” <identifier> “{“ <definition>+ “}”

4.* <scoped_name> ::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

A.4.3 Group Syntax

5. <group_dcl> ::= <group_forward_dcl>
| <group_template>

6. <group_forward_dcl> ::= “group ” <identifier>

7. <group_template> ::= <group_template_header>
“{“ <group_template_body> “}”

8. <group_template_header> ::= “group ” <identifier>
[<group_inheritance_spec>]

9. <group_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

10. <group_template_body> ::= [<supporting_def_spec>]
[<interface_def_spec>]
[<object_def_spec>]

[<group_behavior_spec>]
<supp_comp_templates>
[<group_init_spec>]
[<contract_interfaces>]

11. <supporting_def_spec> ::= {<supporting_def> “;”}*

12. <interface_def_spec> ::= {<interface_dcl> “;”}*

13. <object_def_spec> ::= {<object_dcl> “;” }*

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 A - 71

14. <group_behavior_spec> ::= “behavior ” <group_behavior_text>

15. <group_behavior_text> ::= “behaviorText ” <string_literal> “;”

16. <supp_comp_templates> ::= “components ” <supp_comp> “;”

17. <supp_comp> ::= <supp_comp_defn> {“,” <supp_comp_defn> }*

18. <supp_comp_defn> ::= <scoped_name>

19. <group_init_spec> ::= “manager ” <scoped_name> “;”

20. <contract_interfaces> ::= “contracts ” <scoped_name>
{ “,” <scoped_name> }* “;”

A.4.4 Object Syntax

21. <object_dcl> ::= <object_forward_dcl>
| <object_template>

22. <object_forward_dcl> ::= “object ” <identifier>

23. <object_template> ::= <object_template_header>
“{“ <object_template_body> “}”

24. <object_template_header> ::= “object ” <identifier>
[<object_inheritance_spec>]

25. <object_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

26. <object_template_body> ::= [<supporting_def_spec>]
[<interface_def_spec>]

[<object_behavior_spec>]
<suptd_interf_templates>
[<object_init_spec>]

27. <object_behavior_spec> ::= “behavior ” {
{ <object_behavior_text>

[<reqrd_interf_templates>] }
| <reqrd_interf_templates> }

28. <object_behavior_text> ::= “behaviorText ” <string_literal> “;”

29. <reqrd_interf_templates> ::= “requires ” <req_interf_defn>
{“,” <req_interf_defn> }* “;”

30. <req_interf_defn> ::= <scoped_name>

31. <suptd_interf_templates> ::= “supports ” <suptd_interf> “;”

32. <suptd_interf> ::= <suptd_interf_defn> {“,” <suptd_interf_defn> }*

33. <suptd_interf_defn> ::= <scoped_name>

34. <object_init_spec> ::= “initial ” <scoped_name> “;”

A.4.5 Interface Syntax

35. <interface_dcl> ::= <interface_forward_dcl>
| <interface_template>

36. <interface_forward_dcl> ::= “interface ” <identifier>

PROPRIETARY - TINA Consortium Members ONLY

A - 72

TINA Object Definition Language MANUAL

37. <interface_template> ::= <interface_header> “{“ <interface_body> “}”

38. <interface_header> ::= “interface ” <identifier>
[<interf_inheritance_spec>]

39. <interf_inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> }*

40. <interface_body> ::= [<supporting_def_spec>]

[<interf_behavior_spec>]
[<trading_attributes_spec>]
{ <op_sig_defns> | <stream_sig_defns> }

41. <interf_behavior_spec> ::= “behavior ” {
{<interf_behavior_text> [<interf_usage_spec>]}
| <interf_usage_spec> }

42. <interf_behavior_text> ::= “behaviorText ” <string_literal> “;”

43. <interf_usage_spec> ::= “usage ” <string_literal> “;”

44. <trading_attributes_spec> ::= { <trading_attribute_spec> “;” }*

45. <trading_attribute_spec> ::= “trAttribute ” “string ” <trading_attr_name>

46. <trading_attr_name> ::= <simple_declarator>

A.4.6 (Operational) Interface Syntax

47. <op_sig_defns> ::= { <op_sig_defn> “;” }*

48. <op_sig_defn> ::= { <announcement> | <interrogation> }
[“with” <QoS_attribute>]

