
Telecommunications

Networking

Information

Architecture

Consortium Issue Status: Publicly Released

Version: 1.0

Overall Concepts and Principles of TINA

Date of Issue: 17th Feb. 1995

TINA-C Deliverable

This document has been produced by the Telecommunications Information Networking
Architecture Consortium (TINA-C) and the copyright belongs to members of TINA-C.

 IT IS A DRAFT AND IS SUBJECT TO CHANGE.

The pages stated below contain confidential information of the named company who can
be contacted as stated concerning the confidential status of that information.

The document is being made available on the condition that the recipient will not make any
claim against any member of TINA-C alleging that member is liable for any result caused
by use of the information in the document, or caused by any change to the information in
the document, irrespective of whether such result is a claim of infringement of any intellec-
tual property right or is caused by errors in the information.

No license is granted, or is obliged to be granted, by any member of TINA-C under any of
their intellectual property rights for any use that may be made of the information in the doc-
ument.

Table 1:

Page Company
Company Contact

(Address, Telephone, Fax)

PROPRIETARY - TINA Consortium Members ONLY
This document contains proprietary information that shall be distributed or routed only within TINA Consortium Member

Companies, except with written permission of the Chairperson of the Consortium Management Committee

Telecommunications

Networking

Information

Architecture

Consortium

Overall Concepts and Principles of TINA

Abstract: This document presents the overall concepts and principles of
the TINA-C architecture. It attempts to condense into one docu-
ment the key ideas of the TINA architecture to answer the ques-
tion “what in essence is a TINA system”. It does not give any
justification, background or history for any concept or principle, as
these can be found in other baseline documents. For the same
reason the goals and requirements of the architecture are not
given.

Keywords: Distributed Systems, Management systems, Object-orientation,
Services.

Author(s): Martin Chapman, Stefano Montesi

Editor: Martin Chapman

Type: TINA Baseline

Document Label: TB_MDC.018_1.0_94

Date: 17th Feb. 1995

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Table of Contents

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

i

Table of Contents

1. Introduction . 1 - 1
1.1 Purpose . 1 - 1
1.2 Audience . 1 - 1
1.3 How to read this document . 1 - 2

2. Organization of concepts and principles 2 - 1
2.1 Decomposition of the architecture . 2 - 1
2.2 Relationships between the architectures 2 - 1
2.3 Conformance . 2 - 3

3. Overall framework of TINA systems . 3 - 1
3.1 Basic characteristics of TINA systems. 3 - 1
3.2 Software in TINA systems . 3 - 2
3.3 Distributed environment . 3 - 4
3.4 Telecommunications services and networks 3 - 5
3.5 Software life-cycle . 3 - 7

4. Computing architecture . 4 - 1
4.1 Enterprise modelling concepts. . 4 - 2
4.2 Information modelling concepts . 4 - 2
4.3 Computational modelling concepts . 4 - 3
4.4 Engineering modelling concepts . 4 - 4

5. Architectural layers and separations . 5 - 1
5.1 Main separations. . 5 - 1

5.1.1 Element layer . 5 - 1
5.1.2 Resources layer. . 5 - 3
5.1.3 Service layer . 5 - 3
5.1.4 Interaction constraints. . 5 - 3
5.1.5 Multi-suppliers and operators . 5 - 4

5.2 Separations from a service perspective 5 - 4
5.3 Separations from a management perspective 5 - 5
5.4 Design separations . 5 - 6

5.4.1 The sectors of the access layer . 5 - 6
5.4.2 The service core . 5 - 8
5.4.3 Use of USCM . 5 - 8

6. Network architecture concepts . 6 - 1
6.1 Network layering and partitioning . 6 - 1
6.2 Network resource information model . 6 - 2
6.3 Connection graphs. . 6 - 2
6.4 Connection management . 6 - 3

7. Service architecture . 7 - 1
7.1 Session concepts . 7 - 1
7.2 Access concepts . 7 - 3
7.3 Example . 7 - 4

8. Management architecture . 8 - 1
8.1 Types of management . 8 - 1
8.2 Generic management . 8 - 1

8.2.1 Functional separations . 8 - 2

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

ii

17 February 1995 Overall Concepts and Principles of TINA
Table of Contents TB_MDC.018_1.0_94

8.2.2 Modelling management systems8 - 3
8.3 Telecommunications management .8 - 4

8.3.1 Service management . .8 - 4
8.3.2 Network management .8 - 5

8.4 Computing management .8 - 6
9. Design guidelines . .9 - 1

9.1 Service development methodology .9 - 1
9.2 Notations and tools .9 - 3

10.Acknowledgements . 10 - 1
References
Glossary
Acronyms

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 List of Figures

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 iii

List of Figures

Figure 2-1. Decomposition of the TINA architecture 2 - 2
Figure 2-2. Relationships between architecture subsets 2 - 3
Figure 3-1. Characteristics of a telecommunications system 3 - 2
Figure 3-2. Basic structure of telecommunications software

in a TINA environment3 - 3
Figure 3-3. Underlying nodes of TINA systems 3 - 5
Figure 3-4. Full distributed view of TINA systems 3 - 6
Figure 3-5. Transport network in the environment 3 - 6
Figure 3-6. Phases in the software life-cycle model 3 - 7
Figure 4-1. Viewpoint separation . 4 - 1
Figure 4-2. Extracts of the OMT graphical notation 4 - 3
Figure 4-3. Computational modelling concepts 4 - 4
Figure 4-4. Basic DPE architecture . 4 - 6
Figure 5-1. Layers and separations in TINA 5 - 2
Figure 5-2. Generic Service Model . 5 - 5
Figure 5-3. Generic access model . 5 - 5
Figure 5-4. Primary structure of the Universal Service Components Model . 5 - 7
Figure 6-1. Partitioning, layering, and client/server relationships in transport net-

works6 - 2
Figure 6-2. A fragment of the NRIM . 6 - 3
Figure 6-3. Connection graph . 6 - 4
Figure 6-4. Connection management components 6 - 5
Figure 7.1: Access and session components 7 - 5
Figure 8-1. Two types of management 8 - 2
Figure 9-1. Description Plane Model. . 9 - 2
Figure 9-2. Design support tools . 9 - 4

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

iv

17 February 1995 Overall Concepts and Principles of TINA
List of Figures TB_MDC.018_1.0_94

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Introduction

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 1 - 1

1. Introduction

The Telecommunications Information Networking Architecture (TINA) Consortium is an in-
ternational collaboration aiming at defining and validating an open architecture for telecom-
munications systems for the broadband, multi-media, and information era. The architecture
is based on distributed computing, object orientation, and other concepts and standards
from the telecommunications and computing industries.

The TINA architecture addresses the needs of traditional voice-based services, future in-
teractive multi-media services, information services, and operations and management type
services, and will provide the flexibility to operate services over a wide variety of technolo-
gies. This vision implies a software architecture that offers reusable software components,
supports network-wide software interoperability, eases service construction, testing, de-
ployment and operation, and hides from the service designer the heterogeneity of the un-
derlying technologies and the complexity introduced by distribution.

The intention is to make use of recent advances in distributed computing (e.g., Open Dis-
tributed Processing (ODP) and Distributed Communication Environment (DCE)), and in ob-
ject-oriented analysis and design, to drastically improve interoperability, re-use of software
and specifications, and flexible placement of software on computing platforms/nodes. In ad-
dition, the consistent application of software principles to both services and management
software is a primary goal. The TINA architecture is furthermore ensuring that a multi-sup-
plier/provider market for telecommunications services and management systems will be
possible.

1.1 Purpose

This document provides an overview of the TINA architecture as of December 1994. It spe-
cifically summarizes the work found in the other TINA-C baseline documents.

The TINA architecture is very broad in its scope and deep in its detail. It is essential to the
understanding of TINA that simplifications are made, and that the main concepts and prin-
ciples are extracted and presented as a whole. This document provides such an overview.
The main results can be found in the TINA-C deliverable documents, of which this docu-
ment is a part.

This document is not intended to provide a stand-alone tutorial on TINA. Hence the goals
of the Consortium, the requirements on the TINA architecture, and other related consortium
efforts are not covered. These can be found in two companion documents [1][2].

1.2 Audience

This document is intended for managers , new Core Team members , and anyone else
who would like to understand the main characteristics of the TINA architecture.

Some background knowledge in object-orientation and distributed systems are assumed.
[27] and [24] provide good introductions to these subjects.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

1 - 2

17 February 1995 Overall Concepts and Principles of TINA
Introduction TB_MDC.018_1.0_94

1.3 How to read this document

Section 2 presents an overview of the organizational structure of the TINA architecture. The
TINA architecture is divided into four parts: Service Architecture, Network Architecture,
Management Architecture, and Computing Architecture.

Section 3 presents an overview of the general environment of a TINA system. It introduces
the concept of a Distributed Processing Environment (DPE).

Section 4 presents an overview of the computing architecture of TINA. The design of sys-
tems in TINA requires the formation of four sets of specifications: enterprise, information,
computational, and engineering. These are used to construct software that operates in a
distributed computing environment.

Section 5 presents the main separation and layering principles that are used to define TINA
systems and software.

Section 6 presents an overview of the network architecture that is assumed to be provided
for TINA services. This network architecture defines generic concepts that are suitable for
specialization to particular technologies, such as Asynchronous Transfer Mode (ATM).

Section 7 presents an overview of the service architecture. The service architecture defines
how services should be structured, and provides models for users to access, instantiate,
interact with, and terminate services.

Section 8 presents an overview of the management aspects of TINA systems. It discusses
generic management principles, and provides an overview of management concerns for
services, networks, and computing systems and software.

Section 9 presents an overview of the service design methodology. Use of this methodolo-
gy should ensure the consistent application of the TINA architecture.

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Organization of concepts and principles

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 2 - 1

2. Organization of concepts and principles

The TINA architecture addresses a wide range of issues and provides a complex set of con-
cepts and principles. In order to handle this complexity it is essential to partition the archi-
tecture into subsets, where each subset has a well defined scope and the relationships
between subsets are well defined. This section first describes the decomposition of the
TINA architecture into subsets, and then defines the relationships between them. These
partitions have been derived from the main areas of concerns found in computing and tele-
communications systems. The section is concluded with a brief discussion on conform-
ance.

2.1 Decomposition of the architecture

The TINA architecture is decomposed into four main subsets:

- The service architecture defines a set of concepts and principles for the de-
sign, specification, implementation, and management of telecommunication
services.

- The network architecture defines a set of concepts and principles for the de-
sign, specification, implementation, and management of transport networks1.

- The management architecture defines a set of concepts and principles for
the design, specification, and implementation of software systems that are
used to manage services, resources, software, and underlying technology.

- The computing architecture defines a set of concepts and principles for de-
signing and building distributed software and the software support environ-
ment.

In addition to these subsets, the overall architecture contains the generic concepts and
principles that should be applied to the design, specification and implementation of any type
of software system in a TINA consistent way. In particular, the overall architecture contains
separation principles that should be observed. The overall architecture is derived by ex-
tracting, and generalizing where appropriate, the common principles found in the four sets.
Note that this document defines the overall architecture.

Each of the four architecture sets are further decomposed into more detailed subsets of
concepts and principles. This decomposition structure of the TINA architecture is depicted
in Figure 2-1. In this figure, the further decomposition of the above four sub-sets is shown.
These are examples and do not form an exhaustive list.

2.2 Relationships between the architectures

The overall architecture defines the common concepts and principles to be applied. The
service, network, and management architectures must be consistent with the overall archi-
tecture.

1. The term transport network encompasses both transmission and switching technology.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

2 - 2

17 February 1995 Overall Concepts and Principles of TINA
Organization of concepts and principles TB_MDC.018_1.0_94

The computing architecture must be consistently used within the service, network, and
management architectures. This will ensure that software is constructed following the same
basic principles, and will result in interoperable and portable software. The management
architecture is specialized within the computing architecture for the purpose of managing
the computing systems and software.

