

Telecommunications

Networking

Information

Architecture

Consortium

Version: 1.1

Main Authors: P. Farley (Core Team/BT), S. Hogg (Core Team/Telstra),
L. Kristiansen (Core Team/Telenor), C. A. Licciardi (Core Team/CSELT),
M. Mampaey (Alcatel), R. Minetti (CSELT),
S. Pensivy (Core Team/CNET), C. Smith (BT),
R.S. Westerga (Core Team/KPN), M. Yates (Core Team/BT)

Editors: P. Farley, R. Minetti, revision editor (v1.1) M. Mampaey

Group: Evaluation Group on the Ret-RP, revised by the SARP-WG

WWW Location: HTTP://www.tinac.com

Date of Issue: 30 April 1999

TINA-C Request for Refinements
and Solutions

Abstract: This document constitutes the final output of the Evaluation Group of the
Request for Refinements and Solutions on the Ret Reference Point, in TINA-
C (version 1.0), revised and approved by the SARP-WG (version 1.1) and
submitted to the TAB for approval.
It contains the specifications of the Retailer Reference Point (Ret-RP).
It consists of an introduction and specifications of the Access and Usage
parts of Ret-RP. Specifications are given in the form of a textual description
and of semi-formal specifications of computational interfaces in OMG-IDL
language. A complete specification of the IDL interfaces is now delivered
separately, in a set of separate IDL files immediately compilable.

Proposal for Unified Response to the RFR/S on Ret

Ret Reference Point Specifications

Issue Status: Public Document

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 2

 page 3

Introduction Ret Reference Point Specifications
Version 1.1; 30 April 1999

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 4

1. Introduction . 11
1.1 Audience . 11
1.2 How to read this document. 11
1.3 Relationship to other TINA-C documents . 12
1.4 Main inputs to this document. 13
1.5 Overall functionality and scope of the reference point 13

1.5.1 Business role life-cycle . 15
2. Context of the Answer to the RFR/S on Ret-RP. 16

2.1 Areas of non-compliance. 16
2.2 Interrelationships with other reference points . 16
2.3 Main assumptions . 16
2.4 Project/prototyping experience. 16

3. Definition of Ret Reference Point . 17
3.1 Business Roles and Session Roles . 17
3.2 Conformance to the Ret Reference Point Specifications 17
3.3 Common Information View. 19

3.3.1 Properties and Property Lists . 19
3.3.2 User Information. 21

3.3.2.1 e_UserDetailsError Exception . 22
3.3.3 User Context Information . 22
3.3.4 Usage related types. . 23

3.3.4.1 t_SessionId . 23
3.3.4.2 t_ParticipantSecretId . 23

3.3.5 Invitations and Announcements . 24
4. Access Part . 29

4.1 Overview of Access interfaces for Ret-RP . 30
4.1.1 Example Scenario of Access part of Ret-RP 32
4.1.2 Always available outside an Access Session 33

4.1.2.1 i_RetailerInitial Interface . 33
4.1.2.2 i_RetailerAuthenticate interface . 34

4.1.3 Available during an Access Session . 34
4.1.3.1 i_ConsumerAccess interface . 35
4.1.3.2 i_ConsumerInvite interface . 36
4.1.3.3 i_ConsumerTerminal interface . 36
4.1.3.4 i_ConsumerAccessSessionInfo interface 36
4.1.3.5 i_ConsumerSessionInfo Interface 37
4.1.3.6 i_RetailerNamedAccess interface 37
4.1.3.7 i_RetailerAnonAccess interface . 39
4.1.3.8 i_DiscoverServicesIterator . 39

4.1.4 Available outside an Access Session if Registered 39
4.1.4.1 i_ConsumerInitial Interface . 40

4.2 User-Provider Interfaces . 40
4.2.1 User Interfaces . 41

4.2.1.1 i_UserAccess . 41
4.2.1.2 i_UserInvite . 41
4.2.1.3 i_UserTerminal . 41
4.2.1.4 i_UserAccessSessionInfo . 42
4.2.1.5 i_UserSessionInfo . 42
4.2.1.6 i_UserInitial . 42

4.2.2 Provider interfaces . 43
4.2.2.1 i_ProviderNamedAccess . 44
4.2.2.2 i_ProviderAnonAccess . 44

 page 5

Introduction Ret Reference Point Specifications
Version 1.1; 30 April 1999

4.2.2.3 i_ProviderAccess . 44
4.2.3 Abstract interfaces . 44

4.2.3.1 i_UserAccessGetInterfaces . 44
4.2.3.2 i_ProviderAccessGetInterfaces. 45
4.2.3.3 i_ProviderAccessRegisterInterfaces 45
4.2.3.4 i_ProviderAccessInterfaces . 45

4.3 Access Information View. 47
4.3.1 Access Session Information. 47
4.3.2 User Information. 48
4.3.3 User Context Information . 48
4.3.4 Service and Session Information . 50

4.4 Access Interface definitions . 53
4.4.1 Consumer Domain Interfaces . 53

4.4.1.1 i_ConsumerInitial Interface . 53
4.4.1.1.1. requestAccess() . 53
4.4.1.1.2. inviteUserAccessSession() 54
4.4.1.1.3. cancelInviteUserOutsideAccessSession() 55

4.4.1.2 i_ConsumerAccess Interface . 55
4.4.1.2.1. cancelAccessSession() . 56
4.4.1.2.2. getInterfaceTypes() . 56
4.4.1.2.3. getInterface() . 56
4.4.1.2.4. getInterfaces() . 57

4.4.1.3 i_ConsumerInvite Interface . 57
4.4.1.3.1. inviteUser() . 58
4.4.1.3.2. cancelInviteUser() . 58

4.4.1.4 i_ConsumerTerminal Interface . 59
4.4.1.4.1. getTerminalInfo() . 59

4.4.1.5 i_ConsumerAccessSessionInfo Interface 60
4.4.1.5.1. newAccessSessionInfo() 60
4.4.1.5.2. endAccessSessionInfo() 61
4.4.1.5.3. cancelAccessSessionInfo() 61
4.4.1.5.4. newSubscribedServicesInfo() 61

4.4.1.6 i_ConsumerSessionInfo Interface 61
4.4.2 Retailer Domain Interfaces . 65

4.4.2.1 i_RetailerInitial Interface . 65
4.4.2.1.1. requestNamedAccess() . 65
4.4.2.1.2. requestAnonymousAccess() 67

4.4.2.2 i_RetailerAuthenticate Interface . 68
4.4.2.2.1. getAuthenticationMethods() 69
4.4.2.2.2. authenticate() . 69
4.4.2.2.3. continueAuthentication() 71

4.4.2.3 i_RetailerAccess Interface . 72
4.4.2.4 i_RetailerNamedAccess Interface 72

4.4.2.4.1. setUserCtxt() . 73
4.4.2.4.2. getUserCtxt() . 73
4.4.2.4.3. getUserCtxts() . 73
4.4.2.4.4. listAccessSessions() . 74
4.4.2.4.5. endAccessSessions() . 74
4.4.2.4.6. getUserInfo() . 75
4.4.2.4.7. listSubscribedServices(). 75
4.4.2.4.8. discoverServices(). 76
4.4.2.4.9. getServiceInfo() . 76

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 6

4.4.2.4.10. listServiceSessions(). 77
4.4.2.4.11. getSessionModels() . 78
4.4.2.4.12. getSessionInterfaceTypes() 78
4.4.2.4.13. getSessionInterface() . 79
4.4.2.4.14. getSessionInterfaces() . 79
4.4.2.4.15. listSessionInvitations() . 80
4.4.2.4.16. listSessionAnnouncements(). 81
4.4.2.4.17. startService(). 81
4.4.2.4.18. endSession() . 83
4.4.2.4.19. endMyParticipation() . 83
4.4.2.4.20. suspendSession() . 83
4.4.2.4.21. suspendMyParticipation() 84
4.4.2.4.22. resumeSession() . 84
4.4.2.4.23. resumeMyParticipation() 84
4.4.2.4.24. joinSessionWithInvitation(). 85
4.4.2.4.25. joinSessionWithAnnouncement() 86
4.4.2.4.26. replyToInvitation() . 86

4.4.2.5 i_RetailerAnonAccess Interface . 87
4.4.2.6 i_DiscoverServicesIterator Interface 87

4.4.2.6.1. maxLeft() . 88
4.4.2.6.2. nextN() . 88
4.4.2.6.3. destroy() . 88

5. Usage Part . 89
5.1 Session Models . 89
5.2 TINA Service Session Model. 91

5.2.1 TINA Service Session Model Feature Sets 91
5.2.1.1 BasicFS. 93
5.2.1.2 BasicExtFS . 93
5.2.1.3 MultipartyFS . 94
5.2.1.4 MultipartyIndFS. 95
5.2.1.5 VotingFS . 95
5.2.1.6 ControlSRFS . 95
5.2.1.7 ParticipantSBFS . 96
5.2.1.8 ParticipantSBIndFS. 96

5.2.2 Types of Operations and Interfaces. . 96
5.2.2.1 Request operations. 96
5.2.2.2 Indication operations . 99
5.2.2.3 Execution operations . 99
5.2.2.4 Information operations . 99

5.3 TINA Communication Session Model . 100
5.4 Usage Information View . 101

5.4.1 TINA Service Session Model related Information101
5.4.1.1 Service Session Graph Object Classes 102
5.4.1.2 Service Session Graph Information Model103
5.4.1.3 Stream binding related parts of the SSG104
5.4.1.4 Expressing Control Relationships in the Service Session 106

5.4.1.4.1. Ownership Session Relationship (OSR) 106
5.4.1.4.2. Permission Session Relationship (PSR) specialization107

5.4.1.5 Relationship between Features sets and SG information Objects . . .108
5.4.1.6 Specific Types: . .109
5.4.1.7 Exception Types for the TINA Session Model 109

5.4.1.7.1. e_UsageError Exception 109

 page 7

Introduction Ret Reference Point Specifications
Version 1.1; 30 April 1999

5.4.1.7.2. e_PartyDomainError Exception110
5.4.1.7.3. e_PartyError Exception .112
5.4.1.7.4. e_AnnouncementError Exception113
5.4.1.7.5. e_IndError Exception .113

5.4.2 Stream binding terminology . .114
5.4.2.1 Terminology: .114
5.4.2.2 Stream Binding Algorithms . .115

5.4.2.2.1. Roles .116
5.4.2.3 General Stream Binding Data Types116
5.4.2.4 Participant Description Data Types. 117
5.4.2.5 Stream Flow Endpoint Service Description Data Types 118
5.4.2.6 Success and Recovery Criteria Data Types 119
5.4.2.7 Stream Binding Description Data Types 121
5.4.2.8 Return Data Types . .121
5.4.2.9 Error Codes and Exceptions . .122

5.4.3 Common Communication Session and Stream Binding Data Types125
5.4.3.1 Naming Data Types .125
5.4.3.2 Attribute Data Types .125
5.4.3.3 General Type Descriptions and Media Data Types 125
5.4.3.4 State Data Types . .126
5.4.3.5 Stream Flow Endpoint Communication Description Data Types127

5.4.4 Communication Session Model Information View. 127
5.4.4.1 Terminology .128
5.4.4.2 Communication Session related parameters129

5.5 TINA Service Session Model Feature Sets . 133
5.5.1 i_SessionModels interface .133
5.5.2 Basic Feature Set . .135

5.5.2.1 endSessionReq() . .136
5.5.2.2 suspendSessionReq() .137

5.5.3 i_ProviderInterfaces interface and inherited interfaces 139
5.5.3.1 i_ProviderGetInterfaces interface 139
5.5.3.2 i_ProviderRegisterInterfaces interface140
5.5.3.3 i_ProviderInterfaces interface .142

5.5.4 BasicExt Feature Set .143
5.5.4.1 i_PartyGetInterfaces interface .143

5.5.5 Multiparty Feature Set. .145
5.5.5.1 listParties() .146
5.5.5.2 listPartiesWithDetails() . .146
5.5.5.3 getPartyDetails() .147
5.5.5.4 getMyPartyDetails() .147
5.5.5.5 modifyPartyTypeReq() .148
5.5.5.6 endMyParticipationReq() . .149
5.5.5.7 endPartyReq() .150
5.5.5.8 suspendMyParticipationReq() .152
5.5.5.9 suspendPartyReq() . .152
5.5.5.10 inviteUserReq() .153
5.5.5.11 announceSessionReq() . .155
5.5.5.12 i_PartyMultipartyExe interface .156
5.5.5.13 i_PartyMultipartyInfo interface .156

5.5.6 Multiparty Ind Feature Set. .159
5.5.6.1 Usage. .159
5.5.6.2 Components and roles . .159

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 8

5.5.6.3 IDL Definition and usage scenarios 160
5.5.6.4 operationCanelled() .160
5.5.6.5 modifyPartyTypeInd(). .160
5.5.6.6 endSessionInd() .160
5.5.6.7 endPartyInd() . .161
5.5.6.8 suspendSessionInd() . .161
5.5.6.9 resumeSessionInd() .162
5.5.6.10 suspendPartyInd(). .162
5.5.6.11 resumePartyInd() .162
5.5.6.12 joinSessionInd() . .163
5.5.6.13 inviteUserInd(). .163
5.5.6.14 announceSessionInd() .163

5.5.7 Voting Feature Set .165
5.5.7.1 i_ProviderVotingReq Interface .165
5.5.7.2 i_PartyVotingInfo Interface . .166

5.5.8 Control Session Relationship feature set 167
5.5.8.1 Control Session Relationship information model167

5.5.8.1.1. ControlSR expressed on the Ret-RP interfaces. 167
5.5.8.1.2. How to determine the Control of a Party over a Session Graph Object

168
5.5.8.1.3. The Semantics of the Different Levels of Control169
5.5.8.1.4. Ownership . .169
5.5.8.1.5. WritePermission . .170
5.5.8.1.6. ReadPermission. .170

5.5.8.2 Control Session Relationship feature set: 171
5.5.8.2.1. IDL Definition and usage scenarios172

5.5.9 Participant Oriented Stream Binding Feature Set175
5.5.9.1 Interfaces . .175
5.5.9.2 Asynchronous and synchronous responses 176
5.5.9.3 Indications and voting .178
5.5.9.4 Scenario .178
5.5.9.5 i_ProviderPaSBReq Interface .179

5.5.9.5.1. Add stream binding request179
5.5.9.5.2. Add participants to a stream binding request182
5.5.9.5.3. Delete participants from a stream binding request 182
5.5.9.5.4. Delete a stream binding request 184
5.5.9.5.5. Activate participants in a stream binding request185
5.5.9.5.6. Deactivate participants in a stream binding request 187
5.5.9.5.7. Modify participation in a stream binding request 188
5.5.9.5.8. Modify criteria for a stream binding request189
5.5.9.5.9. Notification of sudden change. 190
5.5.9.5.10. Register SFEPs .191
5.5.9.5.11. Withdraw SFEPs . .192
5.5.9.5.12. Rebind stream binding request 192
5.5.9.5.13. List stream bindings request193
5.5.9.5.14. Get stream binding information request 193