49. <QoS_attribute> ::= <QoS_attr_type> <QoS_attr_name>

50. <QoS_attr_type> ::= <simple_type_spec>

51. <QoS_attr_name> ::= <simple_declarator>

52. <announcement> ::= “oneway ” “void ” <identifier> <parameter_dcls>

53. <interrogation> ::= <attr_dcl>
| <oper_dcl>

54. <attr_dcl> ::= [“readonly ”] “attribute ” <param_type_spec>
<declarators>

55. <oper_dcl> ::= <op_type_spec> <identifier>
<parameter_dcls>
[<raises_expr>] [<context_expr>]

56.*<op_type_spec> ::= <param_type_spec>
| “void ”

57.*<parameter_dcls> ::= “(“ <param_dcl> { “,” <param_dcl> }* “)”
| “(“ “)”

58.*<param_dcl> ::= <param_attribute> <param_type_spec>
<declarator>

59.*<param_attribute> ::= “in ” | “out ” | “inout ”

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 A - 73

60.*<raises_expr> ::= “raises ”
“(“ <scoped_name> { “,” <scoped_name> }* “)”

61.*<context_expr> ::= “context ”
“(“ <string_literal> { “,” <string_literal> }* “)”

62.*<param_type_spec> ::= <base_type_spec>
| <string_type>
| <scoped_name>

A.4.7 (Stream) Interface Syntax

63. <stream_sig_defns> ::= { <stream_flow_defn> “;” }*

64. <stream_flow_defn> ::= <flow_direction> <flow_type>
 <identifier> [“with” <QoS_attribute>]

65. <flow_direction> ::= “source ” | “sink ”

66. <flow_type> ::= <param_type_spec>

A.4.8 Supporting Definition Syntax

67. <supporting_def> ::= <const_dcl> “;”
| <type_dcl> “;”
| <except_dcl> “;”

68.*<const_dcl> ::= “const ” <const_type>
<identifier> “=” <const_exp>

69.*<const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <scoped_name>

70.*<const_exp> ::= <or_expr>

71.*<or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

72.*<xor_expr> ::= <and_expr>
| <xor_expr> “^” <and_expr>

73.*<and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

74.*<shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

75.*<add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

76.*<mult_expr> ::= <unary_expr>
| <mult_expr> “∗” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

PROPRIETARY - TINA Consortium Members ONLY

A - 74

TINA Object Definition Language MANUAL

77.*<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

78.*<unary_operator> ::= “-”
| “+”
| “~”

79.*<primary_expr> ::= <scoped_name>
| <literal>
| “(“ <const_exp> “)”

80.*<literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

81.*<boolean_literal> ::= “TRUE”
| “FALSE ”

82.*<type_dcl> ::= “typedef ” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>

83.*<type_declarator> ::= <type_spec> <declarators>

84.*<type_spec> ::= <simple_type_spec>
| <constr_type_spec>

85.*<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

86.*<base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <boolean_type>
| <octet_type>
| <any_type>

87.*<floating_pt_type> ::= “float ”
| “double ”

88.*<integer_type> ::= <signed_int>
| <unsigned_int>

89.*<signed_int> ::= <signed_long_int>
| <signed_short_int>

90.*<signed_long_int> ::= “long ”

91.*<signed_short_int> ::= “short ”

92.*<unsigned_int> ::= <unsigned_long_int>
| <unsigned_short_int>

93.*<unsigned_long_int> ::= “unsigned ” “long ”

94.*<unsigned_short_int> ::= “unsigned ” “short ”

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 A - 75

95.*<char_type> ::= “char ”

96.*<boolean_type> ::= “boolean ”

97.*<octet_type> ::= “octet ”

98.*<any_type> ::= “any”

99.*<template_type_spec> ::= <sequence_type>
| <string_type>

100.*<sequence_type> ::= “sequence ” “<” <simple_type_spec> “,”
<positive_int_const> “>”

| “sequence ” “<” <simple_type_spec> “>”