The service architecture requires service oriented abstractions of network resources. The
network architecture provides these abstractions, providing services oriented views of con-
nection establishment, modification, and release. The management architecture is specia-
lised in the service architecture for the purpose of service management.

The network architecture provides service oriented abstraction of network resources that
the service architecture relies upon. The management architecture is specialised in the net-
work architecture for the purpose of network management.

The management architecture defines the generic concepts and principles suitable for the
management of services, networks, and computing infrastructures. The management ar-
chitecture must therefore be consistently applied, and specialised, within the service, net-
work, and computing architectures. Management software, that has users interacting with
it to perform management tasks, should be offered as services, and hence the concepts
and principles of the service architecture can be applied.

Network
Architecture

Overall
Architecture

Management
Architecture

Computing
Architecture

Network
Resource

Model

Fault
Management

Configuration
Management

DPE
Architecture

Key:
Subset of concepts and principles.
Concepts and principles are applied consistently.

Figure 2-1. Decomposition of the TINA architecture

Service
Architecture

Session
Model

Subscription
Model

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Organization of concepts and principles

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 2 - 3

Figure 2-2 depicts the relationships between the architectures. Note that when one archi-
tecture relies on another, requirements are being made. These general requirement rela-
tionships are necessary to ensure that each architecture provides a suitable set of concepts
and principles.

2.3 Conformance

The TINA architecture is expressed as a set of concepts and principles, and defines the
style and nature of software in a TINA system. These concepts and principles are embod-
ied, at a more precise level of detail, as a set of object and interface specifications. The ob-
ject and interface specifications are subject to principles such as constraints that govern
which objects should use other objects, or procedures that should be followed during the
design, deployment, and operation of TINA conformant software. Some TINA specifications
will be submitted to standards bodies. Others will be examples of how the concepts can be
applied, but will not be required for TINA conformance.

Considering the above, the concepts and principle of TINA are classified as being of one of
two types: architectural and internal. Architectural concepts and principles should be ap-
plied to the design, specification, and implementation of any TINA system by anybody. Ar-
chitectural concepts may be further classified as being external. External concepts and
principles define those aspects that must be adhered to in order to claim a product is TINA
conformant. Internal concepts and principles on the other hand are used and applied by the
TINA-C Core Team and prescription of their use outside this team is entirely optional. An
example of an internal principle is the use of a form of GDMO as one of the specification
languages; the TINA architecture is independent from any language and notation, however,
one has to choose one in a team in order to get precise specifications. Internal concepts
and principles will be clearly marked, all others will be architectural. Currently no external
concepts and principles (conformance/reference points) have been defined in TINA.

Service
Architecture

Computing
Architecture

Network
Architecture

Management
Architecture

Overall
Architecture

Figure 2-2. Relationships between architecture subsets

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

2 - 4

17 February 1995 Overall Concepts and Principles of TINA
Organization of concepts and principles TB_MDC.018_1.0_94

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Overall framework of TINA systems

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 3 - 1

3. Overall framework of TINA systems

This section describes the basic features of the environment that the TINA architecture is
expected to affect. The purpose of this section is to provide the readers with an understand-
ing of the scope of the architecture in terms of telecommunications products and life-cycle
stages. In order to describe properly the scope of the architecture, some concepts of layer-
ing are introduced here.

3.1 Basic characteristics of TINA systems

The TINA architecture provides a set of concepts and principles to be applied in the speci-
fication, design, implementation, deployment, execution, and operation of software for
telecommunication systems. A telecommunication system includes a collection of hard-
ware and software resources that are able to provide services to different stakeholders1,
either directly or indirectly through other systems. Telecommunication software is used here
in its broadest sense and encompasses all software for operating, maintaining, and utilizing
telecommunication services and transport networks. A transport network includes switching
and transmission equipment.

The range of services provided by a TINA system to stakeholders is potentially wide, and
includes voice-based services, interactive multi-media services, information services, and
management services. Services types are intentionally left open so as not to restrict the ap-
plication of the architecture to the provision of certain classes of services. Similarly, the
types of network technologies that can be used are not restricted by the architecture.

A telecommunications system, from a TINA perspective, does not necessarily coincide with
administrative boundaries. In general, a system will be constructed by the joining, or feder-
ation, of the hardware and software resources of different administrative domains (e.g. sev-
eral network operators, service providers, and customers).

The notion of telecommunication system defined here includes Customer Premise Equip-
ment. Unlike other architectures and services, the TINA architecture does not hide CPEs
behind a traditional User Network Interface (UNI). Rather it is accepted that software run-
ning on CPEs may be part of an overall system or service design. TINA provides more
broader concepts and principles for CPE and non-CPE interaction, which may include - but
is not restricted to - traditional UNIs.

The final characteristic worth noting is that telecommunication systems conforming to TINA
will not exist in isolation. There are many other systems in existence, and these will not dis-
appear overnight. Thus TINA systems may have the ability to interwork with non-TINA sys-
tems, at either (or both) the network and service levels. Currently no architectural aspects
for interworking have been defined.

1. Stakeholders involved are customers , end users , service providers , network providers . See [6]

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

3 - 2

17 February 1995 Overall Concepts and Principles of TINA
Overall framework of TINA systems TB_MDC.018_1.0_94

Figure 3-1. summarizes the characteristics of TINA systems. It shows that a telecommuni-
cations system consists of services and networks provided to different stakeholders, and
that it can be divided into several administrative domains. TINA systems can interact with
networks and services provided by other (non-TINA) systems.

3.2 Software in TINA systems

TINA defines a software architecture for telecommunication systems. A software architec-
ture defines concepts and principles of the structuring of software, and for the constraints
that should be applied during the specification, implementation, execution, and operation
of software. TINA defines the basic structuring and operation environment for software.

There are two basic principles that are observed:

• Telecommunications software is considered as a, potentially large, distributed
software system, to which distributed computing techniques can be applied

• Object-oriented software techniques can be applied

Considering these two principles a rough structure of telecommunications software emerg-
es. This structure, shown in Figure 3-3, features the separation between telecommunica-
tions applications , that is the software actually implementing the capabilities provided by
the system, and a Distributed Processing Environment (DPE), that is software support-
ing the distributed execution of telecommunications applications. The telecommunications
applications are designed and implemented as sets of interacting objects. Similarly a DPE
is designed in an object-oriented way. Although both applications and a DPE are designed
using object-orientation, the architecture does not require that they are implemented using
object-oriented programming languages, although doing so may lead to a more consistent

end-users

customers

network operators

service providers

Figure 3-1. Characteristics of a telecommunications system

telecommunications servicestelecommunications system

telecommunications networks

administrative boundary

other systems

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Overall framework of TINA systems

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 3 - 3

system.

In order to define more precisely the computing structure, Figure 3-3 depicts a layered ar-
chitecture. At the bottom are the hardware resources, such as processors, memory, and
communication devices. Above this is a software layer that contains the operating systems,
communications, and other support software found in computing systems. This layer is
called the Native Computing and Communications Environment (NCCE). Above this is
the DPE layer, followed by the telecommunications applications layer.

Figure 3-3 also shows that a TINA system may interwork, at different levels, with non-TINA-
systems. TINA applications can interwork with other (non-TINA) telecommunication appli-
cations, TINA DPEs can interwork with non-TINA DPEs, and NCCEs in TINA systems can
link with NCCEs in other systems. It is implied, but not shown in the figure, that non-TINA
software coexists alongside the DPE and applications layer.

For simplicity, Figure 3-3, shows the NCCE as a homogeneous layer. In reality it is made
up of a set of interconnected computing nodes, where each node may support different
hardware and software technology. An example is a node that supports the UNIX2 operat-
ing system and provides an Open Systems Interconnection (OSI) protocol stack. The DPE
provides a technology independent view of computing resources, allowing technology de-
pendent aspects in applications software to be minimized. This promotes easier design,
software re-use, and portability.

2. UNIX is a trademark of AT&T.

Figure 3-2. Basic structure of telecommunications software
in a TINA environment

TINA applications

DPE

hardware resources

native computing and
communications environments

application objects

non-TINA
applications

non-TINA
DPEs

links to other
NCCEs
links to other
resources

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

3 - 4

17 February 1995 Overall Concepts and Principles of TINA
Overall framework of TINA systems TB_MDC.018_1.0_94

The DPE has another important function. It shields from applications the distributed nature
of the system. Applications are written as a set of interacting objects. The objects of an ap-
plication may, for operational reasons, be located on different nodes from each other. The
DPE provides support for object location and remote interaction, and allows applications to
be designed without knowledge of the eventual locations of its parts. This promotes easier
designs and software reuse.

The design and implementation of the NCCEs is dependent on the specific network node
and is outside the scope of the architecture. TINA only concerns itself with the DPE and the
applications layer. Saying this, it is worth noting three points on the boundary between the
DPE and the NCCE:

1. Non-TINA software may coexist, on a node, with the DPE and TINA application
software. TINA does not concern itself with this software.

2. The DPE requires the use of protocol stacks, and has requirements on their
capabilities. Protocol stacks provided by an NCCE may meet these requirements.
However if appropriate stacks are not provided by the NCCE, they must be
provided in the DPE layer.

3. Some nodes may come equipped with special hardware resources, such as video
processing boards, switch fabrics, and speech recording/playback devices. The
software for these devices are not considered part of the NCCE for the simple
reason that they do not perform general purpose computing or communications
functions. The software associated with these devices may be considered part of
the TINA application layer, if they are made available to other TINA applications.

3.3 Distributed environment

In order to provide a more comprehensive description of the above described environment
it is worth elaborating to give some insight to the distributed appearance of the telecommu-
nications system.

Figure 3-3 shows different nodes in a system, each equipped with its NCCE of varying com-
plexity: some nodes may have a minimal environment, some others may feature a sophis-
ticated environment. The figure also shows that different implementations of the DPE may
exist on different nodes, where diversity is due both for technical reasons (coping with dif-
ferent technologies) and for market reasons (different vendors). All these implementations,
in principle, shall present to the telecommunications applications the same capabilities, as
shown by the “DPE surface”. The nodes that comprise the system may be owned by differ-
ent administrations, including customers, service providers and network operators. A multi-
supplier DPE environment, in which the DPEs on each node may come from different ven-
dors, requires an agreed inter-DPE interface to allow the DPEs to work as a whole (provide
the “surface”).

Nodes of a system are divided into two categories: DPE nodes and non-DPE nodes . Quite
simply, nodes in the first category host DPE software, while the other nodes do not. In gen-
eral it is assumed that telecommunications applications run on top of the DPE. However, it
is possible to place TINA software on non-DPE nodes provided it is possible for application
software on DPE nodes to interact with it as if it were on a DPE node i.e. the non-DPE node

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Overall framework of TINA systems

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 3 - 5

should support, either directly or through a gateway, an inter-DPE interface. Software on
non-DPE nodes will, however, not benefit from the technology independence and portability
support provide by the DPE.

Non-DPE nodes include nodes without processing capabilities, such as a telephone hand-
set, and nodes provided with general purpose processing capabilities, where DPE software
is not deployed because of network design decisions, or because of existing software (leg-
acy systems). Examples of possible DPE nodes are service nodes, switching nodes, ad-
ministration nodes, and workstation-based CPEs. Although these examples are provided,
the TINA architecture does not prescribe what application software goes into a node.

Completing the story, Figure 3-3 shows a structure in which the DPE and application soft-
ware is divided up and allocated to nodes. This does not contradict the former depictions
as the DPE software allocated to different nodes will work together to give the impression
of one homogenous DPE.

3.4 Telecommunications services and networks

The previous discussion focussed on a description of software and an environment for its
execution. The layering architecture presented is a very generic (distributed) computing ar-
chitecture, and is indeed not specific to telecommunications. Telecommunication specific
concerns are introduced by considering the types of application software. In telecommuni-
cations, software concerns itself with the provision and operation of services and the oper-
ation of transport networks.