5.5.9.6 i_PartyPaSBExe Interface .194
5.5.9.6.1. Join a stream binding exe request 194
5.5.9.6.2. Leave a stream binding exe request 195
5.5.9.6.3. Modify stream binding participation exe request 195
5.5.9.6.4. Change stream binding criteria exe request 196
5.5.9.6.5. Change stream binding state exe request 196

 page 9

Introduction Ret Reference Point Specifications
Version 1.1; 30 April 1999

5.5.9.7 i_PartyPaSBInfo Interface .197
5.5.9.7.1. Confirm request information operation 197
5.5.9.7.2. Request failure information operation197
5.5.9.7.3. SI distribution operation198
5.5.9.7.4. SFEP distribution operation198
5.5.9.7.5. Notify withdrawal of elements operation 198
5.5.9.7.6. General notification operation199
5.5.9.7.7. Update on error notification operation. 199
5.5.9.7.8. Cancel error notification operation 199

5.5.10 Participant Oriented Stream Binding Indications (PaSBInd) Feature Set . .200
5.5.10.1 Interfaces .200
5.5.10.2 i_PartyPaSBInd Interface . .201

5.6 TINA Communication Session Model . 203
5.6.1 Communication Session Model Information View. 204

5.6.1.1 Terminology .205
5.6.1.2 Communication Session related parameters206

5.6.2 Communication Session Model Interfaces 207
5.6.2.1 Interfaces . .208

5.6.2.1.1. i_TerminalFlowControl .208
5.6.2.2 Components and interfaces .208

5.6.2.2.1. Party domain components (TCSM)208
5.6.2.2.2. Provider domain Components (CSM)209
5.6.2.2.3. i_TerminalFlowControl Interface 209

5.6.2.2.3.1 Query capabilities that the SFEP can support . . 209
5.6.2.2.3.2 Select capabilities for an SFC 210
5.6.2.2.3.3 Select capabilities for an SFEP. 210
5.6.2.2.3.4 Initiate a TFC. 211
5.6.2.2.3.5 Initiate a TFC for multiple NFEPs 212
5.6.2.2.3.6 Add a TFC SFEP branch 212
5.6.2.2.3.7 Add a TFC NFEP branch. 213
5.6.2.2.3.8 Delete TFC or its branches 213
5.6.2.2.3.9 Activate a TFC or its branches 213
5.6.2.2.3.10 Deactivate a TFC or its branches 214
5.6.2.2.3.11 Update TFC or its branches 214
5.6.2.2.3.12 Update TFC or its branches 216
5.6.2.2.3.13 Resolve SFEP capabilities to initiate TFC . . . 216
5.6.2.2.3.14 Resolve SFEP capabilities to initiate multiple NFEP TFC

217
5.6.2.2.3.15 Resolve SFEP capabilities to initiate bidirectional TFC

217
5.6.2.2.3.16 Resolve SFEP capabilities and add TFC branches218
5.6.2.2.3.17 Associate NFEP with TFC branches operation . 218
5.6.2.2.3.18 Remove NFEP from TFC branches operation . 219

5.6.2.2.4. Unsupported functionality219
6. Document Stability .221
IDL specifications: 221
Implementations: 222

6.1 Stability of Access Part Specifications . 222
6.1.1 i_ConsumerInitial .223

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 10

6.1.2 i_ConsumerAccess .224
6.1.3 i_ConsumerTerminal .224
6.1.4 Invitations . .224
6.1.5 Announcements . .225
6.1.6 Info operations .225
6.1.7 Anonymous Users. .225
6.1.8 Subscribed Services .226
6.1.9 Synchronous versus Asynchronous interactions 226
6.1.10 Implementation Problems .227

6.1.10.1 Problems with ‘Any’ . .227
6.2 Stability of Usage Part Specifications . 227

6.2.1 TINA Service Session Model .227
6.2.2 TINA Communication Session Model . .228

6.2.2.1 TINA Communication Session Model additional functionality 228
7. References. .231

7.1 TINA Baselines. . 231
7.2 Responses to RFR/S for Ret-RP. . 231
7.3 Other documents. . 231

8. Acronyms .233

 page 11

Introduction Ret Reference Point Specifications
 Version 1.1; 30 April 1999

1. Introduction

This document outlines the specifications of the TINA Retailer Reference Point (Ret-RP). It consists
of non-formal specifications, in terms of plain text and diagrams, and of semi-formal specifications,
using the Object Management Group’s Interface Definition Language (OMG-IDL[17]), compliant with
TINA-ODL [4].

The purpose is to provide specifications ready to be used for interoperable multi-vendor
implementation of computational interfaces at the Ret-RP. As such, the document is a candidate to
be the basis for conformance evaluation of TINA-oriented products for the Ret reference point.

The document is the final output of the Evaluation Group for the Request for Refinements and
Solutions (RFR/S) on the Ret Reference Point. Specifications contained here are the proposal
presented by the Evaluation Group to the Review Panel, within the RFR/S process in TINA-C.

Note: throughout the whole document whenever not otherwise specified, the terminology used
follows the definitions given in the TINA Glossary document [2].

1.1 Audience

The primary audience for this document is the Review Panel of the TINA-C RFR/S on Ret-RP [8], and
the TINA-C organizations that are responsible for specifications approval.

However, this document is targeted also directly to designers and implementers of TINA products,
since it defines the TINA conformance framework, as far as the Ret-RP is concerned.

1.2 How to read this document

The document contains both a description of the reference point and specifications in OMG-IDL
language. Since conformance to TINA reference points is stated independently for the access and
usage parts, the document treats these parts separately.

Chapter 1 (this Chapter) provides a general introduction to the document.

Chapter 2 refers to the Request for Refinements and Solutions on the Ret-RP [8] giving information
concerning specific issues related to the request.

Chapter 3 explains the structure of the Ret-RP, describes the use of the session roles and deals with
conformance issues.

Chapter 4 defines the Access Part of Ret-RP. The access part describes how a consumer accesses
a retailer to make use of services they provide. The access part addresses the establishment, and
use of a secure association between the domains, termed an Access Session [5]. Within the access
session, it addresses the control of services, and service sessions. The access part consists of a set
of operational interfaces, offered by the consumer and by the retailer business roles. Access
interfaces are first defined informally using plain text and diagrams, then by means of semi-formal
OMG-IDL specifications; behaviour is described in plain text. Complete specifications of IDL
interfaces are given in Annex C and Annex D.

Chapter 5 defines the Usage part of Ret-RP. The usage part of Ret-RP describes the interactions
between the consumer and retailer domains during the use of a service session. It defines a set of
generic session control operations that allow session components in each domain to interact in a
generic manner. The usage part of Ret-RP defines a set of profiles in terms of Session Models. TINA

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 12

defines 2 session models, one related to service session control; the other to communication session
control. A session model defines feature sets to encompass these generic operations. Each feature
set provides some facet of session control, and defines interfaces to make this accessible across an
interoperable reference point. They can be combined to provide the specific functionality required by
the service. Similar to the access part, usage interfaces are first defined informally using plain text
and diagrams, then by means of semi-formal OMG-IDL specifications; behaviour is described in plain
text. Complete specifications of IDL interfaces are given in Annex E.

Annex A contains the naming conventions for the IDL modules, and their interfaces and
dependencies, contained in the succeeding annexes. It also describes the recorded problems in the
process of writing, defining and compilation of the IDLs.

Annex B contains IDL specifications for types which are common to both the access and usage parts
of Ret-RP.

Annex C and Annex D contain IDL specifications for types and interfaces for the access part of Ret-
RP.

Annex E contains IDL specifications for types and interfaces for the usage part of Ret-RP.

Annex F contains IDL specifications for types and interfaces for Stream Binding and Communication
Session, which are part of the usage part of Ret-RP

1.3 Relationship to other TINA-C documents

This document is the solution to the Request for Refinements and Solutions on the Ret Reference
Point, Snapshot 1. Therefore, it assumes knowledge of the document defining the Request [8].

This document makes uses of concepts and languages described in the following TINA-C Baseline
documents:

• TINA Reference Points [1]: this document provides a general framework for the TINA
reference points, but also the TINA business model; it defines important modelling
concepts that are related to the ODP enterprise viewpoint. Familiarity with the TINA
business model and reference points, though not essential, is of great help in
understanding the Ret-RP specifications.

• Computational Modelling Concepts [4]: this document defines the modelling concepts
and conceptual tools for computational modelling, i.e. modelling in the ODP
computational viewpoint, in TINA. Since the computational viewpoint is where prescriptive
specifications are provided, the understanding and knowledge of the computational
modelling concepts is useful for the understanding of the Ret-RP specifications.

• Information Modelling Concepts [3]: this document defines the modelling concepts and
conceptual tools for information modelling, i.e. modelling in the ODP information
viewpoint, in TINA. A certain acquaintance with the scope of information modelling and
with OMT notation is necessary to understand the information models presented in this
document.

• TINA Glossary of Terms [2]: this document lists definitions for all TINA terms.

The TINA architecture gives an essential framework to the reference points specifications.
Knowledge of the TINA architecture is essential to use the Ret-RP specifications. The TINA
architecture can be partitioned into a service architecture and a network resource architecture. The
Ret-RP concerns both partitions, which are defined in the following documents:

 page 13

Introduction Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• Service Architecture [5] & [6]: this document defines the TINA architecture for services.
The Ret-RP mainly concerns the service architecture, therefore knowledge of this
document is useful in order to understand the framework where the Ret-RP is likely to be
deployed. More precisely, the Ret-RP access part, and the service session related portion
of the usage part, are related to the Service Architecture.

• Network Resource Architecture [9]: this document defines the TINA architecture for
network resources. Communication Session aspects of the Ret-RP relate to this part of
the TINA architecture.

The components offering the interfaces at the Ret-RP are specified in the following documents:

• Service Component Specifications [19]: this document provides the detailed
specifications of the components in the Service Architecture, some of which offer
interfaces specified for the Ret-RP. TINA ODL is used in the service components
specifications document.

• Network Resource Component Specifications [20]: this document provides the
detailed specifications of the components in the Network Resource Architecture, some of
which offer interfaces specified for the Ret-RP. TINA ODL is used in the network resource
components specifications document.

1.4 Main inputs to this document

The Ret-RP specifications document relies on the responses to the Request for Refinements and
Solutions for the Ret-RP, but adds considerable value to the individual responses presented by TINA-
C member companies.

Responses to the RFR/S were presented by the TINA-C Core Team [10] and by Alcatel [11], BT [12],
Ericsson [13], France Télécom [14] and Telia [15]; the response presented by Alcatel was produced
as part of the TINA-C Auxiliary Project “VITAL” (an ACTS project sponsored by the European Union);
the responses presented BT and Ericsson both make use of experiences gained as part of the TINA-
C Auxiliary Project “TIMMAP”, and well as other company internal activities. The other responses are
based on company-internal activities.

Another important input to the work on Ret-RP is the TINA Service Architecture document [5], defining
the architectural framework behind the reference point.

1.5 Overall functionality and scope of the reference point

The Ret-RP defines the interactions between stakeholders in the consumer business role and
stakeholders in the retailer business role. It is used to support the consumer’s needs for access to the
retailer’s services. In the Consumer/Retailer relationship, the consumer plays the User role and the
retailer plays the Provider role. The consumer models two stakeholders: the Subscriber and the End-
user; the Subscriber is the entity that has a business relationship with the Provider, whereas the End-
user is the person that actually makes use of the capabilities provided by the Retailer.

The Ret-RP is separated in two parts: the Access part and the Usage part.

The Access part of Ret-RP supports a consumer accessing a retailer to make use of services they
provide. The access part addresses the establishment, and use of a secure association between the
domains, termed an Access Session. Within the access session, it addresses the control of services,
and service sessions supports the consumer’s access to a retailer and their services. It corresponds
to the functionality, interfaces and objects related to the access session. It defines interfaces to
support use of the following functionality:

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 14

• initiation of dialogue between the consumer and retailer domains,

• identification of the domains to each other (either domain can remain anonymous
dependent on the interaction requested),

• establishment of a secure association between the domains, an access session,

• set up of the default context for the control and management of usage functionality,

• discovery of service1 offerings,

• listings of access sessions, service sessions and subscribed services

• initiation of usage between the domains,

• control and management of sessions (e.g., stop, suspend, resume, join, notify changes,
etc.).

The Usage part of the Ret-RP supports the consumer’s use of a retailer’s services. It can be split in
turn into two parts: the Service part and the Communication part. The Service part corresponds to the
functionality, interfaces and objects related to the Service Session; the Communication part
corresponds to the functionality, interfaces and objects related to the Communication Session. For
more details about the concepts of Access Session, Service Session and Communication Session
see [5]. The usage part defines interfaces to support use of the following functionality:

• control and management of sessions (e.g., announce, stop, suspend, invite, notify
changes, negotiate transfer of control rights, etc.),

• control and management of stream flow binding,

• domain management (e.g., subscriber management, service management) through
management services, that are supported consistently with user services.

The following principles described in the service architecture [5] are used when implementing the Ret-
RP reference point requirements:

• Session concept and session graph, providing the definition of the session model and the
information structure shared between the parties involved in the service.

• Personal and session mobility, provides the description of how to transfer and manage
personal environments between user access points inside a session.

• Management, providing the mechanisms to manage both administrative information (e.g.
subscribers) and FCAPS (e.g., fault management for a service).

Due to the complex relationships that can occur amongst consumers, retailers and third party
providers, the Ret-RP has the following peculiarity: the usage part (i.e. Service Session and
Communication Session) can be used as a reference point between consumer and another
stakeholder (retailer, or third party provider) than the retailer to which the consumer is bound for the
Ret-RP access part. Figure 1-1 shows the two possible situations: In Case 1, the more straightforward
situation, the consumer A interacts directly only with retailer B, and this interaction takes place on the
Ret-RP; on the other hand, interactions between retailer A and a third party C, which can be a retailer
or a Third Party Provider, take place on the RtR or 3Pty reference points, respectively. In Case 2, the
consumer performs all access-related interactions across the access part of the Ret-RP with retailer
B; the actual usage of the service, however, requires a direct interaction between the consumer A
and the retailer or third party provider C, which occurs via the usage part of the Ret-RP between A
and C. Thus, the usage part of Ret-RP must be able to be used indifferently in both cases. Also, no

1. These services can be primary (e.g. Video on Demand (VoD)), ancillary to the primary (e.g. configuration
management for VoD) or administrative (e.g., subscriber management for VoD). See [5] for definitions.

 page 15

Introduction Ret Reference Point Specifications
 Version 1.1; 30 April 1999

assumption is made on the RtR and 3Pty reference points. An example of this situation in the case of
the TINA object model, with a consumer, a retailer and a third party provider is described in [1]
(Section 3.3, Example 2).

1.5.1 Business role life-cycle

The Ret-RP supports the whole lifecycle of the relationship between consumer and retailer, which is
described as Subscriber and End-user life-cycle. The Service Architecture [5] describes these life-
cycles in detail.