101.*<string_type> ::= “string ” “<” <positive_int_const> “>”
| “string ”

102.*<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

103.*<struct_type> ::= “struct ” <identifier> “{“ <member_list> “}”

104.*<member_list> ::= <member>+

105.*<member> ::= <type_spec> <declarators> “;”

106.*<union_type> ::= “union ” <identifier>
“switch ” “(“ <switch_type_spec> “)”
“{“ <switch_body> “}”

107.*<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

108.*<switch_body> ::= <case>+

109.*<case> ::= <case_label>+ <element_spec> “;”

110.*<case_label> ::= “case ” <const_exp> “:”
| “default ” “:”

111.*<element_spec> ::= <type_spec> <declarator>

112.*<declarators> ::= <declarator> { “,” <declarator> }*

113.*<declarator> ::= <simple_declarator>
| <complex_declarator>

114.*<simple_declarator> ::= <identifier>

115.*<complex_declarator> ::= <array_declarator>

116.*<array_declarator> ::= <identifier> <fixed_array_size>+

117.*<fixed_array_size> ::= “[” <positive_int_const> “]”

118.*<positive_int_const> ::= <const_exp>

119.*<enum_type> ::= “enum ” <identifier>
“{“ <enumerator> { “,” <enumerator> }* “}”

PROPRIETARY - TINA Consortium Members ONLY

A - 76

TINA Object Definition Language MANUAL

120.*<enumerator> ::= <identifier>

121.*<except_dcl> ::= “exception ” <identifier> “{“ <member>* “}”

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - 77

Appendix B. Further ODL development

This section contains material and issues that are not a part of ODL, but may be in future
releases.

B.1 Transactions

An operational interface signature, comprising a set of interrogation and announcement sig-
natures, may be expanded in later versions of ODL to include the following:,

• In the case of interrogation additional information can be provided to design the
operation as a transaction initiation or a transaction join.

B.1.1 ODL syntax for Operational Interface Signature

If transaction support is included in ODL, the following syntax may be defined for the signa-
ture of operational interfaces.

<oper_dcl> ::= [<trans_attribute>]
<op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>] [<context_expr>]

<trans_attribute> ::= “transaction ” “initiation ” | “transaction ” “join ”

An alternative approach to enabling transactions in ODL is to pass transaction parameters
via an environment object. Currently this is the preferred approach.

B.1.2 Example of Operational Interface Signature

The following example shows the declaration of an operation delete_line as a initiation
of a transaction.

transaction initiation delete_line (in LineId Line);

B.2 Contract Template supplement to Object Group Template

In the current version of ODL, a contract is an interface. There is some motivation to provide
a contract template that has information additional to an interface template. The specifica-
tion of a contract template entails specification of the following information:

• Identification of the interface template that forms the basis for the contract tem-
plate.

• Specification of the release independence policy for the contract template.

• Specification of the security policy governing access to instances of the contract
template.

For now, both release independence policy and security policy components are considered
as text strings.

PROPRIETARY - TINA Consortium Members ONLY

 - 78

TINA Object Definition Language MANUAL

B.2.0.1 ODL Syntax for contract declaration

A possible structure for a contract template follows:

<contracts_dcl> ::= <contracts_keywords> <identifier> { “,” <identifier> }* “;”

<contracts_keywords> ::= “contracts”

<contract_template> ::= <contract_template_header>
“{“ <contract_template_body> “}”

<contract_template_header> ::= “contract” [“template”] <identifier>

<contract_template_body> ::= <interf_templ_dcl> <release_dcl> <security_dcl>

<interf_templ_dcl> ::= “interface” [“template”] <identifier> “;”

<release_dcl> ::= “release” [“policy”] <string_literal> “;”

<security_dcl> ::= “security” [“policy”] <string_literal> “;”

B.3 Naming

In a situation where ODL templates and types are developed by disparate organizations,
there is likely to be a need to refer to remote templates and types. One way to satisfy this
need is to provide a naming scheme for ODL entities that is globally unique.