Figure 3-3. Underlying nodes of TINA systems

TINA applications

DPE

telecommunications
system

NCCE

hardware

implementation

DPE
“surface”

inter-DPE
interface

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

3 - 6

17 February 1995 Overall Concepts and Principles of TINA
Overall framework of TINA systems TB_MDC.018_1.0_94

Transport networks provide a set of switching and transmission resources which may be
used and managed by software in the application layer. Figure 3-3 shows the addition of
the transport network to the basic environment. Also shown is the software that controls
and manages the transport network.

The transport network will comprise network elements that may contain computing en-
gines. TINA makes no assumptions as to whether there will be software on the network el-
ements that make up the transport network. TINA also does not require the presence of a
DPE on these elements. Since a DPE may or may not be present, TINA does not insist that

Figure 3-4. Full distributed view of TINA systems

DPE nodes

non-TINA software

non-DPE nodes

Figure 3-5. Transport network in the environment

TINA applications

DPE

hardware resources

native computing and
communications environments transport

network

control and
management
applications

network
element software

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Overall framework of TINA systems

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 3 - 7

software on these network elements is structured according to the concepts and principles
of the TINA architecture. Consequently, communication between application software, such
a management software, and non-TINA software on network elements is not covered by
the TINA architecture. It is a proprietary matter how TINA-software communicates with non-
TINA software residing on network elements. It is worth stressing that although there is no
requirement for a network element to have a DPE, it can have one if operational needs dic-
tate, and thus could be capable of hosting TINA applications. In these cases however, it is
still out of the scope of TINA to consider how software can manipulate the underlying hard-
ware.

3.5 Software life-cycle

Prior to the more detailed discussion of following sections it should be observed that the
figures above do not fully describe the scope of the architecture since they account for only
some stakeholders playing certain roles i.e. end-users, customers, network operators, ser-
vice providers. They do not account for other stakeholders that are involved in TINA envi-
ronment, such as Service or Network Designers and Developers. These stakeholders are
not shown because those figures implicitly looks at the run-time view of the system. To pro-
vide a complete architecture for telecommunications, it is necessary to consider the com-
plete life-cycle of software.

The life-cycle model identifies five major phases for software in a telecommunications en-
vironment (Figure 3-6). The Need phase covers the identification and analysis of the rea-
sons to introduce new software. The construction phase covers the design, implementation,
and testing of software. Deployment covers the introduction of software into the system.
Operation covers the execution, utilization, and run-time management of the software.
Withdrawal covers the extraction of the software from the system. The life-cycle model does
not imply a sequential ordering of Phases. There may be many activities associated with a
phase, and pure sequencing may not be appropriate. The life-cycle model is described in
[11].

This model is generic enough to accommodate differences in the life-cycles of different
types of software, such as DPE and application software. It can be specialized by decom-
posing each phase into sub-phases. An example specialization is the Service Life-cycle
model.

Figure 3-6. Phases in the software life-cycle model

Need

Construction

Deployment

Operation

Withdrawal

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

3 - 8

17 February 1995 Overall Concepts and Principles of TINA
Overall framework of TINA systems TB_MDC.018_1.0_94

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Computing architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 4 - 1

4. Computing architecture

The computing architecture define the modelling concepts that should be used to specify
object-oriented software in TINA systems. It also defines the distributed processing envi-
ronment (DPE) that provides the support system allowing objects to locate and interact with
each other. These concepts are based on the Reference Model for Open Distributed Pro-
cessing (RM-ODP) [24][25][26]. RM-ODP is a standard for the definition of generic, non-
telecommunication specific, distributed systems. The computing architecture refines, and
adapts the RM-ODP standard, so that it is suitable for the design of telecommunication sys-
tems.

A telecommunications system is very complex. In order to understand this complexity the
system can be specified from five viewpoints. Each viewpoint focuses on a sub-set of the
characteristics of a system. The complete description of the system can be obtained by ex-
amining the specifications of all the viewpoints.

The five viewpoints are as follows (Figure 4-1):

• Enterprise viewpoint focuses on the purpose, scope and policies for the sys-
tem.

• Information viewpoint focuses on the semantics of information and information
processing activities in the system.

• Computational viewpoint focuses on the decomposition of the system into a
set of interacting objects which are candidates for distribution.

• Engineering viewpoint focuses on the infrastructure required to support distri-
bution.

• Technology viewpoint focuses on the choice of technology to support the sys-
tem.

Enterprise

InformationComputation

Engineering
Technology

Figure 4-1. Viewpoint separation

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

4 - 2

17 February 1995 Overall Concepts and Principles of TINA
Computing architecture TB_MDC.018_1.0_94

The TINA architecture defines modelling concepts for the first four viewpoints. Modelling
concepts define abstract language constructs1 that a can be used to express the design of
a system.

4.1 Enterprise modelling concepts

Enterprise modelling concepts provide a framework for building enterprise specifications or
models. An enterprise model describes a system from the perspective of the organizations
and people that will use or operate the system.

The enterprise modelling concepts include:

• Stakeholders, which are used to define the actors, or agents, involved in a sys-
tem

• Roles, which are used to describe the types of activities a stakeholder can par-
take in

• Requirements, which are used to express desired features and capabilities of
a system

• Obligations, which are used to describe the responsibilities of the stakeholders
involved

• Policies, which sets constraints on the use and operation of the system.

Stakeholders and roles are described in [11]. Generic requirements on TINA systems can
be found in [2]. Obligations and policies have not yet been elaborated in TINA.

4.2 Information modelling concepts

The information modelling concepts provide the framework for information specifications.
An information specification describes the problem domain that the system will be covering
[3].

The information modelling concepts are comprised of:

• Information bearing entities (information objects)

• Classification of information objects into object types

• Relationships between the entities, and

• Constraints and rules that govern their behaviour, including the rules for their
creation and deletion.

When building an information specification, the designer should focus on what the system
is doing, without regard to the how the system is provided. The designer of an information
specification should not define the pieces of software that are required, nor on what nodes
software should reside.

1. An abstract language construct is independent from any notation (syntax) used to represent it.

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Computing architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 4 - 3

A notation chosen for information specifications is a form of GDMO (Guidelines for the Def-
inition of Managed Objects) [22] with GRM (General Relationship Model) [23]. GDMO and
GRM was chosen because it is widely used in the telecommunications management com-
munity and there is a large body of GDMO specifications available for reuse. Standard
GDMO-GRM allows for many concerns to be expressed in a specification, including infor-
mation and computational issues. TINA uses only the aspects of GDMO and GRM that are
suitable for (TINA) information modelling. This notation is called quasi GDMO-GRM (or q-
GDMO/GRM for short). It is worth noting the existing GDMO-GRM specifications have to
be reworked to comply with the TINA information modelling concepts. The OMT (Object
Modelling Technique) graphical notation [27] has been adopted for the diagrammatic rep-
resentation of information specification. Figure 4-2, highlights the main constructs of this
notation. A tool has been constructed that translates OMT diagrams into quasi GDMO-
GRM [10].

The use of quasi GDMO-GRM and OMT are internal (to TINA-C) constraints. Any notation
that can express the information modelling concepts can be used.

4.3 Computational modelling concepts

The computational modelling concepts provide the framework for computational specifica-
tions. A computational specification describes distributed telecommunications applications
in terms of software entities called computational objects [4]. Computational objects in-
teract with each other to provide the application.

The TINA computational modelling concepts defines the rules of how computational ob-
jects interact with one another. Computational objects are the units of programming and
encapsulation. Objects interact with each other by sending and receiving information to and
from interfaces . An object may provide many interfaces, which may be of different types.

Type 1

Type 3

Type 5

Type 4

Type 2

1+

Type 6

Relationship Type

Type 8

Role 1

Role 2

Type 9

Type 7

Name 2

Relationship Type
Name 1

optional (zero or one)many (zero or more)

aggregation

Figure 4-2. Extracts of the OMT graphical notation

inheritance

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

4 - 4

17 February 1995 Overall Concepts and Principles of TINA
Computing architecture TB_MDC.018_1.0_94

There are two forms of interface that an object may offer or use: operational interface and
stream interface . An operational interface is one that has defined operations, that allow
for functions of the offering (server) object to be invoked by other (client) objects. An oper-
ation may have arguments and may return results. A stream interface is one without oper-
ations (i.e., there is no notion of input/output parameters, requests, results, or notifications).
The establishment of a stream between stream interfaces allows for the passing of other
structured information, such as video or voice bit streams. Streams are established by in-
teracting with service and network components, defined in the network and service archi-
tectures (Section 6 and Section 7). Figure 4-3 depicts these concepts.

When building a computational specification of a system, the designer should focus on the
programming entities (objects) required, what interfaces they offer, and what interfaces of
other objects are required. The computational specification of a system should be compat-
ible with the semantics of the information specification of the same system. Computational
designers should not concern themselves with the distribution aspects of the software i.e.
where the objects will be located.

The notation chosen for computational specifications is called TINA ODL (Object Definition
Language). ODL enhances OMG IDL (Object Management Group Interface Definition Lan-
guage) [28]. An example enhancement is the specification of objects that are made up of
one or more interfaces; OMG IDL does not have the notion of objects with multiple interfac-
es.

Like quasi GDMO-GRM, use of the ODL notation is an internal (to TINA-C) constraint. Any
notation that can express the computational modelling concepts can be used.

4.4 Engineering modelling concepts

The engineering modelling concepts provides the framework for describing the deployment
view of an application and on the organization of an abstract infrastructure, called the Dis-
tributed Processing Environment (DPE). These concepts provide a means to specify the
structure of a distributed TINA application in terms of the components that are actually dis-
tributed on a set of computing nodes, and the models and mechanisms to support their ex-
ecution and interaction [5].

Consumer

Server

Figure 4-3. Computational modelling concepts

Operational interface
Stream interface

Client

Producer

Legend

Computational
object

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Computing architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 4 - 5

The engineering modelling concepts describe how to deploy computational objects for ex-
ecution on the infrastructure. The concepts for deployment include three engineering units:

• DPE Node , which is the engineering abstraction of a unit of resource adminis-
tration providing support to a DPE.

• Capsule , which is a subset of a node and models a unit of resource allocation
and encapsulation.

• Cluster , which defines a group of co-located objects. The objects in a cluster
are required to migrate and be activated together.

The engineering modelling concepts that define the DPE architecture include the concepts
of DPE kernel, kernel transport network, and DPE services.

The DPE kernel provides support to object-life-cycle control and inter-object communica-
tion. Object life-cycle control includes capabilities to create (instantiate) and delete objects
at run-time. Inter-object communication provides the mechanisms to support the invocation
of operations provided by operational interfaces of remote objects2. The DPE kernel pro-
vides basic, and technology independent, functions that represent the capabilities of most
computing systems (i.e. the ability to run programs and the ability for programs to commu-
nicate with each other). A DPE kernel is assumed to be present on all nodes that contain a
DPE.

To facilitate communication between remote objects, the DPE kernels on different nodes
communicate with each other. This communication is achieved through the kernel trans-
port network (KTN). The kernel transport network provides a technology independent view
of the communication facilities provided by the NCCEs of the DPE nodes. The KTN is a vir-
tual network that is logically different from the transport network.

DPE services provide operational interfaces to support for the run-time execution and com-
munication of objects. Included are trading services, that provide for the run-time location
of remote object interfaces, and notification services, that provide for the emission of typed
notification messages to interested objects.

A distinction is made between DPE kernel and DPE services because it is necessary to de-
fine basic capabilities that should be provided on all DPE nodes, from advanced capabilities
that may be present on fewer nodes.

Figure 4-4 depicts the DPE architecture. Interface (a) depicts the interface to the DPE ker-
nel. Interfaces (b) depicts the interfaces to DPE services. Interface (c) depicts an inter-DPE
interface to facilitate communication between objects on different nodes.

At present, no notation is used in TINA for engineering specifications.