The Subscriber lifecycle describes the processes by which a Subscriber establishes a relationship
with a retailer, and modifies or terminates the relationship. The relationship includes subscription,
customization, and the association between Subscriber and End-user.

The End-user lifecycle describes the process by which end-users can access and use services.This
includes end-user system setup, retailer contact, and service customization.

Figure 1-1. Use of the Ret-RP with respect to the TINA business roles.

B
Retailer

C
Retailer or
3Pty Prov.

Case 1

Ret-RP
Access, Usage

RtR or 3Pty
Access, Usage

A
Consumer

B
Retailer

C
Retailer or
3Pty Prov.

Case 2

Ret-RP
Access only

RtR or 3Pty
Access only or
Access, Usage

Ret-RP
Usage only

A
Consumer

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999 Context of the Answer to the RFR/S on Ret-RP

 page 16

2. Context of the Answer to the RFR/S on Ret-RP

2.1 Areas of non-compliance

This document complies with the TINA-C Request for Refinements and Solutions, The Ret reference
point, Snapshot 1 (Issued in August 1996) [8] and with the TINA Service Architecture Version 5.0 [5].

2.2 Interrelationships with other reference points

The only direct dependency is on the TCon and ConS reference points. These are required to connect
streams that are requested in the service layer with stream bindings setup between the TCSM and
CSM, in cases where: the Participant-oriented Stream Binding Feature Set is supported in the TINA
Service Session Model; or the TINA Communications Session Models is supported, (both defined in
the usage part of the Ret-RP).

However, other reference points require similar functionality to that provided across Ret-RP, and will
want to make use of similar interfaces. The Ret-RP supports interactions between consumer and
retailer domains where these domains act in user and provider roles respectively. These roles are
defined where one domain wishes to make use of services offered by the other domain. Many other
reference points address a similar situation, such as Retailer-to-Third Party Service Provider (3Pty),
Retailer-to-Connectivity Provider (ConS), Consumer-to-Broker (Bkr) and in some cases Retailer-to-
Retailer (RtR). It is envisaged that use will be made of the Ret-RP specifications in defining these
other reference points. In fact other reference point re-use of Ret-RP specifications can be split
according to the access and usage parts of a reference point.

2.3 Main assumptions

Assumptions in this document are the same as in the TINA Service Architecture Version 5.0 [5]. In
summary, these are the two main assumptions:

• a pervasive, interoperable, OMG-CORBA based DPE is assumed, providing security
services;

• the existence of a naming addressing and resolution framework are assumed.

2.4 Project/prototyping experience

This document is the product of the feedback process from both the TINA-C Core Team and the TINA-
C Auxiliary Projects on the prototype implementations concerning various versions of the TINA
Service Architecture. In particular, the following prototyping experiences contributed to the
specifications in this document:

• The Core Team internal validation work: prototypes in Java and C++ of the consumer and
retailer components for the access part of Ret-RP; and SmallTalk language of the CSM/
TCSM interactions;

• The TIMMAP auxiliary project (participants: BT, Ericsson, Iona and TeleDanmark)
implementation activity, especially for access interfaces;

• The ACTS-VITAL auxiliary project (participants: Alcatel, CSELT, Iona, Portugal Telecom,
Telefónica and other non-TINA-C member companies and institutions) implementation
activity, especially for usage interfaces.

• The Global One TINA Technical Trial (participants: Deutsche Telecom AG, France
Télécom, and Sprint.)

 page 17

Introduction Ret Reference Point Specifications
Definition of Ret Reference Point Version 1.1; 30 April 1999

3. Definition of Ret Reference Point

The reference point definition is a semi-formal specification of the business relationship between the
consumer and retailer business roles. Conforming to the TINA Business Model and Reference Points
document [7], the Ret-RP is separated into an Access part and a Usage part. For the Ret-RP, the
access part describes how a consumer business role accesses a retailer business role to make use
of services it provides; the usage part describes the interactions between the involved business roles
during the use of a service. Each part is handled independently.

3.1 Business Roles and Session Roles

As stated in [5], a business role can take different session roles. Three basic session roles are
defined: User, Provider and Peer. In the Ret-RP specification only the first two are taken into
consideration. A differentiation is made when dealing with access or usage related interactions. So,
the roles become access/usage user and access/usage provider. The term usage party is used in this
document as a synonymous of usage user. The session roles and business domains naming
conventions are reflected in the naming of the module structure for the IDL specifications (Annex A).

Although the Ret-RP specifications refer to business roles (in conformance to [7]), the applicability of
the specifications themselves can be extended to relationships where the same session roles are
involved, irrespective of the business roles involved. For example, whenever an access user and an
access provider can be defined, the access part of the Ret-RP specifications can be applied. Similarly,
whenever a usage party and usage provider can be defined (with the same semantics as in Ret), the
usage part of the Ret-RP specifications can be applied. However, the means to extend Ret-RP
specifications to contexts other than the consumer/retailer relationship are outside of the scope of this
document.

3.2 Conformance to the Ret Reference Point Specifications

As stated in [7], conformance to a TINA reference points is separate for access and usage part. This
means that a TINA system can be claimed conformant to the access part of the Ret-RP only, to
the usage part of the Ret-RP only, to both parts of the Ret-RP, or non conformant to the Ret-RP.

What criteria are adopted by the owner of the TINA system considered in choosing any of these
possibilities depends on the policies of the owner itself, and is outside of the scope of this document.
This document provides the necessary guidelines to identify what conformance to Ret-RP means.

Both the access and the usage part of Ret-RP are “profiled”; conformance to each part does not mean
support for all features, but means support for all mandatory features2 in conformance to the TINA
specifications, and conformance the TINA specifications for optional features if supported.

The access part is profiled in terms of mandatory and optional interfaces and operations.

The usage part is profiled in terms of Session Models. Conformance to the usage part of Ret-RP is
accomplished by conforming to one or more Session Models. TINA defines 2 session models: TINA
Service Session Model, and TINA Communication Session Model.

The TINA Service Session Model is related to service session control, i.e. ending a session, inviting
participants, managing session stream bindings, etc.

2. Here, feature means interface or operation.

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999 Definition of Ret Reference Point

 page 18

The TINA Communication Session Model is related to communication session control, i.e. set up and
controlling stream flow connections that support stream bindings.

Each session may support a number of session models, or may only support a single model. A
session may support either the TINA Service Session Model, or the TINA Communication Session
Model, or may support both session models. It may also support other session models (not defined
by TINA, or Ret-RP) in addition to, or in place of the TINA defined session models. If a session
supports either of the TINA session models, then it conforms to the usage part of Ret-RP, even if it
also supports other non-TINA session models.

Sessions which do not support either of the TINA session models do not conform to the usage part
of Ret-RP.

The TINA session models are profiled into feature sets. A feature set is a ‘self-contained’ set of
interfaces, which provide a set of generic session control operations. Each feature set defines a
number of interfaces, which are offered by party and provider domains.

Each TINA session model specify a mandatory feature set (which has to be supported by all systems
conforming to the session model). Additional feature sets are specified; they do not need to be
supported, but systems that conform to the Ret-RP usage part and support feature sets other than
the minimum one must comply to the following:

• Support each feature set in an all-or-nothing fashion, unless some feature2 is explicitly
stated as optional.

• Comply to the dependencies among feature sets (e.g. if feature set A depends on feature
set B, support either A and B or just B).

Conformance to the access part and usage part of Ret-RP is claimed separately for Consumer side
and Retailer side (that is, a TINA system can claim compliance separately for: Access Part -
Consumer Side, Access Part - Retailer Side, Usage Part - Consumer Side, Access Part - Retailer
Side).

Therefore, for a TINA system, the minimum level of compliance to the access part of the Ret-RP
means support at least for the mandatory interfaces and operations of one of the two sides (consumer
or retailer). The minimum level of compliance for a TINA system to the usage part of the Ret-RP
means support at least for the basic feature set of one of the two sides (consumer or retailer).

In order for two TINA systems to interact via the Ret-RP, it is required that one system conforms to
the consumer side and the other to the retailer side, for the access and/or the usage part respectively.

 page 19

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

3.3 Common Information View

This section describes the types of information which are common to both the access and usage parts
of Ret-RP.

Figure 3-1. Relationship and Cardinality of common types between User and Provider

3.3.1 Properties and Property Lists

Properties are attributes or qualities of something. In Ret-RP, properties are used to assign a quality
to something, or search for those somethings that have that particular quality.

The somethings for Ret-RP can be users, services, sessions, interfaces, etc. Each of these will have
different properties, and each property may have a range of different values and structures. (Also for
some it is now clear what properties will be defined for them, and some properties will be retailer-
specific.)

With this in mind, the type t_Property has been chosen to represent a property. Its IDL definition
is taken from the CORBA Object Service for Trading, and copied into the TINACommonTypes
module.

// module TINACommonTypes
typedef string t_PropertyName;
typedef sequence<t_PropertyName> t_PropertyNameList;
typedef any t_PropertyValue;
struct t_Property {

t_PropertyName name;
t_PropertyValue value;

};
typedef sequence<t_Property> t_PropertyList;

enum t_HowManyProps {none, some, all};
union t_SpecifiedProps switch (t_HowManyProps) {

case some: t_PropertyNameList prop_names;
case none:
case all: octet dummy;

};

User Provider

t_UserId

t_UserProperties

t_UserCtxt

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 20

typedef string Istring;

As can be seen above, the t_Property is a structure consisting of a name, and a value. The name
is a international string, and the value is an any. This format allows the recipient of the property to
read the string, and match it against the properties they know about. If it is a property they know, then
they will also know the format of the value. If they do not know the property, then they should not read
the value. (The any value contains a typecode that can be looked-up in the interface repository to find
the type of the value, but this should be un-necessary most of the time.)

The t_Property, and t_PropertyList are used to attribute qualities to entities, when we do not
wish to define what all of those qualities are at present. (Some of these qualities may also be retailer-
specific, and so they can also use these types to extend the Ret-RP.)

For example, some characteristics about the terminal are sent to the retailer after an access session
is established. The type t_TerminalProperties is defined as a property list to allow these
characteristics to be sent to the retailer. It is not clear precisely what characteristics need to be sent
to the retailer for all types of terminal, and some may need to send different information than others.

Ret-RP defines a particular property for t_TerminalProperties, named: "TERMINAL INFO"
which has a value of type t_TerminalInfo. t_TerminalInfo is a structure that holds some
information on terminal characteristics. When the retailer reads the t_TerminalProperties, and
finds a t_Property with the name "TERMINAL INFO", then it can look at the value to find the
terminal characteristics. The value will still be of type any, but is formatted with the information in the
t_TerminalInfo structure.

However, t_TerminalInfo may not be complete, or relevant for all types of terminal. If it does not
contain sufficient information, then a future release of Ret-RP, or a retailer, can define another
property, e.g. named "ADDITIONAL TERMINAL INFO", with an appropriate value format, to contain
the extra characteristics. The retailer will then receive both properties in the
t_TerminalProperties list.

If t_TerminalInfo contains irrelevant information, a retailer can define an entirely different
property, and the consumer should send that instead of the "TERMINAL INFO" property.

Ret-RP defines property names and values where it is possible to do so. For some property lists, e.g.
t_InterfaceProperties, it is up to the consumer/retailer to determine properties that can be
associated with it.

// module TINACommonTypes
enum t_WhichProperties {

NoProperties,
SomeProperties,
SomePropertiesNamesOnly,
AllProperties,
AllPropertiesNamesOnly

};

struct t_MatchProperties {
t_WhichProperties whichProperties;
t_PropertyList properties;

};

 page 21

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

t_MatchProperties is used to scope the return values of some operations. These operations
return lists of something. t_MatchProperties is used to identify which somethings to return, based
on the something’s properties. (e.g. for the operation listSubscribedServices, the something’s are a
consumer’s subscribed services. The t_MatchProperties parameter defines the properties of the
subscribed services which are to be returned in the list.)

t_MatchProperties contains a t_PropertyList, and an enumerated type
t_WhichProperties. The t_PropertyList contains the properties which need to be matched.
The t_WhichProperties identifies whether some, all or none of the properties must be matched,
and whether the property name and value, or just the property name must be matched.

For example, in the operation listSubcribedServices, if t_WhichProperties is:

• NoProperties, then the subscribed services don’t have to match any properties, and so
all subscribed services are returned.

• SomeProperties, then the subscribed services must match at least one property in the
t_PropertyList, (both the property name and value must match), to be included in
the returned list.

• SomePropertiesNamesOnly, then the subscribed services must match at least one
property name in the t_PropertyList to be returned. The values of the properties in
the t_PropertyList may not be meaningful, and should not be used.

• AllProperties, then the subscribed services must match all the properties in the
t_PropertyList, (both the property name and value must match), to be included in
the returned list.

• AllPropertiesNamesOnly, then the subscribed services must match all the property
names in the t_PropertyList to be returned. The values of the properties in the
t_PropertyList may not be meaningful, and should not be used.

3.3.2 User Information
// module TINACommonTypes
typedef Istring t_UserId;
typedef Istring t_UserName;
typedef t_PropertyList t_UserProperties;

t_UserId identifies the user to the retailer. It is unique to this user within the scope of this retailer. It
is used in requestNamedAccess(), and is returned by getUserInfo(). The t_UserId does
NOT contain the name of the retailer, and so cannot be used to contact the retailer. It may be sent to
a broker/naming service when attempting to contact a retailer along with the retailer name.

t_UserProperties is a sequence of t_UserProperty. It contains information about the user,
that they wish to pass to the retailer. The following property names are defined for t_UserProperty.
Other property names are allowed, but are retailer specific.

// Property Names defined for t_UserProperties:
// name: “PASSWORD”
// value: str i ng
// use: use r password, as a string.

// name: “Se curityContext”
// value: opaque
// use : to carry a retailer specific security cont ext

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 22

// e.g. could be used for an encoded user password.

3.3.2.1 e_UserDetailsError Exception
// module TINACommonTypes
enum t_UserDetailsErrorCode {

InvalidUserName,
InvalidUserProperty

};

exception e_UserDetailsError {
t_UserDetailsErrorCode errorCode;
t_UserName name;
t_PropertyErrorStruct propertyError;

};

The e_UserDetailsError exception is defined for operations which require a t_UserDetails
parameter. (e.g. inviteUserReq() on usage part of Ret-RP). The exception is raised if the
t_UserName, or the t_UserProperties are invalid.

The following error codes can be used to define the problem encountered:

• InvalidUserName:
The t_UserName parameter does not contain a valid party identifier. (This can be
because the t_UserName is wrongly formatted, or the t_UserName given does not refer
to any known user.)

The t_UserName name variable in the exception contains the value of the t_UserName
parameter passed in the operation invocation.

• InvalidUserProperty:
The t_UserProperties parameter is in error.

The propertyError element of the exception describes the type of error in the user
property.

If the propertyError contains InvalidPropertyName, then the property name is not
legal for this operation. If it contains InvalidPropertyValue, then the value is not a
legal value for the property name.