Support for such a naming scheme may be provided by ODL syntax. For example, if the
adopted naming scheme involved a string unique to each organization, (and it identified
subparts of that organization) and the globally unique name of an ODL entity was a concat-
enation of those strings, and the scoped name of the entity’s identifier, then a keyword can
be added to ODL to identify the organization (and subpart) on a per file basis.

nameHeader <organization_identifier>/<substruct identifier(s)>

group G1{
...
components

O1, O2;
...
contracts

I2;

}; // end of G1

So the global name of the group template of G1 is:

<organization_identifier>/<substruct identifier(s)>/G1

The above solution is presented as an example only. It is intended to highlight an area of
future development of ODL.

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - 79

B.4 Multiplicity of Interfaces on Objects, and Objects in Groups

Currently there is no means, in ODL, to specify the initial and maximum number of:

• interfaces on an object, or

• objects in a group, or

• contracts on a group

(other than by making a comment). These issues are considered part of an engineering/
configuration specification, additional to the ODL specification of a system. Hence, this is-
sue is considered outside the scope of this document. However, the production of such an
engineering language should be considered an important component of future work.

B.5 Synchronization of Flows

Currently there is no means of indicating whether, and how, flows in a stream interface are
synchronized. For example, it would be expected that picture and sound flows in a video
phone service have “lip synch”. A cursory investigation of this issue suggests that the prob-
lem of specifying synchronization relies on the definition of synchronization. However, there
appear to be a number of useful definitions of synchronization, as well as specification of
the tolerance of variation that constitutes synchronization. Further investigation is required.
before a stable syntax and semantics is identified for ODL. A simple minded means of add-
ing synchronization syntax to ODL is to add a keyword which supports a list of flow identi-
fiers (to indicate which flows are to be in synchronization) and synchronization type
identifier. For example, the stream_flow_defn could be changed to the following

122.<stream_sig_defns> ::= { <stream_flow_defn> “;” }+ |
[{“synch” <synch_type> <flow_identifier_list> ”;” }+]

An example of how this could be expressed as ODL is shown below.

interface gameServer {
...
sink JoystickFlowType joystick1 with JoystickQos joystick1Qos;
sink JoystickFlowType joystick2 with JoystickQos joystick2Qos;
source VideoFlowType picture with VideoQos pictureQos;
source AudioFlowType sound with AudioQos soundQos;

synch lipSynch picture sound;
};

B.6 Security

Security in TINA systems is an important issue. A security architecture for TINA systems is
documented in “Security Architecture” [25], the annex of which includes some suggested
additions to ODL to support the proposed architecture. This work needs to be examined in
detail and integrated with the current ODL specifications.

PROPRIETARY - TINA Consortium Members ONLY

 - 80

TINA Object Definition Language MANUAL

B.7 Instance Interaction Documentation/Diagrams.

ODL is a language is a language describing types. At times there is also a need to docu-
ment instances of those types, or more specifically, the interactions of instances of ODL
types. A notation for documenting such interactions is beyond the scope of this document.
However, there is considerable existing literature which can be used as a basis for such
documentation, for example, the interaction diagrams of “Object Oriented Software Engi-
neering” [35] and the dynamic model in “Object Oriented Modelling and Design” [36].

Here we also propose the following notation for documenting entity interactions:

B.7.1 Proposed Instance Interaction Documentation Conventions

Following shows an example use of a proposed convention to document a scenario/object-
interaction. In this example it involves creation of an object group instance.

N#1 This assumes that the “brand X” object factory service (or similar) is used. The ob-
ject factory server is deployed at DPE deployment time. The createObject method is giv-
en the name of the required object type, and returns an interface reference to that
object’s initial interface.

N#2 The Group Manager object is created by instantiating a new process (= instantiating
a capsule).

N#3 At the top level the Controlling System is responsible for naming the Group manger
Instance.

N#4 The Group Manager is responsible for naming the object Instance in the absence of
a specific instruction otherwise.

This example uses the following conventions.