2. A remote object is one that is in a different cluster. Even though clusters may be on the same node, the
possibility exists for a clusters to migrate to different nodes during run-time. Thus assumptions on the
locations of clusters should not be made, and inter-cluster communication should use remote
invocation mechanisms.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

4 - 6

17 February 1995 Overall Concepts and Principles of TINA
Computing architecture TB_MDC.018_1.0_94

DPE
Kernel

Kernel Transport Network

DPE
Kernel

DPE
ServicesDPE

Services
Application

Software

Figure 4-4. Basic DPE architecture

(b)

(c)

Key:
(a) Basic DPE interface
(b) DPE services interface
(c) Inter-DPE interface

(a)

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Architectural layers and separations

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 5 - 1

5. Architectural layers and separations

This section outlines some layering and separation principles found in the TINA architec-
ture.

The purpose of layering and separation principles is to be able to partition the problem
space into different areas of concern. The effect of separation principles is to allocate ob-
jects in a design to particular areas. Entities are allocated to an area based on the function
and/or role they perform, and on their requirements to interact with other objects.

In general, separation principles are orthogonal to the viewpoints defined in the computing
architecture.

5.1 Main separations

The separations identified in TINA are based on two layering principles: computing and
management layering.

Computing layering consists of hardware, operating system, DPE, and application layers,
as described in Section 3.

Management layering, as defined by TMN (Telecommunications Management Network),
consists of network elements (NE), element management layer (EML), network manage-
ment layer (NML), service management layer (SML), and business management layer
(BML) [21].

The TMN layering has been generalized in TINA. The TINA architecture defines three lay-
ers viz service, resources, and element (explained below). The business management lay-
er has not been addressed by TINA. The TMN layering has been adapted for two reasons.
Firstly, the layering has been generalized so as to allow for the management of many dif-
ferent types of elements. TMN intentionally covers only the management of transport net-
works. In TINA systems, other types of elements need to be managed. Examples are,
software, computing nodes, and the DPE. Secondly, the TMN layering, when slightly mod-
ified, is also suitable for the partitioning of non-management software. For example, a ser-
vice logic that manipulates resources to perform its function fits naturally with the service
and network (resource) split.

The management layering principles are used to partition the software in the application
layer. Figure 5-1 depicts a refined version of Figure 3-3, showing the separations in the ap-
plications layer.

5.1.1 Element layer

The element layer is populated by objects that represent atomic units of physical or logical
resources, defined for allocation control, usage and management purposes. Objects in the
element layer are called elements. From a TMN perspective, elements are proxy represen-
tations of physical equipment found in transport networks, and the element layer provides
NEL functions. Examples include switching fabrics and transmission equipment. An ele-

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

5 - 2

17 February 1995 Overall Concepts and Principles of TINA
Architectural layers and separations TB_MDC.018_1.0_94

ment that is a proxy for physical equipment, is a unit of software that complies with the com-
puting architecture e.g. is realized by a computational object. Other TINA software may
interact with the element in a TINA consistent way. The element is responsible for commu-
nication with the actual device (network element software), which may follow proprietary or
standards based protocols and interfaces. As mentioned in Section 3-3, the way an ele-
ment interacts with the actual equipment is outside the scope of TINA.

Elements that represent physical devices are necessarily technology dependent. However,
the use of ‘standard’ element representations could provide vendor independence. For ex-
ample, a Synchronous Digital Hierarchy (SDH) switch is very different from an Asynchro-
nous Transfer Mode (ATM) switch. One cannot not substitute an SDH switch with an ATM
switch, even if abstractly they are both switches with similar characteristics. One can, how-
ever, substitute an ATM switch from one vendor with an ATM switch from another if the
same element definition is used by both vendors.

Elements are not restricted, as in TMN, to representing only physical entities. Logical re-
sources can also be elements. An example is an element that represents a unit of software.
The element in this case will provide interfaces to allow management software to manipu-
late the status of the software, such as to control its availability.

The element layer provides a view of individual resources. In TMN parlance, elements are
similar to managed object definitions. From a management perspective, here is no manag-
ing functionality in the element layer, only representations of the things to be managed. The
relationships between elements, such as a transmission line attaches to a switch fabric, is
not represented in the element layer. In the element layer, elements do not directly interact
with each other.

Figure 5-1. Layers and separations in TINA

TINA applications

DPE

hardware resources

NCCE
transport
network

network
element software

ElementResourcesService

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Architectural layers and separations

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 5 - 3

5.1.2 Resources layer

The resources layer contains objects that maintain views and manipulate collections of el-
ements and their relationships. It also provides the service layer with abstract representa-
tions of elements.

From a TMN perspective, the resources layer corresponds to the Element Management
Layer and Network Management Layer. The resources layer will contain objects that con-
tain the managing functions to be applied to elements, either individually (element layer
equivalence) or as a group (network layer equivalence). The main reason why the element
and management layers in TMN have been combined in the resources layer is that the
management functionality in EML and NML are very similar, only the scope, individual ele-
ment or collection of elements, is different. Because of this, common management and sup-
port software can be defined. An example is the management of faults. The handling and
processing of faults from an individual element or from a collection of related elements is
very similar, and a common fault manager could be defined in the resources layer.

The managing of elements can be dependent on technology. Management software would
have to be tailored for the management of ATM switches or SDH switches, for example.
This lowest sub-layer of management software is therefore technology dependent. The re-
sources layer is responsible for providing technology independent views of elements, so as
to be suitable for services. In fact, it is common that services do not see individual elements,
rather services are provided with technology independent abstractions of collections of el-
ements. An example is an abstract notion of ‘connection’ that can be translated into ATM
technology.

It is worth stressing that the resources layer is not restricted to the control and management
of elements in the transport network. Anything that is represented in the element layer
should be handled by the resources layer.

5.1.3 Service layer

Service layer is populated by objects involved in the provision of services to stakeholders.
Objects in this layer are either specific to a given service or are service-independent. The
first embody logic, data, and management capabilities specific to a service. The second
provide generic service access, control and management capabilities.

5.1.4 Interaction constraints

The layering principles defined above should not be used to strictly classify objects. This
means that an object may be in more than one layer provided the purposes are different.
For example, an object that provides a service logic in the service layer, could also be con-
sidered an element for the purposes of managing the object as a piece of software, such
as migrating it from a node that cannot meet processing demands.The layering principles
should therefore be applied relative to a particular problem.

From a particular problem to be solved (offering a service, managing software, managing
networks, for example), the separation of objects in the three layers should be applied. In
general, objects are expected to access only objects in their same layer or in a contiguous

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

5 - 4

17 February 1995 Overall Concepts and Principles of TINA
Architectural layers and separations TB_MDC.018_1.0_94

layer (i.e., service objects would request operations only to objects in the resources layer).
In specific cases, which should be carefully identified and specified, this constraint might
be relaxed.

5.1.5 Multi-suppliers and operators

In general, a TINA system will consist of software and hardware from multiple suppliers,
and the provision of services and networks will be through a cooperation of service and net-
work providers. Objects owned by one party may interact with objects owned by another
party. This may occur within and between layers. An example is a third party service pro-
vider who does not own a network. The third party service provider provides service logic
that will manipulate the networking resources via the resources layer owed by another par-
ty.

5.2 Separations from a service perspective

A service, once deployed into a network, may have different people performing different
roles with respect to the service. The end-users, in the customer environment, will interact
with a service in order to obtain the effects of the service (i.e. what that service has been
defined to provide). Service managers will interact with the service in order to provide sub-
scriptions, control service usage, and to provide charges and bills. Network managers will
be involved in order to provision the resources and ensure resource availability required for
a service. People performing service and network management functions may belong to
customer environments as well as Service and Network Provider ones. These roles are not
exhaustive.

A service must be designed to suit the needs of all the different roles that people might play
with respect to it, such as, end-user, service manager and network manager. The roles that
need to be considered should be captured as part of the requirements on the service.

When a service is placed into a network a number of considerations must be made with
respect to functionality and to what data/information is required. It is important that all as-
pects of a service are incorporated into a design and deployed at the same time. Four areas
should be covered: access to the service, the service core (service logic), management of
the service, and the resources (and their management) required to run the service.

Figure 5-2 shows a generic service model, as defined by ROSA [16]. It incorporates the
separation of a service into the different areas of concern (access, core, management and
resources) and how these relate to different roles that may be played with respect to a ser-
vice. The areas of concern in this figure define separation principles for service compo-
nents. A service in a TINA system should incorporate aspects of access, core,
management and resources for all the roles required to be supported.

Figure 5-3 shows a generic access model for services (also from ROSA), where additional
objects may be required to support the interaction with multiple services at the same time.

These separation principles are used by the service architecture. They are not just relevant
to the services layer, since some of the separations can be related to objects in the resourc-
es or element layer.

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Architectural layers and separations

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 5 - 5

5.3 Separations from a management perspective

Management systems, as defined by TMN and OSI (Open Systems Interconnection)
[21][22], define two types of separations: layering and functional separations. Layering, fol-
lowing a business, service, network, and element separation was presented above. Func-
tional separations state that management systems can be divided into five broad areas of
functionality, namely fault, configuration, accounting, performance, and security (FCAPS).

Access Access

Access AccessResources

Service
Core Management

Initiating
User

Responding
User

Service
Provider

Network
Provider

Figure 5-2. Generic Service Model

AccessResources

ServiceCore Management

AccessResources

ServiceCore Management

AccessResources

ServiceCore Management

Access

End-User

Figure 5-3. Generic access model

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

5 - 6

17 February 1995 Overall Concepts and Principles of TINA
Architectural layers and separations TB_MDC.018_1.0_94

The definition of these will be expanded upon in Section 8. These functional separations
can be applied to both the services and resources layer, wherever management function-
ality is exists in those layers.

5.4 Design separations

According to the computing architecture, a service will be defined as a collection of objects.
As described above, objects comprising a service can be categorized into access, core,
management and resource objects, where management objects can further be classified
according to the FCAPS separations. It can be observed that these separations could also
be suitable for other types of components that comprise the system. By component it is
meant any object, or composition thereof, that is a unit of construction and reuse.

Taking all these separation principles into account during the design of TINA services and
components can be a complex and confusing task. To provide usable design guidelines
these separation principles have been rationalized into a simplified model called the Uni-
versal Service Component Model (USCM).

The USCM provides a classification scheme for the components of TINA compliant sys-
tems and services. Essentially, all services are modelled as consisting of a core surrounded
by an access layer. The USCM provides a model for the interactions between components
and between services. It is also the basis for the ability to construct new services from ex-
isting services through the recursive use of the USCM, although this has not been fully
studied in TINA.

An object representation of a service may represent a large scale, complex service or a
small, simple service. Whatever the size or complexity of the service, its structural organi-
zation should be consistent with the USCM division and is therefore the same as other
TINA compliant services. This common service format is specified to promote consistency,
reuse, and simplification of management.

The USCM is an abstraction and simplification of the separation principles described in this
section. It provides both an internal and external description of the structure of any TINA
service or component. The relationship between USCM components describe constraints
on the group of related components that comprise the service.

5.4.1 The sectors of the access layer

The access layer of a service is divided according to three access aspects, viz usage, man-
agement and substance. Such a division yields Figure 5-4, which is a diagram that is com-
monly used to show a USCM model. Since the divisions of the access layer in this model
imply divisions of the circular access layer, the divisions are referred to as sectors.

The three sectors are defined as follows:

• Usage sector: aspects in the usage sector provide interfaces for external com-
ponents or services that motivate and directly control the operation of the ser-
vice (e.g., the clients or users of the service). These components usually pro-
vide server interfaces to the service environment. Entities in the environment

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Architectural layers and separations

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 5 - 7

see usage sector aspects as (server) interfaces to the TINA service. Compo-
nents in the core see usage sector components as a normalized views of an ex-
ternal user of the core.

• Management sector: aspects in the management sector provide the logic and
data to control the initialization, configuration, accounting, and other manage-
ment and operational functions needed to establish, configure, and character-
ize the component itself. These aspects usually provide server or managed ob-
ject interfaces to a managing system. Management sector aspects provide
management interfaces to environment components and other services. These
management interfaces are consistent with managed object models defined in
the management architecture. The management aspects will control and man-
age all the sectors as well as core of the component. Note that entities in the
management sector only manage things within the same component and do not
manage things in other components. For example a managed object in the
management sector may only manage entities in the sectors of the same com-
ponent.