If the propertyError contains UnknownPropertyName, then the session does not
recogise the property name. Some sessions may ignore t_PropertyName’s that they do
not recognise. They should not process t_PropertyValue associated with the
t_PropertyName but may process the other t_Property’s in the
t_UserProperties parameter. Such sessions do not need to raise the exception with
this error code.

3.3.3 User Context Information
// module TINACommonTypes
typedef Istring t_UserCtxtName;

// module TINAProviderAccess
struct t_UserCtxt {

 page 23

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

TINACommonTypes::t_UserCtxtName ctxtName;
TINAAccessCommonTypes::t_AccessSessionId asId;
Object accessIR; // type: i_UserAccess
Object terminalIR; // type: i_UserTerminal
Object inviteIR; // type: i_UserInvite
Object sessionInfoIR; // type: i_UserSessionInfo
TINAAccessCommonTypes::t_TerminalConfig terminalConfig;

};

t_UserCtxt informs the retailer about the consumer domain, including the name of the context,
interfaces available during this access session, and terminal configuration information The
t_UserCtxt is only used within the access part of Ret-RP, but is included here to aid the read in
understanding the t_UserCtxtName. A full description is given in Section 4.3.3.

t_UserCtxtName is a name given to this consumer context. It is generated by the consumer
domain. It is used to distinguish between access sessions to different consumer domains/terminals.
When listing the access sessions, the t_UserCtxtName is returned, (along with the
t_AccessSessionId), as the former should be a more human readable name for the ‘terminal’ that
the access session is connected to.!!!

3.3.4 Usage related types.

3.3.4.1 t_SessionId
// module TINACommonTypes
typedef unsigned long t_SessionId;

All operations on the party domain interfaces, (incl all Exe’s and Info’s) include a t_SessionId
parameter.

This allows the party domain to identify the service session sending each operation request. It is a
long (32 bits). The t_SessionId is the same as the sessionId provided by the startService(), or
joinSession() operation for this session. (ie. the id appearing on the listSessions list in the access
part matching this t_SessionId will refer to the same session.) If the party domain does not
recognise the t_SessionId, it may raise a PD_InvalidSessionId error code in the
e_PartyDomainError exception.

3.3.4.2 t_ParticipantSecretId
// module TINACommonTypes
typedef sequence<octet, 16> t_ParticipantSecretId;

All operations on the provider domain interfaces of the service session, (incl. all Requests) include a
t_ParticipantSecretId parameter. This type is also returned by requests to start, and join a
service session.

This allows a service session to identify the sender of each operation request. It is a 128-bit key. The
format of the key is not defined, other than all zero’s assumes the participant does not know or does
not require a key. The session may raise an InvalidParticipantSecretId error code in the
e_UsageError exception, if a key is necessary to make a request.

The t_ParticipantSecretId is provided so that sessions can be implemented using only a single
interface for all the participants. The session can still be reasonably assured that the request comes
from the identified user, and not a different user.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 24

It is not intended that the t_ParticipantSecretId is used as the primary security mechanism.
CORBA security, or other security contexts should still be used to underly the party domain-provider
domain interactions.

3.3.5 Invitations and Announcements

Invitations allow a session to ask a specific end-user to join a ‘running’ session. Invitations are
delivered to the consumer domain for the end-user, if an access session exists. If no access session
exists with the consumer domain, the invitation may be delivered to a ‘pre-registered’ interface, or
stored until an access session is established. They contain sufficient information for the user to:
identify the user that requested the invitation be sent; find and join the session, or refuse. (All of these
operations are defined across the access part of Ret-RP, and the retailer is always involved in
allowing the consumer to find and join the session.)

// module TINAAccessCommonTypes
typedef unsigned long t_InvitationId;
typedef TINACommonTypes::Istring t_InvitationReason;

struct t_InvitationOrigin {
TINACommonTypes::t_UserId userId;
TINACommonTypes::t_SessionId sessionId;

};

struct t_SessionInvitation {
t_InvitationId id;
TINACommonTypes::t_UserId inviteeId;
t_SessionPurpose purpose;
t_ServiceInfo serviceInfo;
t_InvitationReason reason;
t_InvitationOrigin origin;

};

typedef sequence<t_SessionInvitation> t_InvitationList;

// module TINACommonTypes
enum t_InvitationReplyCodes {

SUCCESS, UNSUCCESSFUL, DECLINE, UNKNOWN, ERROR, FORBIDDEN,
RINGING, TRYING, STORED, REDIRECT, NEGOTIATE, BUSY, TIMEOUT

};

typedef t_PropertyList t_InvitationReplyProperties;

struct t_InvitationReply {
t_InvitationReplyCodes reply;
t_InvitationReplyProperties properties;

};

t_SessionInvitation describes the service session to which the consumer has been invited, and
provides an t_InvitationId to identify this invitation when joining. (It does not give interface
references to the session, nor any information which would allow the consumer to join the session

 page 25

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

without first establishing an access session with this retailer.) It also provides a t_UserId with the
id of the invited user. The consumer domain can check that the invitation is for an ‘end-user’ that is
known to this domain.

t_SessionPurpose is a string describing the purpose of the session. A session purpose may be
defined when the session is started (through t_StartServiceSSProperties), or during the
session.

t_ServiceInfo is the subscribed service that the consumer can use to join the session. It is
described in Section 4.3.4.

t_InvitationReason is a string describing the reason that this invitation was sent to the invited
user. It can be defined by the party which requested the invitation, or by the session.

t_InvitationOrigin is a structure defining where the invitation has been generated. It contains
the userId of the user that started the session, and their session id for the session.

An t_InvitationReply is returned which allows the consumer to inform the retailer of the action
they will take regarding the invitation. The following reply codes are defined:

• SUCCESS - the consumer agrees to join the service session. (The consumer will need to
establish an access session before they can join the service session. (This does NOT
have to be establish from the terminal that received the invitation.) They will then use
joinSessionWithInvitation() on the i_RetailerNamedAccess interface to join
the session.) The consumer can use replyToInvitation() to ‘change their mind’, and
not join the session, but they should really have replied with RINGING, or another reply
code rather than SUCCESS.

• UNSUCCESSFUL - the consumer couldn’t be contacted through this operation. (They will
not be joining the session due to this invitation. However, if the same invitation was sent
to multiple interfaces, a reply from another interface may indicate that the consumer will
join the session.)

• DECLINE - the consumer declines to join the session.

• UNKNOWN - the consumer that has been sent the invitation is not known by this interface.
(The t_SessionInvitation contains a t_UserId to allow the consumer domain to
check the invitation is for a user known to this domain.)

• FAILED - the consumer is unable to join the service session. (No reason is given. The
invitation may be badly formatted, or the consumer may be unable to join sessions.)

• FORBIDDEN - the consumer domain is not authorised to accept the request.

• RINGING - the consumer is known by this domain and is being contacted. The retailer
should not assume that the consumer will join the session. (If the consumer wishes to join
the session then they can do so as describe in SUCCESS above. If they wish to inform the
retailer about their status regarding this invitation, they can use replyToInvitation()
on the i_RetailerNamedAccess interface.)

• TRYING - the consumer is known by this domain, but cannot be contacted directly. The
consumer domain is performing some action to attempt to contact the consumer. The
retailer can treat this as RINGING.

• STORED - the consumer is known by this domain, but is not being contacted at present.
The invitation has been stored for retrieval by the consumer. (The retailer can treat this as
RINGING, although it may be awhile before the consumer responds.)

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 26

• REDIRECT - the consumer is known by this domain, but they are not available through this
interface. The retailer should use the address given in
t_InvitationReplyProperies, to contact the consumer.

• NEGOTIATE - the consumer is known by this domain, but they are not being contacted at
present. The t_InvitationReplyProperies contains a set of alternatives that the
retailer could try in order to contact the consumer. (These alternative are not defined by
Ret RP, and so are retailer specific at present.)

• BUSY - the consumer cannot be contacted because they are ‘busy’. This code should be
treated as for UNSUCCESSFUL.

• TIMEOUT - the consumer cannot be contacted, as the consumer domain has timed out
while trying to contact them. i.e. the consumer domain has a time out value for contacting
the consumer using the method for contacting them, (e.g. pop-up window, ringing
phone.), and this time has expired. This code should be treated as for UNSUCCESSFUL

These invitation reply codes have been taken from the Internet Engineering Task Force working group
MMUSIC, (Multimedia Multiparty Session Control) draft standard ‘Session Initiation Protocol’.

Announcements allow a session to publicise itself to a ‘group’ of end-users. The announcements are
not directed to a specific user, nor are they ‘delivered’ to the end-user. Announcements are stored by
the retailer domain until the consumer domain requests for a list of announcements. Announcements
are return to the consumer, depending upon the ‘groups’ to which the user belongs. (These are
defined by user properties, but no specific mechanism for defining announcement groups has been
specified by Ret-RP. Announcements contain sufficient information for the user to join the session.
(This operation is defined across the access part of Ret-RP, and the retailer is always involved in
allowing the consumer to find and join the session.)

Draft definition: The structure for announcements is draft only. We would be glad to receive any
feedback concerning this structure and its semantics.

// module TINACommonTypes
typedef t_PropertyList t_AnnouncementProperties;

struct t_SessionAnnouncement {
t_AnnouncementId announcementId;
t_SessionPurpose sessionPurpose;
t_ServiceInfo serviceInfo;
t_AnnouncementProperties properties;

};

typedef sequence<t_SessionAnnouncement> t_AnnouncementList;

// module TINAAccessCommonTypes
typedef unsigned long t_AnnouncementId;

t_SessionAnnouncement describes the session that is being announced, and the ‘group’ of users
that the announcement is broadcast to. It is a structure containing the announcementId, the
sessionPurpose, the serviceInfo, and a list of announcement properties. No property names or values
are defined by Ret-RP for announcements. The announcement properties allow the retailers to define

 page 27

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

their own types for announcements, which can be passed using the announcement operations
defined by Ret-RP. It is possible that the structure of announcements will change in future versions of
Ret-RP.

t_AnnouncementId identifies an announcement to the consumer domain. The consumer domain
can request a list of announcements which are associated with this end-user. The
t_AnnouncementId is used by the consumer domain to distinguish between the announcements it
receives. The ids for each announcement can only be used by this user. They do not uniquely identify
the announcement for all consumers of a retailer.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 28

 page 29

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

4. Access Part

This section contains a definition and explanation of the access part of Ret-RP. The access part
describes how a consumer accesses a retailer to make use of services it provides.

The access part of Ret-RP offers the following capabilities:

• initiation of dialogue between the consumer and retailer domains,

• identification of the domains to each other (either domain can remain anonymous
dependent on the interaction requested),

• establishment of a secure association between the domains, (an access session),

• set up of the default context for the control and management of usage functionality
(service sessions),

• discovery of service1 offerings,

• listings of access sessions, service sessions and subscribed services

• initiation of usage between the domains, (starting a service session),

• control and management of service sessions (e.g., stop, suspend, resume, join, notify
changes, etc.).

The access part largely addresses the establishment, and use of a secure association between the
domains, termed an Access Session [5].

The access part of Ret-RP is defined in the following sections. Many of the interfaces and operations
defined for Ret-RP will be applicable to the access parts of other inter-domain reference points (such
as 3PTY, and RtR). In order to facilitate this re-use, a set of interfaces have been defined which can
be re-used in other reference points. These interfaces can be recognized by the prefix i_User or
i_Provider. These interface types correspond to the Access User and Access Provider roles
identified in the Service Architecture [5].

Interfaces for the Ret-RP are designated with the prefixes: i_Consumer and i_Retailer. These
correspond to the consumer and retailer business administrative domains from the TINA Business
Model [7]. For Ret-RP, these domains take the access user and access provider roles. All of the
i_Consumer and i_Retailer interfaces are inherited from corresponding i_User and
i_Provider interfaces. Any specialisations for the Ret-RP are defined in the i_Consumer /
i_Retailer interfaces. However, no specialisations are defined at present.

In summary, the Ret-RP interfaces are inherited from generic user-provider interfaces that can be
reused in many other reference points.

NOTE: The main body of this document describes only interfaces and operations on interfaces. A
complete listing of the IDLs, and how the interfaces are grouped into modules can be found in Annex
A - Annex F:.

The remainder of the Access Part of Ret-RP is structured as follows:

1. These services can be primary (e.g. Video on Demand (VoD)), ancillary to the primary (e.g. configuration management for VoD)
or administrative (e.g., subscriber management for VoD). See [2] for definitions.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 30

Section 4.1, "Overview of Access interfaces for Ret-RP" contains a description of the access
interfaces of Ret-RP, together with a short explanation of every operation. It identifies only those
interfaces which are exported over Ret-RP.

Section 4.2, "User-Provider Interfaces" identifies the generic user-provider interfaces that are not
exported over Ret-RP. It shows the inheritance hierarchy for the interfaces exported over Ret-RP. It
also describes the generic interfaces so that they can be re-used for other inter-domain reference
points.

Section 4.3, "Access Information View" gives an information view of Ret-RP. It describes the types of
information passed over the Ret-RP.

Section 4.4, "Access Interface definitions" describes the operations of Ret-RP interfaces supported
by the consumer and retailer domains in detail, including parameters and dynamics.

IDL definitions of each of the interfaces can be found in Annex C.

4.1 Overview of Access interfaces for Ret-RP

The Access Part of the Ret-RP is defined by a set of interfaces which are offered over the reference
point. All of the interfaces in the Access Part are categorised by which side of the RP offers the
interface: the consumer, or the retailer.

The interfaces are also categorised by whether they are assessable during an access session;
always available outside of an access session; or may be registered to be available outside of an
access session.

Registration of interfaces can only be done by the consumer on the retailer domain during an access
session. The lifetime of registration depends on how the consumer registers his interfaces, i.e. only
as long as the access session exists or permanent.

The following diagram names all of the interfaces defined by the Access Part, and categorizes them
as above.

 page 31

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

The interfaces: “always available outside of an access session” are supported by the retailer to allow
a consumer to request the establishment of an access session. They are the initial point of contact
for the consumer, and allow him to authenticate himself and the retailer; establish the access session;
and gain a reference to a i_RetailerNamedAccess, or i_RetailerAnonAccess interface.

The interfaces: “available during an access session” allow the consumer and retailer to interact during
an access session. The interfaces on the retailer allow the consumer to discover services; initiate
usage of those services; control and manage those services, (e.g. stop, suspend, resume, etc.) and
register the consumer’s context and interfaces with the retailer. The interfaces supported by the
consumer allow the retailer to discover interfaces and terminal configuration of the consumer; notify
changes in access and service sessions; and send invitations to join service sessions. These
capabilities are only possible during the access session.

The interfaces: “available if registered with retailer” are supported by the consumer. They must be
registered with the retailer for use outside the access session to be accessible. With the appropriate
interface registered, the retailer is able to perform all of the operations “available during an access
session”, as well as request the consumer to initiate an access session with them.