Text:

Controlling Group
Manager Object1

N#1 ObjectFactory:createObject (in string = ”gpMgr”)

Object
Factory

N#2

System

N#3 GroupMgmt:init (in string = “/group1”)

Test Group

N#4 ObjectMgmt:init (in string = “/group1/object1”)

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - 81

Text above horizontal lines on the diagrams represents object messages, and has the gen-
eral form (written on one line):

[N#<integer>] [<interfaceName>:]<operationName>([{in, out} <type1>[=value1] ...])

where,

<someTextlabel> = substitute with string

[...] = content between brackets is optional

{comma separated list} = insert one of these options

... = repeat element as needed

The [N#<integer>], for example “N#1” is a reference note marker used to annotate the dia-
gram with text. The integer uniquely identified each note on a per diagram basis.

Many parts of this text have been deliberately made optional to support an iterative devel-
opment of the diagrams (for example in the absence of ODL). For example, initially the ob-
ject names and operation names may be identified, then later interface names known, then
later still operation parameters and values known, then later still aggregation of objects.

Horizontal Lines:

solid horizontal arrows: These represent RPC invocation from object to object. The return
event is not explicitly shown.

dashed horizontal arrows: These represent creation of the object pointed to by the arrow.

solid lines above objects: These denote aggregation of the objects underneath the line.

Others:

Vertical lines represent object instances.

Time is strictly represented by going down the page

B.8 Operations/Flows Common to Multiple Interfaces

In ODL, operations and flows are only visible within the scope of an interface. There may
be a need to refer to operations and flows from outside an interface. Such a facility may be
used to define an operation that is intended to have the same signature and semantics in
multiple interfaces. Currently, two identical operation signatures in different interfaces may
be associated with completely different sematics. There are a number of possible ODL
modifications which can be introduced to solve this problem. However, currently a work
around is proposed, as follows.

If an operation, say op1(), is to have identical semantics in multiple interfaces, say I2 and
I3, inheritance can be used to as follows to cater for this:

PROPRIETARY - TINA Consortium Members ONLY

 - 82

TINA Object Definition Language MANUAL

interface I1{
...
void op1 ();

}; // end I1

interface I2:I1{
...
// other operations

}; // end I1

interface I3:I1{
...
// other operations

}; // end I1

The disadvantage is that inheritance is used as a syntactic convenience rather than as a
reflection of the conceptual domain underlying the system, and there is overhead in intro-
ducing the new class. However, these are minimal if the need for common operation se-
mantics in interfaces is not frequent. If the need for such sematics is frequent, modification
to ODL should be considered.

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 C - 83

Appendix C. Comparison: ODL and OMG-IDL

C.1 ODL Objective vs. OMG-IDL Objective

The objectives of ODL are listed in Section 2.2:

a. Language for application specification (at development time)

b. Language for application re-use (at development time)

c. Language supporting application execution and interaction (at run-time)

OMG-IDL shares most of these objectives (support for application specification, application
re-use, and application interaction).

C.2 TINA Object Model vs. OMG Object Model

The object model of TINA which is supported by ODL (i.e., TINA Computational Modelling
Concepts) extends the OMG Object Model in the following ways:

• At the object level, ODL offers support for the definition of:

- object behaviour.

- objects with multiple interfaces.

- object groups.

• At the interface level, TINA-ODL offers support for the definition of:

- stream interfaces

- interface behaviour

- operation and flow QoS requirements

• At the operation and flow level, TINA-ODL offers support for the definition of:

- stream (flow) signatures

C.3 ODL Syntax vs. OMG-IDL Syntax

ODL in its current version is a superset of OMG-IDL. It implies that as suggested in Section
5.1, it is possible to use OMG-IDL specifications as part of ODL specifications (as opera-
tional interface declaration). Consequently, the syntax defined in ODL for operational inter-
face declaration encompasses and supports all the rules defined for OMG-IDL [37].

C.3.1 General Syntax

For an ODL specification, broadly:

• the structures added to OMG-IDL are the object declarations (<object_dcl>),
and the object group declarations (<group_dcl>).

• the structures shared with OMG-IDL are the supporting definition
(<supporting_def>), and the module declaration (<module>).

PROPRIETARY - TINA Consortium Members ONLY

C - 84

TINA Object Definition Language MANUAL

• the structure modified from OMG-IDL is the interface declaration
(<interface_dcl>).