• Substance sector: aspects in the substance provide the internal representation
of the external components that the component uses. The substance aspects
commonly present user or client type interfaces to other services and resources
in the service environment. Aspects in the core see substance sector aspects
as a normalized view of an external resource for use by the core.

Figure 5-4. Primary structure of the Universal Service Components Model

Management
Sector

Usage
Sector

(usually
server type
interfaces)

(usually
server type
interfaces)

(usually client type interfaces)

Substance
Sector

CoreU M

S

C

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

5 - 8

17 February 1995 Overall Concepts and Principles of TINA
Architectural layers and separations TB_MDC.018_1.0_94

5.4.2 The service core

While these sectors are very general, they identify a sufficient set of support functions to
allow description of all TINA services, objects and systems. The model is complete when
the general access layer is combined with a core functionality that is unique for each com-
ponent.

The core is the logic and data that defines the intrinsic operation, or raison d’être, of the
component. The intrinsic operation controls the primary operation of the component without
regard for the details of the supporting environment.

5.4.3 Use of USCM

The USCM can be seen to provide a high level checklist of what must be included to make
a design complete. It can also be viewed as a model that upholds the various separation
principles, which should lead to well-formed and reusable components.

The intention is for the USCM to be part of the overall architecture and thus to be used
when defining any TINA software system and sub-systems, such as services, and manage-
ment applications. However, until its usefulness is proved, its usage in specifying and de-
signing TINA systems is optional.

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Network architecture concepts

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 6 - 1

6. Network architecture concepts

The purpose of the network architecture is to provide a set of generic concepts that describe
transport networks in a technology independent way, and to provide mechanisms of the es-
tablishment, modification, and release of network connections. The network architecture
defines a set of abstractions that the resources layer can work with. At one end it provides
a high level view of network connections to services. At the other end it provides a generic
descriptions of elements, which can be specialized to particular technologies and products.

6.1 Network layering and partitioning

The network architecture has been defined by taking into account principles of ITU-T Rec-
ommendation G.803 [19], and ITU-T M3100 [20]. G.803 describes the functional and struc-
tural architecture of SDH transport networks. However, many of the G.803 concepts are
also applicable to networks other than SDH, such as ATM.

The major concepts of G.803 are partitioning and layering.

Partitioning means that a network may be decomposed into subnetworks and links1 be-
tween them. Each subnetwork may be further decomposed into smaller subnetworks inter-
connected by links until the desired level of detail is reached. The lowest level of
decomposition will usually be when a subnetwork is equivalent to a single network element
(switch or digital cross-connect).

Transport networks can be viewed as composed of layer networks. Each layer network rep-
resents a set of compatible inputs and outputs that may be interconnected and character-
ized by the information that is transported. The inputs and outputs may be regarded as
access points on the layer network. Characteristic information is defined as a signal of char-
acteristic rate, coding and format. Generally, a layer network is closely tied to a specific type
of network transmission and/or switching technology, e.g., SDH/SONET VC-4, ATM virtual
channel (ATM VC) or ATM virtual path (ATM VP).

Layer networks may have client/server relations with each other. A link (between two sub-
networks) in a client layer network is supported by an trail (end-to-end connection) in the
server layer network. In the lowest layer network, a link will be a physical item (e.g. fibre,
radio connection).

Figure 6-1 illustrates these concepts. It shows a network built of three layers. The lowest
two layers are shown as being partitioned into sub-networks and links, with a client/server
relationship between them.

1. TINA has modified some of the terminology from G.803, to take into account other network
technologies, and other network models, such as that defined by M.3100.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

6 - 2

17 February 1995 Overall Concepts and Principles of TINA
Network architecture concepts TB_MDC.018_1.0_94

6.2 Network resource information model

The Network Resource Information Model (NRIM) is an information specification of trans-
mission and switch technologies, based on the principles outlined above [8]. In this model
technology dependant aspects have been extracted (e.g. remove differences between
ATM and SDH switches). The model concerns how individual elements are related, topo-
logically interconnected, and configured to provide and maintain end-to-end connectivity.
The model therefore defines technology independent concepts that can be used to derive
technology independent control and management functions. When designing and imple-
menting a real network the technology dependant aspects must be taken into account as
specializations of the generic model. The concepts found in this model include Layer Net-
work, Sub-Network Connection, link connection, topological link, and network termination
points. Figure 6-2 shows an OMT diagram of a fragment of the NRIM.

6.3 Connection graphs

The NRIM can be used to describe a detailed network. However it contains details that a
user may not want to be, or should not be, aware of. Any use of a network, aside from man-
agement activity, must be as a result of using a service. It is important therefore to provide
a service-oriented view of connectivity. The concept of connection graph is used for this
purpose. A connection graph is an information specification containing vertices with ports,
where ports are connected by lines and branches to represent connectivity (Figure 6-3).

Example Layers Layer Network

Subnetworks Links
Trail

Server layer

Trail

Client Layer Client/Server
relationship

Circuit Layer
Networks

Path Layer
Networks

Transmission Media
Layer Networks

Figure 6-1. Partitioning, layering, and client/server relationships in
transport networks

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Network architecture concepts

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 6 - 3

There are two basic types of connection graph. In a logical connection graph , the vertices
represent computational objects, the ports represent stream interfaces, and the lines rep-
resent streams. In a physical connection graph , the vertices represent the computing
nodes that the computational objects reside on, the ports represent network access points,
and the lines represent the network connection portions of streams.

6.4 Connection management

The computational model that provides for the establishment, modification, and release of
connections is called connection management. Connection management consists of a set
of components that reside in the resources layer [9]. The NRIM and connection graph in-
formation specifications have been used to derive these components.

SNW
Trail

Connection

1+

LNW

1+

SNC

SNC Subnetwork Connection
LNW Layer Network
SNW Subnetwork

P
ar

tit
io

ni
ng

Tandem Connection

La
ye

rin
g

Topological
Link

1+

1+

Connection and SNC list

Connection and SNC list

N
ea

r
en

d
T

P

F
ar

 e
nd

 T
P

NWCTPNWTTP

F
ar

 E
nd

 T
P

 li
st

N
ea

r
en

d
T

P

1+

NWTTP Network Trail Termination Point
NWCTP Network Connection Termination Point

Edge

1+

composite

component

sourcesink
sourcesink

client

server

1+

Key:

Figure 6-2. A fragment of the NRIM

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

6 - 4

17 February 1995 Overall Concepts and Principles of TINA
Network architecture concepts TB_MDC.018_1.0_94

The communication session manager (CSM) provides an interface to service software.
This interface consists of operations to build and modify logical connection graphs, such as
to add, modify, and delete vertices, ports, and lines. Once a logical connection graph is
built, the CSM translates it into a physical connection graph. The primary task in this trans-
lation is to identify the computing nodes that the computational objects reside on and the
network access points to be used. The CSM will interact with a nodal connection manager
on each node to request intra-nodal bindings. An intra-nodal binding is an association be-
tween a stream interface and a network access point (an example would be a socket in the
UNIX operating system [29].) For each network connection required, the CSM will interact
with a connection coordinator to establish connections between network access points.
The CSM is responsible for performing the modification (e.g. bandwidth changes) and re-
lease requests from services. It is also responsible for reporting to services any changes in
the underlying set of connections that affect a logical connection graph.

A typical transport network is composed of various layer networks each with their own char-
acteristics. Each of these layer networks is controlled by a layer network coordinator
(LNC) and a number of connection performers (CPs). A LNC is responsible for providing
end-to-end connections through the layer network it is controlling. Each sub-network of a
layer network is assigned a connection performer. A connection performer is responsible
for establishing connections across a sub-network. The LNC and the CPs are specialized
for the particular layer network they control.

A connection coordinator is responsible for carrying out the connection requests coming
from the CSM (Figure 6-4.) A connection coordinator is not associated with a particular lay-
er network, and it hides the various layer networks from the CSM. A connection coordinator
will get a request to connect two or more network access points, providing a certain band-
width and a certain quality of service. Based on this information, a connection coordinator
determines which layer network to use, and requests the layer network coordinator to setup
connections in that layer network. A layer network coordinator, in turn requests connection

Line 1

Connection Graph

Port 1

Port 4

Port 3

Port 2 Vertex 2

Vertex 1

Branch 3

Branch 2

Branch 1

Line 2

Port 5

Figure 6-3. Connection graph

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Network architecture concepts

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 6 - 5

performers to establish sub-network connections. Where a sub-network is further parti-
tioned, the connection performer will request the connection performers of the contained
sub-networks to establish connections. This recursion continues until a connection per-
former that is responsible for a switch or cross-connect is reached. The connection perform-
er in this case will interact will the element software acting as a proxy for that device.

LNC

EML
CP

CC

CSM

NE proxy NE proxy

EML
CP

Elements

Resources

Key:
CSM = Communication Session Manager
CC = Connection Coordinator
CP = Connection Performer
NE = Network Element
LNC = Layer Network Coordinator
NML = Network Management Layer
EML = Element Management Layer
NEL = Network Element Layer

NML
CP

Service ComponentsServices

Network
Elements

Figure 6-4. Connection management components

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

6 - 6

17 February 1995 Overall Concepts and Principles of TINA
Network architecture concepts TB_MDC.018_1.0_94

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Service architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 7 - 1

7. Service architecture

The service architecture aims to define a set of concepts and principles for the design, im-
plementations, usage, and operation of telecommunications services [6]. It further aims to
define a set of reusable components from which to build telecommunications services. Ser-
vices and their environment are modelled as objects specified according to the three sets
of modelling concepts in the computing architecture. There are three main sets of concepts
and principles in the service architecture:

• Session concepts, which address service activities and temporal relationships,

• Access concepts, which address user and terminal associations with networks
and services, and

• Management concepts, which address service management issues.

This section presents an overview of the session and access concepts. Service manage-
ment concepts are presented in Section 8.3.1, under the management architecture.

7.1 Session concepts

Although services by their nature are different from each other, they all have a fundamental
property in that they provide a context for relating activities. Such a context is termed a Ses-
sion. As a generic definition, the term session represents a temporal period during which
activities are carried out with the purpose of achieving a goal. Four types of sessions have
been identified: service session , user session , communications session , and access
session . Service sessions represent a single activation of a service. User sessions repre-
sent a single user’s interaction with a service session. Communications sessions represent
the connections associated with a service session. Access sessions represent a user’s at-
tachment to a system and their involvement in services.

A service session is the single activation of a service. It relates the users of the service to-
gether so that they can interact with each other and share entities, such as documents or
blackboards. A service session contains the service logic. A service session is computa-
tionally represented by a service session manager . A service session manager offers two
types of operational interfaces. The first is a generic session control interface. This provides
operations that allow users to join and leave a service session. For certain services it may
also offer operations to suspend and resume involvement in a service. The second type of
interface will provide service specific operations, and will be dictated by the capabilities of-
fered by the service logic.

The ability to suspend and resume involvement in a service is a desirable feature for some
services. For example, consider a multi-media conference that occurs over several days.
During the night, when the conference is not in use, it should be possible to release expen-
sive communications resources. The service session can maintain state about the confer-
ence, such as the users and resources involved. Maintenance of state and the ability to
suspend and resume involvement would avoid the need for tearing down and recreating the
service each day.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

7 - 2

17 February 1995 Overall Concepts and Principles of TINA
Service architecture TB_MDC.018_1.0_94

A user session maintains state about a user’s activities and the resources allocated for their
involvement in a service session. Examples of state held in a user session include the us-
er’s accumulated charge, suspension and resumption history, and service specific state,
such as the current page being edited in a distributed document editing service. When a
user joins a service session, a user session is created. It is deleted when the user leaves.
The service session maintains links to the user sessions and thus provides a group oriented
view.

A communication session is a service-oriented abstraction of connections in the transport
network. A communication session maintains state about the connections of a particular
service session, such as the communication paths, end-points and quality of service char-
acteristic. A communication session is only required when streams between computational
objects are required. Computationally a communication session manager provides the fea-
tures of a communication session (Section 6.4.)