The following sections will globally describe the interfaces and their operations. Detailed information
about operations, their parameter lists and dynamics can be found in Section 4.4, "Access Interface
definitions".

i_RetailerNamedAccess
i_RetailerAnonAccess
i_DiscoverServicesIterator

i_RetailerInitial
i_RetailerAuthenticate

Ret-RP

Consumer Domain Retailer Domain

Access Session: Interfaces available during an Access Session

 Outside an Access Session: Interfaces available if registered with retailer

Initial contact: Interfaces always available outside an Access Session

i_ConsumerAccess
i_ConsumerInvite

i_ConsumerTerminal
i_ConsumerAccessSessionInfo
i_ConsumerSessionInfo

i_ConsumerInitial

Figure 4-1. Interfaces in Access Part of Ret-RP.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 32

4.1.1 Example Scenario of Access part of Ret-RP

This section is an example of the use of the access Ret-RP interfaces. It describes a consumer
making use of retailer interfaces to establish an access session; make use of retailer facilities, and
register to receive invitations outside of an access session.

1. A consumer domain contacts the retailer by gaining a reference to a i_RetailerInitial
interface2.

2. The consumer domain calls the requestNamedAccess() operation on
i_RetailerInitial, as he wishes to establish an access session with the retailer as a
named user. (If the consumer wished to remain anonymous, he could use the
requestAnonymousAccess() operation on that interface instead.)

2.a If CORBA security services have been used, then both domain’s credentials and other
authentication information will have been exchanged, and both consumer and retailer
will have been authenticated to each other. The call to requestNamedAccess() returns
a reference to a i_RetailerNamedAccess interface. (An access session has been
established between the consumer and retailer domains.)

2.b If CORBA security services are not used, then the call to requestNamedAccess() fails,
and an e_AuthenticationError exception is raised. This exception contains a
reference to a i_RetailerAuthenticate interface, which the consumer can use to
authenticate himself. After this, the consumer calls requestNamedAccess() on
i_RetailerInitial in order to gain a reference to the i_RetailerNamedAccess
interface.

3. At this point, an access session has been established, and the consumer domain has a
reference to the i_RetailerNamedAccess interface.

4. The consumer domain informs the retailer domain of its interfaces and terminal configuration by
calling the setUserCtxt() operation on i_RetailerNamedAccess. The retailer gains
references to the i_ConsumerAccess, i_ConsumerInvite, i_ConsumerTerminal, and
i_ConsumerSessionInfo interfaces for use within this access session.

5. The consumer can now, by invoking the appropriate operations on the
i_RetailerNamedAccess interface:

• discover services offered by the retailer (discoverServices());

• subscribe to those services (by starting a subscription service);

• list the access sessions and service sessions they are currently involved with
(listAccessSessions(), listServiceSessions());

• start a new service session (startService());

• suspend, resume, join and end existing sessions (suspendSession(),
resumeSession(), endSession());

• gain references to retailer-specific interfaces (getInterfaces());

• register interfaces for use outside of an access session
(registerInterfaceOutsideAccessSession());

• and more...

6. The retailer can:

2. The mechanism by which the consumer gains this interface is not prescribed by Ret-RP.

 page 33

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• gain references to retailer-specific interfaces (using i_ConsumerAccess interface);

• invite the consumer to join a session (using i_ConsumerInvite interface);

• discover the terminal configuration (using i_ConsumerTerminal interface);

• inform the consumer of changes in their access and service sessions (using
i_UserAccessSessionInfo, and i_UserSessionInfo interfaces);

7. The consumer registers the i_ConsumerInitial interface for use outside of an access
session, (using registerInterfaceOutsideAccessSession() on
i_RetailerNamedAccess). Then he ends the access session (), and can no longer make
requests to the retailer.

8. The retailer can still invite the consumer to join a service session, using
inviteUserOutsideAccessSession() on the i_ConsumerInitial interface.

9. If the consumer wished to join the session they’ve been invited to, then they would have to
establish another access session, (as in step 1.).

4.1.2 Always available outside an Access Session

Only retailer interfaces are always available outside an access session.

The following interfaces are provided by the retailer to allow the consumer and/or retailer to
authenticate themselves, and establish an access session.

• i_RetailerInitial - This interface is the consumer’s initial point of contact for the
retailer. It can be used to request the establishment of an access session. The access
session provides a consumer access to use his subscribed services, etc., through a
i_RetailerNamedAccess, or i_RetailerAnonAccess interface, if the consumer is
authenticated as a named, or anonymous user respectively. If the consumer is not
authenticated, it returns a reference to the i_RetailerAuthenticate interface, to
allow this authentication to occur.

• i_RetailerAuthenticate - This interface is used by the consumer to authenticate
themselves and the retailer and for passing credentials that can be used to establish the
access session.

4.1.2.1 i_RetailerInitial Interface

The i_RetailerInitial interface allows the consumer to request the establishment of an access
session.

• requestNamedAccess() allows the consumer to identify himself to the retailer, and
establish an access session. A secure context may have already been set-up between
the consumer and the retailer using CORBA security services. In this case, this operation
returns a reference to a i_RetailerNamedAccess interface. If the consumer has not
already been authenticated, then an e_AuthenticationError exception will be
raised. This contains a reference to a i_RetailerAuthenticate interface, which may
be used to authenticate and set-up the secure context. Then this operation can be invoked
again to retrieve the reference to the i_RetailerNamedAccess interface.

• requestAnonymousAccess() allows the consumer to establish an access session with
the retailer without revealing his identity. The access session will provide access to some
services, although the consumer may need to negotiate with the retailer over which

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 34

services are available. (The services will obviously not be specialised to the consumer.)
The consumer interacts with the retailer through a i_RetailerAnonAccess interface.
This operation is otherwise the same as requestNamedAccess().

4.1.2.2 i_RetailerAuthenticate interface

The i_RetailerAuthenticate interface allows the consumer and/or the retailer to be
authenticated and acquire credentials, to set-up a secure context. The interface provides a generic
mechanism for authentication which can be used to support a number of different authentication
protocols.

The primary purpose of this interface is to verify to the consumer and retailer that they are indeed
talking to the domain they have been told they are talking to. It is not intended to necessarily identify
the consumer. (requestNamedAccess() is used to identify the consumer, and provide it access to
its services.)

• getAuthenticationMethods() provides a list of the authentication methods
supported by the retailer.

• authenticate() allows the consumer to select an authentication method, pass
authentication data and request specific credentials that may be used for maintaining a
secure context. The retailer then returns its authentication data (if required), challenge
data for the consumer to respond using continueAuthentication() (if required), and
the requested credentials (if possible). If further authentication protocol is required before
credentials are returned then these can be returned by continueAuthentication()

• continueAuthentication() may be called one or more times after authenticate().
It allows the consumer to respond to the challenge data returned from authenticate()
or previous continueAuthentication() call. At the first or subsequent calls of
continueAuthentication() credentials requested by the consumer may be returned
according to the protocol requirements.

4.1.3 Available during an Access Session

Both consumer and retailer interfaces are available during an access session.

The consumer supports the following interfaces for the retailer to use during the access session:

• i_ConsumerAccess - The retailer can find out about the interfaces in the consumer
domain using this interface. It provides the retailer with interface references to other
interfaces in the consumer domain.

• i_ConsumerInvite - This interface is used by the retailer to notify the consumer of
invitations to join service sessions. The consumer can register an i_ConsumerInitial
interface to receive invitations outside an access session.

• i_ConsumerTerminal - This interface is used by the retailer within an access session
to access terminal configuration information, e.g. applications installed, hardware
configuration, (NAPs), etc.

• i_ConsumerAccessSessionInfo - This interface is used by the retailer to inform the
consumer of state changes to other access sessions which this consumer has with this
retailer.

• i_ConsumerSessionInfo - This interface is used by the retailer to inform the consumer
of state changes to service sessions which this consumer has with this retailer.
Information is sent on all service sessions, used through all access sessions with this
retailer.

 page 35

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

All of the consumer supported may be registered with the retailer for use inside or outside of an
access session, through operations on the i_RetailerNamedAccess interface. Other retailer-
specific interfaces not defined by Ret-RP can also be registered. Registration of the first three
mentioned here is mandatory, using the setUserCtxt() operation on the
i_RetailerNamedAccess interface. The lifetime for this particular registration is the same as the
lifetime of the access session.

The retailer supports two interfaces for use during access sessions. The consumer will only be given
a reference to one of these interfaces. If they have authenticated as a named user and invoked the
requestNamedAccess() operation, they will be given a reference to i_RetailerNamedAccess;
otherwise if they have authenticated as an anonymous user, and invoked
requestAnonymousAccess(), then they will be given a reference to i_RetailerAnonAccess:

• i_RetailerNamedAccess - This interface allows a known consumer to access his
subscribed services, start and manage service sessions, etc.

• i_RetailerAnonAccess - This interface is used by the retailer to notify the consumer
of invitations to join service sessions. The consumer can register an
i_ConsumerInitial interface to receive invitations outside an access session.

During an access session, a consumer will have access to one of these interfaces, depending on
whether they have authenticated as a named or anonymous user. The current definition of Ret-RP
does not allow the change from anonymous to named user in the same access session.

The retailer also supports the following interface:

• i_DiscoverServicesIterator - A reference to this interface is returned to the
consumer after invoking the discoverServices() operation on either of the interfaces
above. It is used to retrieve the remaining service descriptions, which were not returned
directly from discoverServices().

4.1.3.1 i_ConsumerAccess interface

The i_ConsumerAccess interface allows the retailer access to the consumer domain, during an
access session. It allows the retailer to request references to interfaces supported by the consumer
domain. These interfaces include those defined by Ret-RP, as well as other retailer specific interfaces.

• cancelAccessSession() - allows the retailer to cancel this access session. After this
operation has been invoked, neither consumer nor retailer will make use of the other
interfaces. (Interfaces registered for use outside the access session, or interfaces within
another access session can still be used.)

This interface inherits the following operations from the i_UserAccess interface, for the retailer to
gain references to other interfaces supported by the consumer:

• getInterfaceTypes() - allows the retailer to discover all of the interface types
supported by the consumer domain.

• getInterface() - allows the retailer to retrieve an interface reference, giving the
interface type, and properties.

• getInterfaces() - allows the retailer to retrieve a list of all the interfaces, supported by
the consumer.

This interface is registered with the retailer using the setUserCtxt() operation, and is available for
use during the current access session.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 36

4.1.3.2 i_ConsumerInvite interface

The i_ConsumerInvite interface allows the retailer to send invitations to join service session,
during an access session. It is only available during an access session to receive invitations. If the
consumer wishes to receive invitations outside of an access session, then they must register the
i_ConsumerInitial interface for use outside an access session.

• inviteUser() - allows the retailer to invite the consumer to join a service session. A
session description and sufficient information to join the session is available in the
parameter list. The session can only be joined using the
joinSessionWithInvitation() operation on the i_RetailerNamedAccess
interface.

• cancelInviteUser() - allows the retailer inform the consumer that an invitation
previously sent to the consumer has been cancelled.

This interface is registered with the retailer using the setUserCtxt() operation, and is available for
use during the current access session.

4.1.3.3 i_ConsumerTerminal interface

The i_ConsumerTerminal interface allows the retailer to gain information about the consumer
domain’s terminal configuration, and applications.

• getTerminalInfo() - allows the retailer to retrieve information about the consumer
domain’s terminal. Information on the terminal id, type, network access points, and user
applications can be accessed.

This interface is registered with the retailer using the setUserCtxt() operation, and is available for
use during the current access session.

4.1.3.4 i_ConsumerAccessSessionInfo interface

The i_ConsumerAccessSessionInfo interface allows the retailer to inform the consumer of
changes of state in other access sessions with the consumer, (e.g. access sessions with the same
consumer which are created or deleted). The consumer is only informed about access sessions which
they are involved in.

• newAccessSessionInfo() - This (oneway) operation is used by the retailer to inform
the consumer about a new access session in which the consumer is involved.

• endAccessSessionInfo() - This (oneway) operation is used by the retailer to inform
the consumer that another access session has ended.

• cancelAccessSessionInfo() - This (oneway) operation is used to inform the
consumer an access session has been cancelled by the retailer.

• newSubscribedServicesInfo() - This (oneway) operation is used by the retailer to
inform the consumer that they have been subscribed to some new services.

This interface is not registered with the retailer using the setUserCtxt() operation. Instead the
consumer domain must register this interface using the i_RetailerNamedAccess interface. It can
be registered for use both inside and outside of an access session.

 page 37

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

4.1.3.5 i_ConsumerSessionInfo Interface

The i_ConsumerSessionInfo interface allows the retailer to inform the consumer of changes of
state in service sessions which the consumer is involved in. Information operations are invoked
whenever a change to the service session affects the consumer, (i.e. the session is suspended), but
not when the change does not affect the consumer, (i.e. another party in the session leaves). This
interface is informed of changes in all service sessions involving the consumer, and not just those
associated with this access session.

The following operations inform the consumer that:

• newSessionInfo() - a new service session has been started;

• endSessionInfo() - an existing service session has ended;

• endMyParticipationInfo() - the consumer’s participation in the session has ended;

• suspendSessionInfo() - an existing service session has been suspended;

• suspendMyParticipationInfo() - the consumer’s participation in the service session
has suspended;

• resumeSessionInfo() - a suspended session has been resumed

• resumeMyParticipationInfo() - the consumer’s participation in the session has
resumed;

• joinSessionInfo() - the consumer has joined a service session.

This interface can be registered with the retailer using the setUserCtxt() operation. If so, the
interface is available during the current access session only.

It can be registered at any other time with the retailer using the register interface operations on the
i_RetailerAccess interface. It can be registered for use both inside and outside of an access
session.

4.1.3.6 i_RetailerNamedAccess interface

i_RetailerNamedAccess interface allows a known consumer access to his subscribed services.
The consumer uses it for all operations within an access session with the retailer. A reference to this
interface is returned when the consumer has been authenticated by the retailer and an access
session has been established. It is returned by calling requestNamedAccess() on the
i_RetailerInitial interface.

It provides the following operations (which are inherited from i_ProviderNamedAccess interface:

• setUserCtxt() - allows the consumer to inform the retailer about interfaces in the
consumer domain, and other consumer domain information. (e.g. user applications
available in the consumer domain, operating system used, etc.). It should be called
immediately after receiving the reference to this interface, or subsequent operations may
raise an exception.

• listAccessSessions() - allows the consumer in this access session to find out about
other access sessions that he has with this retailer. (e.g. A consumer is at work, but has
an access session set up at home which runs an active security service session.)

• endAccessSession() - allows the consumer to end a specified access session, either
the current one, or another, found using listAccessSessions(). The consumer can
also specify some actions to do if there are active service sessions.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 38

• getUserInfo() - gets the consumer’s username, and other properties.

• listSubscribedServices()- lists the services to which the consumer is subscribed.
Scoping of subscribed services can be done using property lists. The operation returns
sufficient information for the consumer to start a particular (subscribed)service.