Below is an extract from the ODL BNF (from Section A) showing the addition to the OMG-
IDL syntax. Syntactic rules added to OMG-IDL are in bold, syntactic rules shared between
OMG-IDL and TINA-ODL are in italic.

1. <odl_spec> ::= <definition>*

2. <definition> ::= <module> “;”
| <group_dcl> “;”
| <object_dcl> “;”
| <interface_dcl> “;”
| <supporting_def> “;”

C.3.2 Interface Syntax

In the syntax for interface declaration:

• the structures added to OMG-IDL are the (optional) declaration of interface be-
havior (<interf_behavior_spec>), interface usage specification
(<interf_usage_spec>), interface quality of service specification
(<interf_QoS_attribute_spec>), trading attributes specification
(<trading_attributes_spec>), and the stream (flow) signature declaration
(<stream_sig_defns>).

• the structures shared with OMG-IDL are the forward declaration of interfaces
(<interface_forward_dcl>), the interface header keyword and name (“inter-
face ” and <identifier>), and the interface inheritance specification
(<interf_inheritance_spec>).

• the structure modified from OMG-IDL is the operation signature declaration
(<operation_sig_defns>).

C.3.3 Operation Syntax

In the syntax for operation declaration:

• the structure added to OMG-IDL is the (optional) declaration of QoS constraints
on operations (“with” <QoS_attributes>).

• the structures shared with OMG-IDL are the announcement declaration (<an-
nouncement>), and the interrogation declaration (<interrogation>).

Note that all the additions to the OMG-IDL have been made optional. Below is an extract
from the ODL BNF:

<oper_sig_defns> ::= { <oper_sig_defn> “;” }+

<oper_sig_defn> ::= <announcement>
| <interrogation> [“with” <QoS_attributes>]

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - 85 -

References

TINA-C documents

[1] Choosing a Computational Specification Notation, EN TINA-C 1993:
EN_A2.FD.002_1.6_93, authors: F.Dupuy, P.Graubmann, N.Natarajan, N.Singer.

[2] A computational model design process, EN TINA-C 1993: EN_G.FD.006_1.8_93,
authors: F.Dupuy, N.Natarajan.

[3] Mapping of TINA-C ODL to OMG-IDL, TINA-C 1994, authors: E.Kelly, G.Wheeler,
K.Kanasugi, F.Dupuy.

[4] Information Modelling Concepts, Document No. TB_.EAC.001_3.0_94, TINA-C,
December 1994.

[5] Computational Modelling Concepts, Document No. TB_NAT.002_3.1_94, TINA-C,
December 1994.

[6] Computational Modelling Concepts (1993), Document No. TB_A2.NAT.002_3.0_93,
TINA-C, December 1993.

[7] Engineering Modelling Concepts, Document No. TB_A3.NS.005_1.0_93, TINA-C,
December 1993.

[8] DPE Phase 0.1 Specification (Section 3: TINA-C IDL), Document No.
TB_AD.NW.001_1.0_93, TINA-C, December 1993.

[9] Engineering Modelling Concepts (DPE Architecture), TINA-C 1994, authors: P.
Graubmann, W.Hwang, M.Kudela, K.MacKinnon, N.Mercouroff, N.Watanabe.

[10] What to do with ODL?, EN TINA-C 1994: EN_G.NM.009_1.08_94, authors:
N.Mercouroff, J.Pavon, F.Ruano, path: /u/tinac/94p2/viewable/EN/odl-proposal.ps.

[11] ODL Inheritance Rules, EN TINA-C 1995: EN_G.NM.001_1.00_95, authors:
N.mercouroff, F.Ruano, path: /u/tinac/94p2/viewable/EN/odl-inheritance.ps

[12] ODL Syntax for Streams -- a description of the options, EN TINA-C 1995:
EN_BK.001_1.0_1995, author: B.Kitson, path: /u/tinac/95/dpe/viewable/
StreamSyntax.ps

[13] The Factory computational object, EN TINA-C 1995: EN_G.JP.017_1.01_95, author:
J.Pavón, path: /u/tinac/94p2/ccmcomp/notes/factory.ps

[14] Quality of Service Framework, Document No. EN_EX.PFM.001_1.0_94, TINA-C,
December 1994.