An access session maintains state about a user’s attachment to a system and their involve-
ment in services. A user can attach to a system in order to launch or join service sessions.
A user may be involved in many services at the same time, and an access session main-
tains state about this involvement. Computational aspects of access session are presented
below.

The purpose of these session concepts is to separate out different concerns (see Section
5.2) and to promote distribution of functionality. The separation of access and service ses-
sions allows for both the access methods and technology for different users to vary, and for
the location of the users accessing the service to change whilst a service is in progression.
The separation of service and user sessions allows for the distribution of functions and
state, whereby the user session provides a local view, and the service session provides a
collected view. This separation also supports the suspension and resumption of service in-
volvement. The separation of service session and communication session supports the di-
vision of activities of the service from the set of connections that exist. There are two
essential reasons for this split. Firstly, not all services will require the use of the transport
network. In these cases, services will be provided through operational interfaces, the com-
munication to which is supported by the DPE. Secondly, even if a service establishes con-
nections on the transport network (i.e. has communications sessions), other activities may
be taking place, and other users may be involved; there is not necessarily a one-to-one cor-
respondence between those that are involved in a service and those that have transport
connections as part of the service. An example would be three users cooperating on editing
the same document, where a service session exists to coordinate the editing, and two of
the users have an audio connection because they want to discuss between them some
changes.

There are two important relationships that have yet to be addressed by TINA. The first is
sharing of communication sessions between two service session. Currently it is assumed
that a communication session, and the underlying connections, belong to a single session.
A user involved in more than one session will have to have different connections. It may be
desirable to share communication session between service sessions, especially if the
same users are involved. The second relationship to be studied is the interaction between

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Service architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 7 - 3

different service session. It is a goal of TINA to allow services to be built out of other servic-
es. However, work is required to study the implications of allowing service sessions to be
constructed out of other service sessions.

The TINA architecture only defines generic service session concepts, principles, and com-
ponents. No service specific aspects, such as certain service logics, are defined, although
examples to demonstrate the concepts have been made.

7.2 Access concepts

Users need to have flexible access to services, in terms of the locations from which they
access the service and the types of terminal they use. User access is therefore distin-
guished from terminal access. An agent concept is used in defining the access model. An
agent is a computational object, or collection of objects, that acts on the behalf of another
entity. Two types of agent have been identified: user agent and terminal agent .

A user agent is a computational object that represents and acts on the behalf of a user. It
receives requests from users to establish service sessions, or to join existing service ses-
sions, and creates1 or negotiates with existing service sessions as appropriate. The cre-
ation of a service session by a user agent is subject to subscription and authentication
checks. A user agent also receives and processes requests to join a service session from
service sessions themselves. This is a form of in-coming call processing where another
user has created a service session and invites the user to join in. User agents know the sub-
scribed services that a user may create. This list can be presented to the user when the
user logs onto his user agent. Comparing to current networks, the user agent is a place
where service related signalling messages are received and processed.

A terminal agent is a computational object responsible for representing a terminal. It is re-
sponsible for obtaining the precise location of a terminal. Two examples are, which network
access point a portable computer is attached to, and which cell a mobile phone is currently
in.

In order to access a service, users must associate their user agents with terminal agents.
This may form part of a logging on process to establish an access session. A user may be
simultaneously associated with many terminals. For example, in a video conference a user
may be using both a workstation and a telephone. Similarly a terminal may be simulta-
neously associated with many users, for example, when in a meeting all users associate
their user agents with the telephone in the meeting room. On incoming session requests, a
user agent has to determine which terminal agent should be contacted. If the user is cur-
rently accessing the system then an announcement could be issued to one of the terminals
being used, and the user can instruct the user agent which terminal to use. Otherwise the
user agent will have to determine which terminal and pass a request to the terminal agent
who can alert the user. This determination can be done through user registration, prefer-

1. Creation is actually carried out by the user agent sending a request to a factory. A factory is a DPE
service that can dynamically create objects.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

7 - 4

17 February 1995 Overall Concepts and Principles of TINA
Service architecture TB_MDC.018_1.0_94

ences, and defaults. An example would be a user that registers with his user agent the fol-
lowing location policy: office phone between 9am and 5pm, Monday to Friday; home phone
any other time; voice mail service if either fail to pickup.

The power of the user and the terminal agent concept is that users and terminals can be
located by finding the related agent. This can be achieved by using the trading services pro-
vided by the DPE. This avoids having to build in location knowledge and thus allows users
and terminals to move around the network. User and terminal agents may also move
around the system. This movement can be made transparent by the DPE, by updating en-
tries maintained by the trading services for example. User and terminal agents should have
high reliability and availability properties. These are required so that the system can rely on
a contact point for locating users and terminals in an environment were both may be moving
around.

7.3 Example

Figure 7.1 depicts a computational view of the access and the session concepts together.
The shaded boxes of user and terminal agent represent service independent objects, and
the white boxes depict service specific ones.

Assume that a user wishes to engage in a document editing session with another user.
First, the user selects a terminal on which he will access the network. Assume it is a work-
station with windows capabilities. As part of a login procedure the terminal agent and user
agent are found - using the trading services of the DPE - and associated with each other.
The user is then presented with a menu of capabilities. He selects the document editing
option. A request is passed to the user agent to establish a document editing service ses-
sion. The user agent creates a document editing service session manager, and joins the
user to the session, causing a user session to be created. Another menu is presented to
the user requesting the identification of the user to be called. On input of data, the user
agent requests to the service session manager to join the new user into the session. The
service session manager uses the identity to locate - again via trading - the requested user
agent, and a request to join is passed over to this user agent. The remote user agent then
alerts the terminal agent (after having determined which terminal to use) of the incoming
session request. The terminal agent then alerts the terminal, by presenting a window on the
user’s terminal (for simplicity assume the user was already logged on). The destination
user accepts the request and the response is fed back to the service session manager. On
seeing the acceptance, the service session manager creates a user session for the new
user. The first user then requests the service session manager to set-up an audio-visual
connection to the remote user, so that the two users can discuss edits to be made before
carrying them out. The service session manager requests the communication session man-
ager to establish a stream between end-user applications (computational objects) residing
on the users’ terminals (the interface identities of which were passed over in an earlier re-
quest or response). For simplicity the details of the connections are not shown in the figure
nor further discussed here. When the stream is established, a response is passed back to
the originating user. The two parties can then engage in an audio-video conversation,
where they discuss the changes to be made to the document.

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Service architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 7 - 5

The originating user requests the service session manager to open the document, and the
document appears on the users’ screens. Commands to edit the document are sent to the
service session manager, and the changes are reflected back on the users’ screens.

At any time either party may leave the session. This will result in the other user being noti-
fied and the deletion of the service session. During the session, subject to permission, each
user may request another user to join.

End User
Application

Service
Session
Manager

Comms.

Session
Manager

Figure 7.1: Access and session components

End User
Application

User
Session

User
Agent

Terminal
Agent

User
session

User
Agent

Terminal
Agent

Stream

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

7 - 6

17 February 1995 Overall Concepts and Principles of TINA
Service architecture TB_MDC.018_1.0_94

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Management architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 8 - 1

8. Management architecture

The TINA management architecture provides the concepts and principles to build manage-
ment systems that can manage the entities in TINA systems. As with the service architec-
ture, the computing architecture is used to define object types and interfaces that should be
used to manage TINA services, resources and infrastructures. This section presents only
general management concepts and principles in TINA. Details can be found in [7] and [6].

8.1 Types of management

As presented in Section 5, a TINA system consists of a computing environment upon which
service, resources, and element applications run. This gives rise to two basic types of man-
agement.

Computing management 1 involves the management of the computers (NCCE), DPE, and
of the software (in general terms) that runs on the DPE. Management here does not con-
cern itself with what applications are doing nor on application specific management. The
main concern is the deployment, installation, and operation of software and computing
nodes.

Telecommunications management involves the management of the transport network,
the management of the applications that use and control this network, and the management
of services.

These two types of management are very broad, and are themselves broken down into sub-
types of management. Telecommunications management is broken down into service, re-
source, and element management, in much the same way as TMN systems. Computing
management is divided into generic software management, such as deployment, configu-
ration, and instantiation of software, and management of the DPE and computer environ-
ments. Thus there is a relationship between the service, network and computing
architectures and management concepts and principles.

8.2 Generic management

Even though different types of management have been identified, the TINA architecture de-
fines a set of generic management concepts and principles.There are two sets of concepts
and principles for generic management:

• Functional separations, that break down the problem of management into dis-
tinct areas of concern.

• Modelling of management systems, that defines how to express management
relationships and operations.

1. The term computing management is used in preference to the term systems management. The two
terms approximately cover the same areas of concern. However, it is felt that computing management
is more meaningful in the TINA context, and avoids the confusion that arises though use of terms such
as telecommunications systems and computing systems.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

8 - 2

17 February 1995 Overall Concepts and Principles of TINA
Management architecture TB_MDC.018_1.0_94

The generic management concepts and principles recognize that there are good ways to
manage entities irrespective of what those entities are. Therefore, these principles should
be applied to telecommunications and computing management. Applying the same generic
concepts should lead to more consistent and easier to understand management systems,
and maximizes the ability to reuse support services and tools. Figure 8-1, depicts the two
main classes of management and highlights that common concepts and principles should
be applied to both.

When applied to each area, the generic concepts and principles will be specialized (and
may be extended) so as to be suitable to the particular type of entities being managed.

8.2.1 Functional separations

Management can be divided into five aspects: fault , configuration , accounting , perfor-
mance and security . This is the FCAPS separations found in OSI systems management.
All five aspects must be included if a system is to be fully manageable. Each of these as-
pects define generic concepts and principles. For example, accounting management de-
fines concepts such as accountable object, usage data and account metering, and provides
principles on how these concepts should be used to account for any set of entities. A ge-
neric accounting management model is independent from the types of entities being ac-
counted for. It does not restrict accounting to that of resource usage. The accounting model
has to be specialized and/or extended for the service, network, and computing architec-
tures of TINA. For example, in the service architecture, the generic accounting model is ex-
tended with concepts of charging and billing.

Computers/workstations

Kernel transport Network

DPE

Applications
C

om
pu

tin
g

M
an

ag
em

en
t

Service Resources Element

Te
le

co
m

M
an

ag
em

en
t

Tr
an

sp
or

t
N

et
w

or
k

Generic
Management

Concepts and
Principles

Figure 8-1. Two types of management

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Management architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 8 - 3

The five areas of management are each very broad in scope. They are basic guidelines to
divisions of functionality. When applying these areas to particular management problems
further subdivision may be required. This may result in specific models that cannot be gen-
eralized. There are two major refinements in TINA. In the service architecture, subscription
management is considered a functional area that is part of the broader aspects of configu-
ration management. Since subscription management occurs only at the service layer there
is no need for a generic model to cover different layers. In the network architecture, con-
nection management, which applies management principles for the real-time establish-
ment, modification, and release of transport network connections, is considered a functional
area that is part of the more broader aspects of configuration management.

8.2.2 Modelling management systems

Management in TINA systems is achieved by the construction of models consistent with the
computing architecture. In the computational viewpoint, managed entities are represented
as objects and provide operational interfaces that allow managing objects to manipulate
them. There may be more than one managed entity represented by a computational object.
In these cases, the interface provides managing systems with a way to manipulate individ-
ual and groups of managed entities. Where a computational object represents more than
one managed entity, the computational object may have to perform filtering and scoping in
much the same way as an agent does in OSI systems management. Filtering and scoping
are a set of functions that decide which entities should be affected by a management oper-
ation. Managing objects may themselves by managed, and thus may also provide interfac-
es for other objects to manage them.

Management services are applications that provide users with the ability to observe and
control the activities of a system. In TINA, management services can relate to telecommu-
nication, or computing management, or a combination thereof. Examples are a subscription
application, that provides electronic forms for the entry of customer details, a traffic man-
agement application, that provides graphic displays of current bottlenecks in the transport
network, and a software deployment application, that graphically depicts nodes and allows
the user to drag and drop software modules onto nodes.