• discoverServices() - lists all the services available from the retailer. The consumer
can scope the list by suppling some properties that the service should have, and a
maximum number to return. A reference to an i_DiscoverServicesIterator
interface can be used to retrieve the remaining services.

• getServiceInfo() - returns the service information for a particular service (identified in the
invocation by its serviceId). Similar information (t_ServiceProperties) can be obtained with
the listSubscribedServices or discoverServices, but the getServiceInfo is a simplified
version, targeting on a single service, and independantly from the subscription status.

• listRequiredServiceComponents() - retrieves information on how to download the
application software in case of Java applets. The terminalInfo is included as an IN
parameter to avoid an explicit call of the getTerminalInfo operation. For example in case
of Java applet download, the property list will contain an entry with a name-value pair
describing the url of the Java applet; the name will be “URL” and the value the string value
of the URL.

• listServiceSessions() - lists the service sessions of the consumer. The request can
be scoped by the access session, and session properties, (e.g. active, suspended,
service type, etc.).

• getSession(Models/InterfaceTypes/Interface/Interfaces)() - all retrieve
information on a particular session.

• listSessionInvitations() - lists the invitations to join a service session that have
been sent to the consumer.

• listSessionAnnouncements() - lists the service sessions with have been
announced. It can be scoped by some announcement properties.

• startService() - allows the consumer to start a service session.

• endSession() - allows the consumer to end a service session.

• endMyParticipation() - allows the consumer to end his participation in a service
session.

• suspendSession() - allows the consumer to suspend a service session.

• suspendMyParticipation() - allows the consumer to suspend his participation in a
service session.

• resumeSession() - allows the consumer to resume a service session.

• resumeMyParticipation() - allows the consumer to resume his participation in a
service session.

• joinSessionWithInvitation() - allows the consumer to join a service session, to
which he has been invited.

• joinSessionWithAnnouncement() - allows the consumer to join a service session,
which has been announced.

• replyToInvitation() - allows the consumer to reply to an invitation. It can be used
to inform the service session to which they have been invited, that they will/will not be
joining the session, or to send the invitation somewhere else. (It does not allow the
consumer to join the session.)

PROPRIETARY - TINA Consortium Members ONLY
see proprietary restriction on title page

 page 39

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

It also supports the following operations inherited from i_ProviderAccessInterfaces interface.
These are useful for accessing retailer specific interfaces.:

• getInterfaceTypes() - allows the consumer to discover all of the interface types
supported by the retailer domain.

• getInterface() - allows the consumer to retrieve an interface reference, giving the
interface type, and properties.

• getInterfaces() - allows the consumer to retrieve a list of all the interfaces, supported
by the retailer.

• registerInterface() - allows a consumer interface to be registered for use within the
current access session. The registrations ends when the access session ends, or when
the unregisterInterface() operation is called. An interface index is returned to allow
the interface to be unregistered.

• registerInterfaceOutsideAccessSession() - allows a consumer to register an
interface for use outside an access session. (The interface registered should still be
available when no access session exists between the consumer and retailer).

• listRegisteredInterfaces() - allows the consumer to list the interfaces which have
been registered by them with the retailer. The list defines which interfaces are registered
for use inside an access session, and which for use outside.

• unregisterInterface() - allows the consumer to unregister an interface, so that the
retailer will not attempt to use that interface, (either inside or outside the access session).

4.1.3.7 i_RetailerAnonAccess interface

The i_RetailerAnonAccess interface allows an anonymous consumer access to the retailer’s
services. The anonymous consumer uses it for all operations within an access session with the
retailer. This interface is returned when the consumer calls requestAnonymousAccess() on the
i_RetailerInitial interface.

Currently the operations for this interface are not defined. It will support operations similar to those of
the i_RetailerNamedAccess interface.

4.1.3.8 i_DiscoverServicesIterator

The i_DiscoverServicesIterator interface is used returned by calls to the
discoverServices() operation. This operation is used to retrieve a list of services supported by the
retailer which match a set of properties. The list generated by this operation may be too large to return
as an out parameter. This interface allows the list to be retrieved in digestible chunks by the consumer.
Each call to discoverServices() returns a new instance of this interface.

• maxLeft() - The consumer can find out how many unseen services are left

• nextN() - The consumer can indicate that he wants to get information about the next n
services.

• destroy() - The consumer informs the retailer that the interface is no longer needed.

4.1.4 Available outside an Access Session if Registered

The consumer can register some his interface for use by the retailer outside of the current access
session. An interface can be registered using the
registerInterfaceOutsideAccessSession() operation on the i_RetailerNamedAccess

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 40

interface. If registered, the retailer will retain a reference to the interface when the consumer/retailer
end the current access session. The retailer can invoke operations on this interface without an access
session being present.

The retailer will not use the interface registered until the access session in which it was registered has
ended. They will continue to use the interface until the interface is unregistered. If another access
session is established, the retailer will still invoke operations on the registered interface, in addition to
new interfaces provided as part of the new access session.

• i_ConsumerInitial. This interface allows the retailer to initiate an access session
with the consumer. It also allows the retailer to send invitations to the consumer outside
of an access session.

• i_ConsumerTerminal. The retailer will use this interface to access terminal
configuration information, if necessary. See previous description.

• i_ConsumerAccessSessionInfo. The retailer will use this interface to inform the
consumer of changes to any of their access sessions. See previous description.

• i_ConsumerSessionInfo. The retailer will use this interface to inform the consumer
of changes in state to any of their service sessions. See previous description.

4.1.4.1 i_ConsumerInitial Interface

The i_ConsumerInitia l interface allows the retailer to contact the consumer outside of an access
session. It can be used to request that the consumer establish an access session with the retailer;
and to invite a user to join a service session.

This interface is only available to the retailer if the consumer has registered it during an access
session, (using the registerInterfaceUntilUnregistere d() operation, on the
i_Reta i lerNamedAccess interface). It is NOT available through a broker, as the
i_Reta i lerInitial interface is.

The following operations are available:

• requestAccess() - allows the retailer to request the consumer to set up an access
session.

• inviteUserWithoutAccessSession() - allows the retailer to send an invitation to the
consumer while he is not involved in an access session with the retailer.

• cancelInviteUserWithoutAccessSession() - allows the retailer to cancel an
invitation sent to the consumer.

4.2 User-Provider Interfaces

The interfaces defined above are for use over the Ret-RP. The interface names use include the
names Consumer and Retailer in order to identify that they are for use over the Ret-RP. The
descriptions above include all of the operations that are used over Ret-RP.

Other reference points will want to use similar interfaces as those defined above, for access related
activities, (e.g. establishing an access session, starting services, etc.). In order to allow other
reference points to re-use interfaces and operations, a set of generic access interfaces are defined.
These interface support the access session roles defined in the Service Architecture document
[ref5.0]. The roles supported are access user and access provider. These interfaces can be
recognized by the prefix i_User or i_Provider.

 page 41

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

The interfaces defined for use over Ret-RP have been defined above, including all of the inherited
operations. All of the i_Consumer and i_Retailer interfaces are inherited from corresponding
i_User and i_Provider interfaces. Any specialisations for the Ret-RP are defined in the
i_Consumer / i_Retailer interfaces. However, no specialisations are defined at present.

The figures below define the inheritance hierarchy for both Ret-RP interfaces, and the generic User-
Provider interfaces.

4.2.1 User Interfaces

Figure 4-2. Consumer interfaces inherited from User interfaces.

Figure 4-2 shows the consumer interfaces, and the user interfaces that they inherit from. The user
and consumer interfaces have a simple mapping, (all the consumer interfaces inherit from a
correspondingly named user interface). All of the user interfaces define the operations that are
described for the consumer interfaces in Section 4.1. The only exception to this is the i_UserAccess
interface that inherits all of this operation from i_UserAccessGetInterfaces. This is to allow
other interfaces to re-use the operations to retrieve interfaces.

4.2.1.1 i_UserAccess

This interface inherits from the abstract interface i_UserAccessGetInterfaces, and defines the
following operation:

• cancelAccessSession()

4.2.1.2 i_UserInvite

This interface defines the following operations:

• inviteUser()
• cancelInviteUser()

4.2.1.3 i_UserTerminal

This interface defines the following operation:

i_ConsumerInitial

i_UserInitial

i_ConsumerTerminal

i_UserTerminal

i_ConsumerAccessSessionInfo

i_UserAccessSessionInfo

i_ConsumerSessionInfo

i_UserSessionInfo

i_UserAccessGetInterfaces

i_UserAccess

i_ConsumerAccess i_ConsumerInvite

i_UserInvite

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 42

• getTerminalInfo()

4.2.1.4 i_UserAccessSessionInfo

This interface defines the following operations:

• newAccessSessionInfo()
• endAccessSessionInfo()
• cancelAccessSessionInfo()
• newSubscribedServicesInfo()

4.2.1.5 i_UserSessionInfo

This interface defines the following operations:

• newSessionInfo()
• endSessionInfo()
• endMyParticipationInfo()
• suspendSessionInfo()
• suspendMyParticipationInfo()
• resumeSessionInfo()
• resumeMyParticipationInfo()
• joinSessionInfo()

4.2.1.6 i_UserInitial

This interface defines the following operations:

• requestAccess()
• inviteUserOutsideAccessSession()
• cancelInviteUserOutsideAccessSession()

 page 43

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

4.2.2 Provider interfaces

Figure 4-3. Retailer interfaces inherited from Provider interfaces

Figure 4-3 shows the retailer interfaces, and the provider interfaces that they inherit from.

The inheritance hierarchy for the i_RetailerNamedAccess and i_RetailerAnonAccess
interface is complex. Both inherit from i_RetailerAccess. This interface defines Ret-RP specific
operations that are common to both interfaces. (Currently no operations are defined here.)

i_RetailerNamedAccess also inherits from i_ProviderNamedAccess, which defines the
operations available for the generic access provider role, where the user domain supports a known
user. i_ProviderNamedAccess defines all of the operations offered by
i_RetailerNamedAccess.

i_RetailerAnonAccess inherits from i_ProviderAnonAccess, which defines the operations
available for the generic access provider role, where the user domain supports an anonymous user.
Currently, i_ProviderAnonAccess only inherits operations from i_ProviderAccess.

i_ProviderAccess interface defines the generic access provider role, for re-use in other reference
points. It is inherited by both i_ProviderNamedAccess and i_ProviderAnonAccess. Currently,
no operations are defined for this interface. In the future, some of the operations defined for
i_ProviderNamedAccess will be moved here, as they are common to both interfaces, being
appropriate to known and anonymous users.

i_ProviderAccessInterfaces

i_ProviderAccess

i_RetailerNamedAccess i_RetailerAnonAccess

i_RetailerAccess

i_RetailerInitial

i_ProviderAuthenticatei_ProviderInitial

i_RetailerAuthenticate

i_ProviderNamedAccess i_ProviderAnonAccess

i_ProviderAccessRegisterInterfacesi_ProviderAccessGetInterfaces

i_DiscoverServicesIterator

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 44

4.2.2.1 i_ProviderNamedAccess

This interface defines the following operations, and inherits others from i_ProviderAccess:

• setUserCtxt()
• listAccessSessions()
• endAccessSession()
• getUserInfo()
• listSubscribedServices()
• discoverServices()
• getServiceInfo()
• listServiceSessions()
• getSession(Models/InterfaceTypes/Interface/Int erfaces)()
• listSessionInvitations()
• listSessionAnnouncements()
• startService()
• endSession()
• endMyParticipation()
• suspendSession()
• suspendMyParticipation()
• resumeSession()
• resumeMyParticipation()
• joinSessionWithInvitation()
• joinSessionWithAnnouncement()
• replyToInvitation()

4.2.2.2 i_ProviderAnonAccess

This interface defines no operations. It inherits from i_ProviderAccess .

4.2.2.3 i_ProviderAccess

This interface defines no operations. It inherits from i_ProviderAccessInterface s .

4.2.3 Abstract interfaces

This section describes the abstract interfaces which are inherited in several retailer and consumer
interfaces. They are not exported over Ret. The main purpose of these interfaces is to provide a
generic mechanism for registration and retrieval of interfaces in a certain domain.

• i_UserAccessGetInterfaces - allows the provider to retrieve all interfaces, only
interfaces that have certain properties or interface types of the current access session.

• i_ProviderAccessGetInterfaces - allow the user to retrieve all interfaces, only
interfaces that have certain properties or interface types of the current access session.

• i_ProviderAccessRegisterInterfaces - allow the user to register interfaces for
the lifetime of an access session or permanent. It also offers an operation to unregister
interfaces.

• i_ProviderAccessInterfaces - inherits the previous two and does not offer
additional functionality.

4.2.3.1 i_UserAccessGetInterfaces

This interface defines the following operations:

 page 45

Access Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• getInterfaceTypes()
• getInterface()
• getInterfaces()

4.2.3.2 i_ProviderAccessGetInterfaces

This interface defines the following operations:

• getInterfaceTypes()
• getInterface()
• getInterfaces()

4.2.3.3 i_ProviderAccessRegisterInterfaces

This interface defines the following operations:

• registerInterface()
• registerInterfaces()
• registerInterfaceOutsideAccessSession()
• registerInterfacesOutsideAccessSession()
• listRegisteredInterfaces()
• unregisterInterface()
• unregisterInterfaces()

4.2.3.4 i_ProviderAccessInterfaces

This interface inherits from i_ProviderAccessGetInterfaces and
i_ProviderAccessRegisterInterfaces with no additional operations

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 46

 page 47

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

4.3 Access Information View

This section describes the types of information passed across the Access part of the Ret RP. The
types are passed in operations defined in the access interfaces.

4.3.1 Access Session Information
// module TINAAccessCommonTypes
typedef unsigned long t_AccessSessionId;
typedef sequence<octet, 16> t_AccessSessionSecretId;

t_AccessSessionId is used to identify an access session. The t_AccessSessionId for the
consumer’s current access session is returned by requestNamedAccess() or
requestAnonAccess(). The t_AccessSessionId for other access sessions can be found using
listAccessSessions() on the i_RetailerNamedAccess interface. (Anonymous users can
only have a single access session, and so only a single t_AccessSessionId). The
t_AccessSessionId is scoped by the consumer, i.e. for a single consumer (t_UserId) all
t_AccessSessionId’s are unique.

t_AccessSessionSecretId is used to identify within which access session a request on the
requestNamedAccess() is made. Each access session of a consumer has a unique
t_AccessSessionSecretId. It is returned by requestNamedAccess().

Consumer Retailer

t_AccessSessionSecretId

t_AccessSessionId

Access Session

t_ConsumerCtxt

t_UserInfo

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 48

All operations on requestNamedAccess() take an t_AccessSessionSecretId as their first
parameter. This parameter can be checked by the retailer to determine within which access session
of the consumer the request originated. This is useful when the behaviour of the request is dependant
on the consumer context, (e.g. startService() checks the consumer context to determine if this
service can be used).

t_AccessSessionSecretId is only known within the access session it is created. It is not known
to other access sessions of the same consumer, and is not available through
listAccessSessions(). This is because it is being used to determine the access session within
which the request is made. If another access session gained the t_AccessSessionSecretId of
this access session, then it could use it to pretend the request came from this access session. For
this reason, it should not be displayed to a human consumer, or other applications in the consumer
domain. t_AccessSessionSecretId is not itself a security mechanism, as CORBA security is still
needed to set-up security contexts between the consumer and retailer domains. However, it does
allow the retailer to easily discover the sender of a particular request.