[15] TINA DPE Service Specifications (Technology Mapping), Document No.
TR_HW.001_1.0_94, TINA-C, December 1994.

[16] Packaging, Document No. TP_HC.010_3.11_94, TINA-C, December 1994.

[17] TINA-C Service Development Methodology, Document No. TP_DKB_010_0.1_94,

PROPRIETARY - TINA Consortium Members ONLY

 - 86 -

TINA Object Definition Language MANUAL

TINA-C, December 1994.

[18] Connection Management Specifications, Document No. TP_NAD.001_1.2_95, TINA-
C, March 1995.

[19] Service Component Specifications, Document No. TB_HK.002_1.0_94, TINA-C,
March 1995.

[20] Request for Solutions: Naming, Document No. EN_X.MRS.003_1.0_94, May 1994

[21] Request for Solutions: Federation, Document No. EN_G.PG.002_1.0_94, May 1994

[22] Request for Solutions: Security, Document No. EN_G.HC.001_5.0_94, May 1994

[23] Object Grouping and Configuration Management, Document No.
EN_TH.003_1.1_95, August 1995.

[24] TINA Distributed Processing Environment (TINA DPE), TINA-C document No.
TR_PL.001_1.3_95, December 1995.

[25] Security Architecture, Document No. TR_EGL.004_2.0_1996, March 1996.

[26] Quality of Service Framework, Document No. TR_MRK.001_1.0_94, November
1994.

[27] Computational Modelling Concepts, Document No. TB_NAT.002_3.2_96, TINA-C,
May 1996.

TINA-C Auxiliary Projects

[28] Programming tools for the PLATyPus experiment, PLATyPus Project document,
version 1.0, 16 March 1994.

[29] PLATyTools and ODL, B. Kitson, Proceedings of the TINA’95 Conference, Melbourne,
February 1995

Other Related Documents

[30] Basic Reference Model of Open Distributed Processing, ‘Part3: Architecture’, ITU-T
Rec. X.903 | ISO/IEC 10746-3, February 1995.

[31] Specification and realization of Stream interfaces for the TINA-DPE, A.T. van
Halteren, P. Leydekkers, H.B. Korte, Proceedings of TINA’95 Conference, Melbourne,
February 1995.

[32] Common Object Services Specification, Volume 1, Revision 1.0, OMG Document
Number 94-1-1, OMG, March 1994.

[33] A Computational and Engineering View on Open Distributed Real-time Multimedia
Exchange, P.Leydekkers, V. Gay, L.J.N. Franken, Proceedings of NOSSDAV’95
(Springer-Verlag), Boston, April, 1995.

[34] Object Oriented Software Construction, B. Meyer, Prentice Hall int. series in computer
science, Pretice Hall, Hemel Hempstead, UK, 1988.

TINA Object Definition Language MANUAL

PROPRIETARY - TINA Consortium Members ONLY
 - 87 -

[35] Object Oriented Software Engineering, Jacobson, I., christerson, M., Josson, P. &
Overgaard, G., Addison-Wesley, Wockingham, England, 1995.

[36] Object Oriented Modelling and Design, Rumbaugh, J., Blaha, M., Premerlani, W.,
Eddy, F. &Lorensen, W., Prentice Hall, 1991.

[37] The Common Object Request Broker: Architecture and Specification, Revision 2.0,
OMG, July 1995.

PROPRIETARY - TINA Consortium Members ONLY

 - 88 -

TINA Object Definition Language MANUAL

TINA Object Definition Language MANUAL Acronyms

PROPRIETARY - TINA Consortium Members ONLY
 - 89 -

Acronyms

CS Capability Set

DPE Distributed Processing Environment

IDL Interface Definition Language

ODL Object Definition Language

OMG Object Management Group

ORB Object Request Broker

QoS Quality of Service

TINA Telecommunications Information Networking Architecture

PROPRIETARY - TINA Consortium Members ONLY

 - 90 -

Acronyms TINA Object Definition Language MANUAL