Management services should be designed according to the service architecture. This
means that a user wishing to use a management service will, via his user agent, establish
an appropriate service session. The logic of the service session will provide the manage-
ment capabilities, for example, the generation, receipt, and processing of electronic forms
for a subscription application. The use of the same architecture for user applications, irre-
spective of its function, allows for common generic components to be defined and provides
greater consistency in the overall system.

Management services may be provided to customer organisations as well as service pro-
viders and network operators. An example management service for a customer is an appli-
cation that allows a customer administrator to manipulate a private numbering plan for a
virtual private network.

It is worth noting that management services may themselves need managing. This is called
second order management. This is made explicit in the USCM, where the core of a man-
agement component manages other entities, and the management sector contains capa-

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

8 - 4

17 February 1995 Overall Concepts and Principles of TINA
Management architecture TB_MDC.018_1.0_94

bilities to manage the component itself. The spilt between computing and
telecommunications management also aids this problem, in that telecommunications man-
agement applications may be managed (in generic terms) by computing management ap-
plications. However, the proper termination of this recursion has not yet been studied in
TINA.

8.3 Telecommunications management

8.3.1 Service management

The Service Architecture uses the generic management functional separations defined
above, and extends and specializes them to be suitable for service management.

From the service perspective, fault management relates to restoration of a service to sub-
scribers within the time agreed in their respective contracts. Tracking of progress on resto-
ration of the fault for the service provider and subscriber is facilitated by use of Trouble
Ticketing. Service fault management has yet to be addressed in TINA.

Configuration management in the service architecture can be divided into two main sub-
sets: service life-cycle management and customer life-cycle management. Service life-cy-
cle management deals with the deployment, maintenance and withdrawal of services.
These activities will rely heavily on software configuration management, described below.
Service life-cycle management has yet to be adequately addressed in TINA.

Customer life-cycle management includes those activities which are necessary before, dur-
ing, and after subscription. Pre-subscription activities include promotion of the service, ne-
gotiation with the (potential) customer and formulation of the subscriber contract. Post-
subscription activities includes dealing with enquiries, and monitoring of customer satisfac-
tion. Subscription Management aspects are defined by considering the Service Provider,
Customer (Subscriber) and End-user stakeholder roles. The service provider will offer a
range of capabilities for a service which may be tailored to meet the requirements of a cus-
tomer. The customer will select those service capabilities from the service offering which
will meet his requirements. These will be agreed between the customer and service provid-
er and form the basis of a contract. The customer will then offer these capabilities, or a re-
stricted set of them, to the end-users. A subscription model is defined in [6].

Accounting management for services is primarily concerned with the application of tariffs
to usage of services, deriving charges and billing for subscribers. The mechanisms for ob-
taining and storing usage information are defined in the generic accounting model. The bill-
ing periodicity will be explicit in the contract, as should procedures for non-payment and
dispute. It should be possible in a TINA environment for customers to obtain their bill for
themselves on demand. It is obvious here that security of information and security of the
accounting management system is particularly significant. An account management model
is defined in [6].

Performance Management is concerned with maintaining agreed Quality of Service (QoS)
levels on services to customers. This is normally achieved by monitoring the performance
of entities in the network. It is essentially a preventive activity in that performance degrada-

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Management architecture

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 8 - 5

tion should be detected before a “hard” fault occurs resulting in loss of service(s). QoS will
be characterized as part of the contract. Performance management is yet to be addressed
by TINA.

Security management in the service architecture addresses who can access what services
and from where. These issues are not yet fully addressed in TINA.

8.3.2 Network management

The Network Architecture uses the generic management functional separations defined
above, and extends and specializes them to be suitable for network management. Since
the network architecture covers different network and network element abstractions, net-
work management in the network architecture encompasses both the network manage-
ment layer and the element management layer of TMN.

Fault management in the network architecture encompasses detection, isolation, and cor-
rection of improper behaviour of network resources. Alarm surveillance permits monitoring
of resources and makes information about fault status available outside the resource itself.
Fault localization identifies the specific resources that are responsible for improper behavior
within the network. Fault correction is concerned with the restoration of resources currently
in a fault condition. Testing/Diagnostic is associated with analysis of circuits or equipment
and reporting of the results. Trouble administration is an activity that enables troubles to be
reported and their status tracked.

Configuration management in the network architecture is divided into two sub-areas: re-
source configuration and connection management. Resource configuration includes sup-
porting the installation of network resources, provisioning of network resources to make
them available for use, monitoring and control of resource status (e.g., available or not
available for service use) It also includes the management of the relationships among the
resources.

Connection management is concerned with the setup, maintenance and release of connec-
tions, including the specification of a connection model. Traditionally connection manage-
ment is considered as control operations, which are viewed as being different from
management. In TINA, these control operations are seen are real-time, or dynamic, man-
agement operations. Connection Management is used by service architecture components
whenever a service requires connections. Section 6.4 presents an overview of connection
management.

Accounting management in the network architecture is responsible for providing the ability
to collect resource usage information and to apply the adequate charges for that usage.
Metering and charging are the two major concerns. Metering is the task of recognizing and
recording information relevant to the usage of a resource in a meaningful way. Metering in-
formation will be forwarded to service management applications. No specific network ac-
counting model has yet been defined in TINA.

No concepts and principles have yet been defined for performance and security manage-
ment of networks.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

8 - 6

17 February 1995 Overall Concepts and Principles of TINA
Management architecture TB_MDC.018_1.0_94

8.4 Computing management

Computing management is broken down into two areas. Software management considers
how to install, create, delete and withdraw software. Infrastructure management considers
how to manage the NCCEs, the DPE (kernel and services), and the kernel transport net-
work. The direct management of NCCEs is outside the scope of TINA, although the DPE
may provide facilities that can be used to indirectly manage the underlying NCCEs.

The work on computing management is immature. However, to provide an insight into how
it is being approached, the use of the layering principles defined in Section 5.1 is described.

For computing management, the entities to be managed will be represented as objects in
the element layer. In some cases these objects will be proxies for the entities being man-
aged, in other cases these objects may be the actual entities subject to management. An
example of the first case is a loadable software module. The module itself is not an object,
but will be represented as an object in the element layer for computing management pur-
poses. An example of the second type is a computational object that offers an operational
interface with operations to suspend and resume execution. In this case there is no need
to provide a proxy, as a managing system can directly invoke operations on the object (el-
ement) itself.

The resources layer should maintain a list of elements and the relationships between them.
For software management, the resources layer should maintain knowledge of what soft-
ware modules are installed on what computing nodes, and on what modules comprise an
application. The latter is required when an operation needs to be carried out on all the mod-
ule of an application, such as to remove an application. For infrastructure management, the
resources layer should maintain knowledge of the computing nodes in the system, what
their capabilities are (such as the presence of DPE services), and how they are connected
to each other through KTN resources.

The service layer will contain objects that provide for computing management services, that
can be used by administrators. Examples are software deployment services, that interact
with the resources layer to add new applications and software modules into the system,
and performance monitoring services, that interact with the resources layer to monitor ex-
ecution loads on the computing nodes and traffic flows between the nodes.

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Design guidelines

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 9 - 1

9. Design guidelines

This section presents an overview of a methodology that can be used to apply the TINA
architecture to the design of services and service components for TINA systems1. In this
section, only an overall description of a development process is presented. Further details
can be found in [11]. Also presented in this section is an overview of some tools that have
been developed to support the use of notations. The notations and tools have not been in-
tegrated into the methodology.

Use of the methodology, notations and tools discussed here are internal principles, and
their use is not required outside the Core Team. Any methodology, notation, or tool can be
used provided the resulting systems conforms to the TINA architecture.

9.1 Service development methodology

The service development methodology addresses the needs of TINA service developers
working in various service and system environments to use a common approach to service
development. The objective of such a common approach is to foster development of coop-
erative and coordinated products that can be used as components for building services.
These products will go beyond any list of component types that might be generated as part
of the initial TINA architecture. With such an open-ended product set as a base, the objec-
tive of building services from preexisting services and components is feasible. If such a co-
ordinated product set does not exist, TINA service developers will be limited to building from
primary components or capabilities defined as part of TINA itself. This situation would be
similar to building from a “capability set” and functional entity system such as found in the
IN architecture. This idea is a cornerstone of the TINA approach to service development,
namely, that services are developed from an evolving environment of components and
each product can build on the success of preceding products rather than starting from the
same component set each time. This gives the TINA model great evolutionary flexibility, but
it also presents some serious challenges when mapping a creation process.

The basic paradigm of the service development methodology is the Description Plane Mod-
el (DPM). The DPM defines five main phases, or planes, of a development process, where
each plane is devoted to certain development activities. The main motivation for this model
is the need to relate the viewpoints of the computing architecture together from a method-
ological standpoint.

The five planes of the DPM are objectives, definition, design, implementation, and physical.
Figure 9-1 shows these planes and the relationships between them.

Typically, a development cycle will begin in the objectives plane with the creation of a de-
scription of the service in terms of requirements, and stakeholder models. Stakeholder
models are used to identify the roles that people and organizations will be carrying out with
respect to a service and/or its support environment, and should be used to analyze expec-
tations. An enterprise model description of a service will be the output of the objective plane.

1. The methodology described here reflects work up to December 1994, and may not reflect the current
version of the methodology.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

9 - 2

17 February 1995 Overall Concepts and Principles of TINA
Design guidelines TB_MDC.018_1.0_94

Typically, the second step of service development takes place in the definition plane. In the
definition plane, the enterprise model is used as input to construct an object-oriented de-
scription of the service and its environment, with the emphasis describing what the service
is, and not on how it should be implemented. The output from the description plane is an
information model that reflects the details of the “problem space” of the service. The “prob-
lem space” information model describes the world of the service in terms of all of the perti-
nent actors (derived from stakeholders) and components. The information model will
contain descriptions of the environment of the service as well as a description of the com-
ponents used to build the service and their relationships, and should be structured accord-
ing to the USCM.

The third plane of the DPM is the design plane. The design plane contains object-oriented
descriptions of the components of logic and data that will be used to actually implement the
service. The output of the design plane will be a computational model that defines the units
of programming (computational objects). The design plane therefore focuses on how to im-
plement the problem domain from the definition plane. A clear requirement/satisfaction re-
lationship must be specified between entities in the definition and design planes.

Design
O

bj
ec

tiv
es

D
efi

ni
tio

n

Implementation

Physical

Figure 9-1. Description Plane Model

S
ta

ke
ho

ld
er

 v
ie

w
s

C
ha

ra
ct

er
is

tic
 p

ar
am

et
er

s

D
efi

ne
d

co
m

po
ne

nt
s

In
fo

rm
at

io
n

m
od

el

Computation model

Design components

Engineering model

Impl. components

Phys. components

Technology model

E
nt

er
pr

is
e

m
od

el

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Design guidelines

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 9 - 3

The fourth plane of the DPM is the implementation plane. The implementation plane con-
tains descriptions of the deployable software modules that comprise the service. The im-
plementation plane descriptions are concerned with issues such as distribution, failure
mode operation, security, etc. The outputs of the implementation plane are an engineering
model, and implementation code. The engineering model will include a deployment model
that will express requirements and guidelines on how to deploy the software modules in a
physical system. In order to produce the implementation code, knowledge of the technology
that is to be used is essential (e.g. types of network and computing technology). Therefore
a technology model should serve as an input. This may require the construction of a partial
technology model that identifies the programming languages, operating systems, hard-
ware, and communication protocols that will be used in the physical system.

The fifth plane of the DPM is the physical plane. The physical plane is concerned with the
operational deployment and execution of the software modules. The output will be a com-
bined technology model and physical deployment model. A technology model describes in
detail the software and hardware technology, and the topology of the system. The physical
deployment model shows which software modules are installed on what nodes.