4.3.2 User Information

Most of the user related information is described in the common types section (Section 3.3.2)

// module TINAAccessCommonTypes
struct t_UserInfo {

TINACommonTypes::t_UserId userId;
TINACommonTypes::t_UserName name;
TINACommonTypes::t_UserProperties userProperties;

};

t_UserInfo describes the user. It contains the t_UserId, the user’s name, and
t_UserProperties. It is returned by getUserInfo() on the i_ProviderAccess interface.

4.3.3 User Context Information
// module TINACommonTypes
typedef Istring t_UserCtxtName;

// module TINAProviderAccess
struct t_UserCtxt {

TINACommonTypes::t_UserCtxtName ctxtName;
TINAAccessCommonTypes::t_AccessSessionId asId;
Object accessIR; // type: i_UserAccess1

Object terminalIR; // type: i_UserTerminal
Object inviteIR; // type: i_UserInvite
Object sessionInfoIR; // type: i_UserSessionInfo
TINAAccessCommonTypes::t_TerminalConfig terminalConfig;

};

t_UserCtxt informs the retailer about the user and the consumer domain, including the name of the
context, interfaces available during this access session, and terminal configuration information

1. The type written in the IDL of this parameter is the base class type. The actual type will depend on the reference
point used. In this case the retailer can expect the i_Consumer<> type. See also remark at requestNamedAccess(),
output namedAccessIR.

 page 49

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

t_UserCtxtName is a name given to this consumer context. It is generated by the consumer
domain. It is used to distinguish between access sessions to different consumer domains/terminals.
When listing the access sessions, the t_UserCtxtName is returned, (along with the
t_AccessSessionId), as the former should be a more human readable name for the ‘terminal’ that
the access session is connected to.

accessIR is a reference to the i_UserAccess interface supported by the consumer domain for
use in this access session.

terminalIR is a reference to the i_UserTerminal interface supported by the consumer domain
for use in this access session.

inviteIR is a reference to the i_UserInvite interface supported by the consumer domain for
use in this access session.

All of the preceeding three interface references should be set to valid interfaces in the consumer
domain.

sessionInfoIR is a reference to the i_UserSessionInfo interface supported by the consumer
domain for use in this access session. It is not necessary to supply a reference for this interface.

t_TerminalConfig is a structure containing the terminal id and type; the network access point id
and type; and a list of terminal properties. Two property types have been defined t_TerminalInfo,
described below, and t_ApplicationInfoList, a list of the user applications on the terminal.

t_TerminalInfo gives details on the type of terminal, operating system, etc.

// module TINAAccessCommonTypes
struct t_TerminalInfo {

t_TerminalType terminalType;
string operatingSystem; // includes the version
TINACommonTypes::t_PropertyList networkCards;
TINACommonTypes::t_PropertyList devices;
unsigned short maxConnections;
unsigned short memorySize;
unsigned short diskCapacity;

};

Draft definition: This structure is draft only. We would be glad to receive any feedback concerning
this structure’s signature.

t_TerminalType is an enumerated type, giving the type of the terminal.

operatingSystem provides the operating system type and version as a string.

networkCards and devices are property lists of the physical devices of the terminal. The property
names and values are not defined at present, so their use is retailer specific.

maxConnections is the maximum number of network connections which can be supported by the
terminal.

memorySize is the amount of RAM in Megabytes.

diskCapacity is the amount of disk storage in Megabytes.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 50

4.3.4 Service and Session Information
// module TINAAccessCommonTypes
struct t_ServiceInfo {

t_ServiceId id;
t_UserServiceName name;
t_ServiceProperties properties;

};

t_ServiceInfo is a structure which describes a subscribed service of the consumer.

t_ServiceId is the identifies for the service. t_ServiceId is unique among all the consumer’s
subscribed services. (Other consumer’s may be subscribed to the same service, but will have a
different t_ServiceId.). The t_ServiceId value persists for the lifetime of a subscription.

t_UserServiceName is the name of the service as a string. The name is chosen by the subscriber
when they subscribe to the service. It is the name of the service displayed to the user.

t_ServiceProperties is a property list, which defines the characteristics of this service. They can
be used to search for types of service with the same characteristics, e.g. using
discoverServices() on i_RetailerNamedAccess.) Currently, no properties have been defined
for t_ServiceProperties, and so its use is retailer specific.

// module TINAAccessCommonTypes
struct t_SessionInfo {

TINACommonTypes::t_SessionId id;
t_SessionPurpose purpose;
TINACommonTypes::t_ParticipantSecretId secretId;
TINACommonTypes::t_PartyId myPartyId;
t_UserSessionState state;
TINACommonTypes::t_InterfaceList itfs;
TINACommonTypes::t_SessionModelList sessionModels;
TINACommonTypes::t_SessionProperties properties;

};

t_SessionInfo is a structure, which contains information which allows the consumer domain to
refer to a particular session, when using interfaces within an access session (e.g.
i_RetailerNamedAccess). It also contains information for the usage part of the session, including
the interface references to interact with the session.

id is the identifier for this session. It is unique to this session, among all sessions that this consumer
interacts with through this retailer. (i.e. if the consumer interacts with multiple retailers concurrently,
then they may return t_SessionId’s which are identical.)

purpose is a string containing the purpose of the session. This may have been defined when the
session is created, or subsequently by service specific interactions.

secretId is an identifier that the consumer must use when interacting with interfaces on the session
which are defined by the TINA Session Model. (See Usage Part of the Ret-RP for more details.)

myPartyId is the party identifier of this consumer. If the session is using the TINA Session Model,
with the MultipartyFS feature set, then this identifier will be used to identify this party. The
t_PartyId’s of other parties in the session are also available through MultipartyFS interfaces.

 page 51

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

state is the session state as perceived by this consumer. It can be: UserUnknownSessionState,
UserActiveSession, UserSuspendedSession, UserSuspendedParticipation,
UserInvited, UserNotParticipating. But as the session has just been started, it is likely to
be UserActiveSession.

itfs is a list of interface types and references supported by the session. (It may include service
specific interfaces for the consumer to interact with the session.

sessionModels is a list of the session models and feature sets that are supported by the session.
It may include interface references to interfaces supported for each feature set.

properties is a list of properties of the session. Its use is retailer specific.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 52

 page 53

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

4.4 Access Interface definitions

This section describes in detail the interfaces supported over Ret RP. First all of the consumer
interfaces are described, followed by the retailer interfaces. Each interface and all its supported
operations are defined.

Many of the operations are inherited from other interfaces. However they are described here as
though they were defined on the Ret RP specified interfaces. Only the interfaces defined here must
be supported for the Ret RP. It is not necessary to support the same inheritance hierarchy as defined
previously in Section 4.2.

4.4.1 Consumer Domain Interfaces

These are the interfaces supported by the consumer domain, which are available across the Ret RP:

• i_Consu merInitial

• i_Consu merAccess

• i_Consu merInvite

• i_Consu merTerminal

• i_Consu merSessionInfo

• i_Consu merAccessSessionInfo

4.4.1.1 i_ConsumerInitial Interface
// module TINARetConsumer I nitial

interface i_ConsumerInitial

: TINAUserInitial::i_UserInitial

{
};

This interface is provided to allow a Retailer initiate an access session with the consumer.It also
allows the consumer to receive invitations outside of an access session.

The purpose of this interface is to provide an initial contact point for the retailer wishing to contact the
consumer. (So its purpose is similar to that of i_ RetailerInitia l interface). However, this
interface is only available to a retailer if the consumer had previously registered the interface for use
outside an access session. This is achieved using registerIn t erfaceOutsideAccessSession
operation on the i_Retailer NamedAccess interface.

The operations described in the following sections are all inherited into this interface from the
i_User I nitial interface, which supports the generic user-provider roles. No Ret RP specific
specialisations are defined for this interface.

The following operation signatures are taken from the module TINAUserInitial . All unscoped
types need to scoped by TINAUserInitial:: when used by clients of the i_ConsumerInitial
interface.

4.4.1.1.1. requestAccess()

void requestAccess (
in t_ProviderId provider I d,

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 54

out t_AccessReply reply
);

Draft definition: This operation is draft only. We would be glad to receive any feedback concerning
this operations signature and semantics. See Section 6.1.1 for details on the stability of this operation.

This operation allows the retailer to request that an access session is established between the
consumer and the retailer.

This operation only allows the retailer to request that an access session is established with the
consumer. It does not allow the access session to actually be established. In order to set up an access
session the consumer must contact the retailer, using the i_RetailerInitial interface, and
request that an access session is established.

The retailer passes his t_ProviderId to the consumer. The consumer uses this to contact the
provider, and gain a reference to an i_RetailerInitial interface.

The t_AccessReply parameter allows the consumer to inform the retailer of the action they will take
in response to the request. The following reply codes are defined:

• SUCCESS - the consumer agrees to establish an access session. (The consumer will
establish the access session as described above.)

• DECLINE - the consumer declines to initiate an access session.

• FAILED - the consumer is unable to establish an access session.

• FORBIDDEN - the consumer domain is not authorised to accept the request.

4.4.1.1.2. inviteUserAccessSession()

void inviteUserOutsideAccessSession (
in t_ProviderId providerId,
in TINAAccessCommonTypes::t_SessionInvitation invitation,
out TINACommonTypes::t_InvitationReply reply

);

Draft definition: This operation is draft only. We would be glad to receive any feedback concerning
this operations signature and semantics. Specifically, the t_SessionInvitation and
t_InvitationReply parameters are defined according to the Internet Engineering Task Force
working group MMUSIC, (Multimedia Multiparty Session Control) draft standard ‘Session Initiation
Protocol’.

This operation allows a retailer to send an invitation to join a service session, to a consumer that is
not involved in an access session.

This operation is used if the consumer has previously registered this interface for use outside of an
access session, and the consumer is not currently in an access session. If the consumer is in an
access session with this retailer, then invitations will not be sent using this operation, but will be
delivered to the i_ConsumerAccess interface involved in the access session.

In order to join the service session described by the invitation, the consumer must establish an access
session with the retailer, and use joinSessionWithInvitation() operation on the
i_RetailerNamedAccess interface. The service session cannot be joined without an access
session with the retailer.

t_ProviderId identifies the retailer to the consumer.

 page 55

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

t_SessionInvitation describes the service session to which the consumer has been invited, and
provides an t_InvitationId to identify this invitation when joining. (It does not give interface
references to the session, nor any information which would allow the consumer to join the session
without first establishing an access session with this retailer.) It also provides a t_UserId with the
id of the invited user. The consumer domain can check that the invitation is for an ‘end-user’ that is
known to this domain. (For more details, see Section 3.3.5, "Invitations and Announcements").

An t_InvitationReply is returned which allows the consumer to inform the retailer of the action
they will take regarding the invitation. (For more details, see Section 3.3.5).

4.4.1.1.3. cancelInviteUserOutsideAccessSession()

void cancelInviteUserOutsideAccessSession (
in t_ProviderId providerId,
in TINAAccessCommonTypes::t_InvitationId id

) raises (
TINAAccessCommonTypes::e_InvitationError

);

Draft definition: This operation is draft only. We would be glad to receive any feedback concerning
this operations signature and semantics. Specifically, the t_SessionInvitation and
t_InvitationReply parameters are defined according to the Internet Engineering Task Force
working group MMUSIC, (Multimedia Multiparty Session Control) draft standard ‘Session Initiation
Protocol’.

This operation allows a retailer to cancel an invitation to join a service session which has been sent
to a consumer. The operation can be used to cancel invitations which have been sent both within an
access session, (using inviteUser() on i_ConsumerInvite), and outside of an access session,
(using inviteUserOutsideAccessSession on i_ConsumerInitial).

t_ProviderId identifies the retailer to the consumer.

t_InvitationId is used in together with the t_ProviderId in order to determine the invitation to
be cancelled. (t_InvitationId‘s are unique to a retailer only. If a consumer has received
invitations from several retailers, then invitations from different retailers may have the same id.)

If the t_InvitationId list is unknown to the consumer, then the operation should raise an
e_InvitationError exception with the InvalidInvitationId error code.

4.4.1.2 i_ConsumerAccess Interface
// module TINARetConsumerAccess

interface i_ConsumerAccess

: TINAUserAccess::i_UserAccess

{
};

This interface allows the retailer access to the consumer domain, during an access session. It
provides operations for the retailer to request references to interfaces supported by the consumer
domain. These interfaces include those defined by Ret RP, as well as other retailer specific interfaces.

It is similar in purpose to i_RetailerAccess, in that it is available during the access session. It is
passed to the retailer domain as part of setUserCtxt() on i_RetailerNamedAccess interface.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 56

All the operations described below are inherited into this interface from the i_UserAccess interface,
which supports the generic user-provider roles. No Ret RP specific specialisations are defined for this
interface.

The following operation signatures are taken from the module TINAUserAccess. All unscoped types
need to scoped by TINAUserAccess:: when used by clients of the i_ConsumerAccess interface.

4.4.1.2.1. cancelAccessSession()

void cancelAccessSession(
in t_CancelAccessSessionProperties options

);

Draft definition: This operation is draft only. We would be glad to receive any feedback concerning
this operations signature and semantics.

cancelAccessSession() allows the retailer to end an access session with the consumer. The
retailer can use this operation to terminate an access session without the consumer’s permission.

When this operation is invoked, the secure and trusted relationship between the consumer and
retailer has ended. Neither retailer nor consumer side interfaces available during the access session
can be used to make requests. (Interfaces which have been registered for use outside an access
session can still be used).

options is a property list describing retailer specific options or action taken by the retailer when
cancelling the access session, (i.e. the retailer may have suspended the consumer’s participation in
their active service sessions). Currently no specific property names and values have been defined for
t_CancelAccessSessionProperties, and so its use is retailer specific.

This operation does not affect any contractual relationship between the consumer and retailer. The
consumer can still request the establishment of an access session, and other access sessions will
not have been terminated.

4.4.1.2.2. getInterfaceTypes()

void getInterfaceTypes (
out TINACommonTypes::t_InterfaceTypeList itfTypes

) raises (
TINACommonTypes::e_ListError

);

This operation returns a list of the interface types supported by the consumer domain.

itfTypes are all the interface types supported by the consumer domain. It is a sequence of
t_InterfaceTypeName’s, which are strings representing the interface types supported by the
consumer. itfTypes should include all the interface types that can be supported by the consumer.

If the itfTypes list is unavailable, because the interface types supported by the session are not
known, then the operation should raise an e_ListError exception with the ListUnavailable
error code.