Figure 9-1 shows the development process branching out from the definition phase. There
are two main reasons for this. Firstly, the design and implementation of a service cannot be
carried out until the requirements have been captured and a formal model of what the ser-
vice is trying to achieve has been constructed. However, this does not imply that activities
in the design, implementation, and physical planes cannot proceed until the complete def-
inition is reached. A service, early on in its definition, can be broken down into major sub-
systems, and the development of these sub-systems may proceed in parallel. Secondly, to
support a multi-vendor environment for the construction of software and the interoperability
of a service between different service provides requires agreements on what system is to
achieve. Whilst TINA has not fully investigated conformance and interoperability, the basic
requirement to support separate developments is an agreement on the (formal) definition
of the service. The models developed in the definition plane provide this coordination.

9.2 Notations and tools

Even though the intent and scope of the Core Team is not to build a service creation envi-
ronment (SCE), some tools are currently used and customized by the Core Team. They re-
late to the specification and the development phase of the life cycle model. One is an OMT
tool (Software Through Pictures) that has been used and customized in TINA-C to model
information objects [10]. From this modelling, quasi-GDMO-GRM specifications can be de-
rived automatically as a text representation of the information model. The other tool is the
ODL specification pre-processor that will produce code targeted towards CORBA plat-
forms. A first version of this tool converts ODL specifications into OMG IDL specifications.

Figure 9-2 depicts the development support tools used in the Core Team. The solid arrows
represent inputs and outputs to the tools. The dashed arrow represents informal (i.e. non-
automated) input. It is anticipated in the future that a complete tool chain will be developed
allowing for information models (OMT diagrams and/or q-GDMO specifications) to be input
to a tool that could produce outline ODL specifications, and for the ODL compiler to produce

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

9 - 4

17 February 1995 Overall Concepts and Principles of TINA
Design guidelines TB_MDC.018_1.0_94

outline code in selected programming languages. It is also envisaged that a tool for the
graphical depiction of computational models will be developed. This may be through mod-
ifications to the OMT tool.

ODL
specifications

q-GDMO
specifications

specs
IDL

compiler

OMT tool

ODL

Figure 9-2. Design support tools

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Acknowledgements

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

 10 - 1

10.Acknowledgements

The authors wish to thank all those involved in the development of the architecture, namely
all the TINA-C core team members. We also wish to thank the document reviewers (Paul
Prozeller, Thomas LaPorta, Yann Lepetit, Gunnar Nilsson, Paul Vickers, Hiroshi Ishii, Javier
Huelamo, Harm Mulder, Mike Schenk, Hendrik Berndt, Erik Colban, Dave Brown, and Rick-
ard Jansson) for technical and practical suggestions.

Martin Chapman Stefano Montesi
BT Telecom Italia
UK Italy

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

10 - 2

17 February 1995 Overall Concepts and Principles of TINA
Acknowledgements TB_MDC.018_1.0_94

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 References

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

Ref - 1

References

TINA-C Documentation

[1] An Overview of the TINA Consortium Work Effort, Document No.
TB_G.HR.001_1.0_93, TINA-C, December 1993.

[2] Requirements Upon TINA-C Architecture, Document No. TB_MH.002_2.0_94,
December 1994.

[3] Information Modelling Concepts, Document No. TB_EAC.001_3.0_94, TINA-C,
December 1994.

[4] Computational Modelling Concepts, Document No. TB_NAT.002_3.1_94, TINA-C,
December 1994.

[5] Engineering Modelling Concepts (DPE Architecture), Document No.
TB_NS.005_2.0_94, TINA-C, December 1994.

[6] Definition of Service Architecture, Document No. TB_MDC.012_2.0_94, TINA-C,
December 1994.

[7] Management Architecture, Document No. TB_GN.010_2.0_94, TINA-C, December
1994

[8] Network Resource Information Model Specification, Document No.
TB_LR.010_2.0_94, TINA-C, December 1994.

[9] Connection Management Architecture, Document No. TB_JJB.005_1.0_94, TINA-C,
December 1994

[10] STP Tool Documentation, Document No. TB_EC.004_1.0_94, TINA-C, December
1994

[11] TINA-C Service Development Methodology, Document No. TP_DKB.010_0.1_94,
TINA-C, December 1994.

External Documentation

Related Activities
[12] ANSA, The ANSA Reference Manual Release 01.01, Poseidon House, Castle Park:

Cambridge, UK, July 1989.

[13] Bellcore SR-NWT-002282, INA Cycle 1 Framework Architecture, Issue 2, April 1993.

[14] Bellcore, SR-NWT-002268, Cycle 1 Specification for Information Networking
Architecture (INA), Issue 2, April 1993.

[15] Bellcore, TR-STS-000915, The Bellcore OSCA Architecture, Issue 2, October 1992.

[16] RACE Project R.1093 (ROSA) Deliverable 93/BTL/DNR/DS/A/005/b1, RACE, The
Rosa Architecture, Release Two, Version 2, RACE, May 1992.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

Ref - 2

17 February 1995 Overall Concepts and Principles of TINA
References TB_MDC.018_1.0_94

[17] Abimbola Oshisanwo, et. al., The RACE Open Services Architecture project, IBM
Systems Journal, Vol. 31, No. 4, pp 691-710, 1992.

Relevant Standards
[18] ITU-T Recommendations on Intelligent Networks, Q.1200-Q.1290, approved 1992. In

particular, CS1 Recommendations are in the Q.121x series.

[19] ITU-T Recommendation G.803, Architectures of Transport Networks Based on the
Synchronous Digital Hierarchy (SDH), June 1992.

[20] ITU-T Recommendation M.3100, Generic Network Information Model, 1992.

[21] ITU-T Recommendation M.3010, Principles for a Telecommunications Management
Network, 1993

[22] ISO/IEC DIS 10165-4 / ITU-T Recommendation X.722, Information Technology -
Open Systems Interconnection - Structure of Management Information - Part 4:
Guidelines for the Definition of Managed Objects (GDMO), International Organization
for Standardization and International Electrotechnical Committee, September 1991.

[23] ISO/IEC 10165-7 / ITU-T Recommendation X.725, Information Technology- Open
Systems Interconnection - Structure of Management Information - Part 7: General
Relationship Model, International Organization for Standardization and International
Electrotechnical Committee, January 1993.

[24] ISO/IEC JTC1/SC21 10746-1/ ITU-T Draft Recommendation X.901, “Basic Reference
Model of Open Distributed Processing - Part 1: Overview and Guide to Use”,
November 1992

[25] ISO/IEC JTC1/SC2110746-2.2/ITU-T Draft Recommendation X.902, “Basic
Reference Model of Open Distributed Processing - Part 2: Descriptive Model”,
November 1992

[26] ISO/IEC JTC1/SC2110746-3 /ITU-T Draft Recommendation X.903, “Basic Reference
Model of Open Distributed Processing - Part 3: Prescriptive Model”, November 1992

Object-Orientation
[27] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William

Lorensen, Object-Oriented Modeling and Design, Prentice Hall: Englewood Cliffs,
N.J.:, 1991.

[28] OMG Document Number 91.9.1, Draft, The OMG Object Model, September 1991.

Operating Systems

[29] Maurice J. Bach, The Design of the UNIXTM Operating System, Prentice Hall:
Englewood Cliffs, N.J.:, 1986.

TINA-C Document Template 17 February 1995
TB_MDC.018_1.0_94 Glossary

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

Glossary - 1

Glossary
• Computing architecture : A set of concepts and principles for designing and build-

ing distributed software and the software support environment.

• Deployer/Withdrawer: A deployer/withdrawer places and configures developed
software and hardware modules, received from a developer, into a network, and
confirms that the system runs correctly, and removes the modules when they are
no longer needed.

• Developer: A developer implements a system and passes the implementation to
the deployer.

• Distribution Transparency: The concept of hiding from applications details and
complexities introduced by distribution.access transparency. The nature of trans-
parency is classified into: transaction transparency, location transparency, failure
transparency, federation transparency, migration transparency, group transparen-
cy, and resource transparency.

• Management architecture : A set of concepts and principles for the design, spec-
ification, and implementation of software systems that are used to manage servic-
es, resources, software, and underlying technology.

• Network architecture: A set of concepts and principles for the design, specifica-
tion, implementation, and management of transport networks.

• Network Provider: A network provider provides transport and routing capabilities
to both subscribers/users and service providers so that services may be accessed
and operated respectively. A provided service will use the basic transport capability
provided by the network provider, such as switching, transport, or lower layer pro-
tocol processing.

• Overall Architecture : A set of concepts and principles that embody the general
features of TINA.

• Service Architecture : A set of concepts and principles for the design, specifica-
tion, implementation, and management of telecommunication services.

• Service Broker: A service broker provides to a subscriber the service that is of-
fered by another service provider.

• Service/Network Designer: A designer designs a telecommunications service/
network according to service/network requirements. A designer produces specifi-
cations, and passes them to developers. In designing a service/network system,
the designer should follow a set concepts and principles defined by the TINA-C ar-
chitecture.

• Service/Network Manager: A manager manages the operation of services/net-
works to maintain their normal condition. A service manager negotiates with sub-
scribers regarding their subscription and maintains and updates subscription data.
Also a service manager, in collaboration with a network manager, calculates charg-
es and sends bills to subscribers.

• Service Provider: A service provider provides services to subscribers/users, and
charges subscribers for the services.

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

Glossary - 2

17 February 1995 TINA-C Document Template
Glossary TB_MDC.018_1.0_94

• Software Architecture : A set of concepts and principles for the structuring and
provisioning of software.

• Subscriber: A subscriber purchases service capability provided by a service pro-
vider so that users can utilize this capability. The term customer is a synonym for
subscriber.

• User: A user utilizes a telecommunications service, and also utilizes network ca-
pabilities provided by a network provider in order to access and utilize services. A
user who interacts with a service to obtain the effect of the service is called an end-
user . A user who interacts with a service for other reasons than to obtain the effect,
such as to manage a service, may be assigned other roles, such as service man-
ager.

Overall Concepts and Principles of TINA 17 February 1995
TB_MDC.018_1.0_94 Acronyms

PROPRIETARY - TINA PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

Acronym - 1

Acronyms
• ANSA: Advanced Networked Systems Architecture

• ATM: Asynchronous Transfer Mode

• B-ISDN: Broad Band Integrated Services Digital Network

• CC: Connection Coordinator

• CCITT: Comite Consultatif International Telegraphique et Telephonique (cf.
ITU-T)

• CORBA: Common Object Request Broker Architecture

• CP: Connection Performer

• CPE: Customer Premises Equipment

• CPN: Customer Premises Network

• CSM: Connection Session Manager.

• DPE: Distributed Processing Environment

• DPM: Description Plane Model

• ETSI: European Telecommunications Standards Institute

• FCAPS: Fault, Configuration, Accounting, Performance, and Security.

• GDMO: Guidelines for the Definition of Managed Objects

• GRM: General Relationship Model

• IN: Intelligent Network

• INA: Information Networking Architecture

• ISDN: Integrated Services Digital Network

• ITU-T: International Telecommunication Union - Telecommunication Stan-
dards Sector

• KTN: Kernel Transport Network

• LNC: Layer Network Coordinator

• MO: Managed Object

• NE: Network Element

• N-ISDN: Narrow Band Integrated Services Digital Network

• ODP: Open Distributed Processing

• OMG: Object Management Group

• OMT: Object Modeling Technique

• OO: Object-Oriented or Object-Orientation

• OSF: Open Software Foundation

• OSI: Open Systems Interconnection

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restrictions on title page

Acronym - 2

17 February 1995 Overall Concepts and Principles of TINA
Acronyms TB_MDC.018_1.0_94

• POTS: Plain Old Telephone Service

• PSTN: Public Switched Telephone Network

• q-GDMO/GRM: quasi GDMO/GRM

• QoS: Quality of Service

• RACE: R&D in Advanced Communications technologies in Europe

• ROSA: RACE Open Service Architecture

• SCE: Service Creation Environment

• SDH: Synchronous Digital Hierarchy

• TINA: Telecommunications Information Networking Architecture

• TINA-C: TINA Consortium

• TMN: Telecommunications Management Network

• UNI: User Network Interface

• USCM: Universal Service Component Model