4.4.1.2.3. getInterface()

void getInterface (
in TINACommonTypes::t_InterfaceTypeName itfType,
in TINACommonTypes::t_MatchProperties desiredProperties,

 page 57

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

out TINACommonTypes::t_InterfaceStruct itf
) raises (

TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_PropertyError

);

This operation returns an interface, of the type requested, supported by the consumer domain.

type identifies the interface type of the interface reference to be returned.

The desiredProperties parameter can be used to identify the interface to be returned.
t_MatchProperties identifies the properties which the sessions must match. It also defines
whether a session must match one, all or none of the properties. Currently, no interface property
names and values have been defined for Ret RP, and its use is retailer specific.

itf is returned by this operation. It contains the t_InterfaceTypeName, an interface reference
(t_IntRef) and the interface properties (t_InterfaceProperties) of the interface type
requested.

If the consumer does not support interfaces of type, then the operation should raise the
e_InterfacesError, with the InvalidInterfaceType error code.

If an invalid property is passed, the operation should raise a e_PropertyError.

4.4.1.2.4. getInterfaces()

void getInterfaces (
out TINACommonTypes::t_InterfaceList itfs

) raises (
TINACommonTypes::e_ListError

);

This operation returns a list of all the interfaces supported by the consumer.

itfs is returned by this operation. It is a sequence of t_InterfaceStruct structures which
contain the t_InterfaceTypeName, an interface reference (t_IntRef) and the interface
properties (t_InterfaceProperties) of each interface.

If the operation cannot, or refuses to, return the interfaces, it should raise the e_ListError
exception.

4.4.1.3 i_ConsumerInvite Interface
// module TINARetConsumerAccess

interface i_ConsumerInvite

: TINAUserAccess::i_UserInvite

{
};

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 58

This interface allows the retailer to send an invitation to the consumer requesting that they join a
service session. It can only be used during an access session to receive invitations. It is passed to
the retailer domain as part of setUserCtxt() on i_RetailerNamedAccess interface. If the
consumer wishes to receive invitations outside of an access session, then they must register the
i_ConsumerInitial interface.

The operations described in the following sections are all inherited into this interface from the
i_UserInvite interface, which supports the generic user-provider roles. No Ret RP specific
specialisations are defined for this interface.

The following operation signatures are taken from the module TINAUserAccess. All unscoped types
need to scoped by TINAUserAccess:: when used by clients of the i_ConsumerInvite interface.

4.4.1.3.1. inviteUser()

void inviteUser (
in TINAAccessCommonTypes::t_SessionInvitation invitation,
out TINACommonTypes::t_InvitationReply reply

) raises (TINAAccessCommonTypes::e_InvitationError);

Draft definition: This operation is draft only. We would be glad to receive any feedback concerning
this operations signature and semantics. Specifically, the t_SessionInvitation and
t_InvitationReply parameters are defined according to the Internet Engineering Task Force
working group MMUSIC, (Multimedia Multiparty Session Control) draft standard ‘Session Initiation
Protocol’.

This operation allows a retailer to invite the consumer to join a service session. It can only be used
during an access session.

t_SessionInvitation describes the service session to which the consumer has been invited, and
provides an t_InvitationId to identify this invitation when joining. (It does not give interface
references to the session, nor any information which would allow the consumer to join the session
outside of an access session with this retailer.)

An t_InvitationReply is returned which allows the consumer to inform the retailer of the action
they will take regarding the invitation. (For more details, see Section 3.3.5).

The consumer may join the service session described by the invitation, from within this access
session, or they may establish another access session with this retailer. The same t_InvitationId
will refer to this invitation in both access sessions. The consumer should use
joinSessionWithInvitation() on the i_RetailerNamedAccess interface. The service
session cannot be joined without an access session with the retailer.

4.4.1.3.2. cancelInviteUser()

void cancelInviteUser (
in TINAAccessCommonTypes::t_InvitationId id
) raises (
TINAAccessCommonTypes::e_InvitationError

);

 page 59

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

Draft definition: This operation is draft only. We would be glad to receive any feedback concerning
this operations signature and semantics. Specifically, the t_SessionInvitation and
t_InvitationReply parameters are defined according to the Internet Engineering Task Force
working group MMUSIC, (Multimedia Multiparty Session Control) draft standard ‘Session Initiation
Protocol’.

This operation allows a retailer to cancel an invitation to join a service session which has been sent
to a consumer. The operation can be used to cancel invitations which have been sent both within an
access session, (using inviteUser() on i_ConsumerInvite), and outside of an access session,
(using inviteUserOutsideAccessSession on i_ConsumerInitial).

t_InvitationId is used in together with the t_ProviderId in order to determine the invitation to
be cancelled. (t_InvitationId‘s are unique across all access sessions with the same retailer).

If the t_InvitationId list is unknown to the consumer, then the operation should raise an
e_InvitationError exception with the InvalidInvitationId error code. (It is possible to
receive a cancelInviteUser before a corresponding inviteUser, especially if the cancel is sent
just after the access session is established. This operation should raise the exception anyway.)

4.4.1.4 i_ConsumerTerminal Interface
// module TINARetConsumerAccess

interface i_ConsumerTerminal

: TINAUserAccess::i_UserTerminal

{
};

This interface allows the retailer to gain information about the consumer domain’s terminal
configuration, and applications. It is passed to the retailer domain as part of setUserCtxt() on
i_RetailerNamedAccess interface. If the consumer wishes to allow the retailer access to terminal
information outside of an access session, then they must register this interface, using
registerInterfaceOutsideAccessSession() on i_RetailerNamedAccess.

Draft definition: This interface is draft only. We would be glad to receive any feedback concerning
operation which would be useful in determining the facilities of a terminal, or consumer domain.
Specifically, we may enhance this interface to allow a retailer to ask more specific questions about
the consumer domain.

The operations described in the following sections are all inherited into this interface from the
i_UserTerminal interface, which supports the generic user-provider roles. No Ret RP specific
specialisations are defined for this interface.

The following operation signatures are taken from the module TINAUserAccess. All unscoped types
need to scoped by TINAUserAccess:: when used by clients of the i_ConsumerTerminal
interface.

4.4.1.4.1. getTerminalInfo()

void getTerminalInfo(
out TINAAccessCommonTypes::t_TerminalInfo terminalInfo

);

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 60

Draft definition: This operation is draft only. We would be glad to receive any feedback concerning
this operations signature and semantics.

This operation allows the retailer to receive all the information about the consumer domain’s terminal
configuration, that the consumer wishes the retailer to have access to.

The operation returns the t_TerminalInfo structure, giving details on the type of terminal,
operating system, etc. See Section 4.3.3, "User Context Information" for details.

4.4.1.5 i_ConsumerAccessSessionInfo Interface
// module TINARetConsumerAccess

interface i_ConsumerAccessSessionInfo

: TINAUserAccess::i_UserAccessSessionInfo

{
};

This interface allows the retailer to inform the consumer of changes of state in other access sessions
with the consumer, (e.g. access sessions with the same consumer which are created or deleted). The
consumer is only informed about access sessions which they are involved in.

This interface is NOT automatically passed to the retailer, as part of setUserCtxt() on
i_RetailerNamedAccess interface. If the consumer wishes to be informed of changes in other
access session, then they must register this interface, using registerInterface() on
i_RetailerNamedAccess. Then the retailer will tell the consumer about access session changes,
until this interface is unregistered, or the current access session ends.

If the consumer wishes to be informed of access session changes outside of an access session, then
they must register this interface, using registerInterfaceOutsideAccessSession() on
i_RetailerNamedAccess. The operations do not include a t_ProviderId, so if this interface is
registered for use outside an access session, a separate interface must be registered with each
retailer. Retailers can not share this interface, because t_AccessSessionId is only unique within
a retailer for this consumer.

The operations described in the following sections are all inherited into this interface from the
i_UserAccessSessionInfo interface, which supports the generic user-provider roles. No Ret RP
specific specialisations are defined for this interface.

The following operation signatures are taken from the module TINAUserAccess. All unscoped types
need to scoped by TINAUserAccess:: when used by clients of the
i_ConsumerAccessSessionInfo interface.

4.4.1.5.1. newAccessSessionInfo()

oneway void newAccessSessionInfo (
in TINAAccessCommonTypes::t_AccessSessionInfo accessSession
);

This operation is used to inform the consumer that a new access session has been established.

 page 61

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

t_AccessSessionInfo contains the t_AccessSessionId of the new access session, the
t_UserCtxtName so the consumer can tell which consumer domain/terminal the access session
has been established, and t_AccessSessionProperties which are a retailer specific property list
that can be used to provide more information on the access session.

4.4.1.5.2. endAccessSessionInfo()

oneway void endAccessSessionInfo (
in TINAAccessCommonTypes::t_AccessSessionId asId
);

This operation is used to inform the consumer that an access session has ended.

t_AccessSessionId identifies which access session has ended.

4.4.1.5.3. cancelAccessSessionInfo()

oneway void cancelAccessSessionInfo (
in TINAAccessCommonTypes::t_AccessSessionId asId
);

This operation is used to inform the consumer that an access session has been cancelled by the
retailer. See Section 4.4.1.2.1, "cancelAccessSession()" for details. t_AccessSessionId identifies
which access session has been cancelled.

4.4.1.5.4. newSubscribedServicesInfo()

oneway void newSubscribedServicesInfo (
in TINAAccessCommonTypes::t_ServiceList services
);

This operation is used to inform the consumer that they have been subscribed to some new services.
(The consumer may have subscribed to the services through a service in this, or another access
session, or a consumer may have subscribed his users to a new service.)

t_ServiceList is a list of the services that the user has subscribed to. (It is a sequence of
t_ServiceInfo structures, see Section 4.3.4, "Service and Session Information".)

4.4.1.6 i_ConsumerSessionInfo Interface
// module TINARetConsumerAccess

interface i_ConsumerSessionInfo

: TINAUserAccess::i_UserSessionInfo

{
};

This interface allows the retailer to inform the consumer of changes of state in service sessions which
the consumer is involved in. Information operations are invoked whenever a change to the service
session affects the consumer, (i.e. the session is suspended), but not when the change does not
affect the consumer, (i.e. another party in the session leaves). This interface is informed of changes
in all service sessions involving the consumer, and not just those associated with this access session.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 62

This interface can be passed to the retailer, as part of setUserCtxt() on
i_RetailerNamedAccess interface. If the consumer does NOT wish to be informed of changes in
their service sessions, then this interface does NOT need to be passed in setUserCtxt(). (If it is not
passed, the consumer can still register this interface, using registerInterface() on
i_RetailerNamedAccess. Then the retailer will tell the consumer about service session changes,
until this interface is unregistered, or the current access session ends.)

If the consumer wishes to be informed of service session changes outside of an access session, then
they must register this interface, using registerInterfaceOutsideAccessSession() on
i_RetailerNamedAccess. The operations do not include a t_ProviderId, so if this interface is
registered for use outside an access session, a separate interface must be registered with each
retailer. Retailers can not share this interface, because t_SessionId is only unique within a retailer
for this consumer.

The operations described in the following sections are all inherited into this interface from the
i_UserSessionInfo interface, which supports the generic user-provider roles. No Ret RP specific
specialisations are defined for this interface.

The following operations are invoked when an action concerning this consumer is performed by the
service session. (They correspond to info operations invoked by the service session on a user
application. These info operations can be found the usage part of Ret RP, within the BasicFS (Section
5.5.2) and MultipartyFS (Section 5.5.5) feature sets.)

Only actions associated with this consumer produce info operations, i.e. consumer A receives a
endMyParticipationInfo() invocation if they end their participation in a session, but do not
receive any info if another consumer B ends their own participation. If B were to end A’s participation,
then A would receive the info.

All i_ConsumerSessionInfo interfaces receive info invocations when an action in a service
session occurs. Usually one of these interfaces will be registered through each access session. It
does not matter in which access session the service session is being used, all
i_ConsumerSessionInfo interfaces will receive an info invocation.

The following operation signatures are taken from the module TINAUserAccess. All unscoped types
need to scoped by TINAUserAccess:: when used by clients of the i_ConsumerSessionInfo
interface.

oneway void newSessionInfo (
in TINAAccessCommonTypes::t_SessionInfo session
);

• The consumer has started a new service session. session contains information
about the new session that has been started.

oneway void endSessionInfo (
in TINACommonTypes::t_SessionId sessionId

);

• A service session has been ended. sessionId identifies the ended session.

oneway void endMyParticipationInfo (
in TINACommonTypes::t_SessionId sessionId

);

 page 63

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

• The consumer’s participation in a service session has been ended. sessionId
identifies the session.

oneway void suspendSessionInfo (
in TINACommonTypes::t_SessionId sessionId
);

• A service session has been suspended. sessionId identifies the session.

oneway void suspendMyParticipationInfo (
in TINACommonTypes::t_SessionId sessionId
);

• The consumer’s participation in service session has been suspended. session-
Id identifies the session.

oneway void resumeSessionInfo (
in TINAAccessCommonTypes::t_SessionInfo session
);

• A suspended service session has been resumed. sessionId identifies the ses-
sion. (The consumer may or may not have re-joined the service session, depend-
ing on whether they or another consumer resumed the session). session con-
tains information about the session in which has been resumed.

oneway void resumeMyParticipationInfo (
in TINAAccessCommonTypes::t_SessionInfo session
);

• The consumer’s participation in service session has been resumed. session
contains information about the session in which the consumer has resumed their
participation.

oneway void joinSessionInfo (
in TINAAccessCommonTypes::t_SessionInfo session
);

• The consumer has joined a service session. session contains information about
the session that the consumer has joined.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 64

 page 65

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

4.4.2 Retailer Domain Interfaces

The following are the interfaces defined for the retailer domain of the Ret RP.

4.4.2.1 i_RetailerInitial Interface
// module TINARetRetailerInitial

interface i_RetailerInitial:

TINAProviderInitial::i_ProviderInitial

{
// Inherited operations shown in following subsections.

};

The i_RetailerInitial interface is a consumer’s initial contact point with the retailer. It allows
the consumer to request an access session is established between himself and the retailer.

This interface is returned when the consumer contacts the retailer. Ret-RP does not specify how the
consumer contacts the retailer. Some examples could be: through the DPE naming service; through
another type of directory service, such as a trader; through the TINA Broker business domain and Bkr
reference point; or through a URL and retailer home page. An interface of this type is returned to the
consumer as part of this contact the retailer scenario.

This interface inherits from i_ProviderInitial interface. It defines all of the operations which are
generic to access user-provider roles, and can be re-used in other inter-domain reference points.

This interface has a role in security, and may use DPE security for message encryption, and domain
authentication. That is message passing through the DPE is protected through encryption to varying,
agreed levels and that both domain’s credentials are exchanged for authentication. However, it does
not mandate that authentication and credential acquisition occurs through the DPE, and so provides
the i_RetailerAuthenticate interface to allow authetication of the user, outside of DPE security.
A reference to the i_RetailerAuthenticate interface is passed to the consumer domain by the
requestNamedAccess() and requestAnonymousAccess() operations if the user is not
authenicated by DPE security.

The following operation signatures are taken from the module TINAProviderInitial. All
unscoped types need to scoped by TINAProviderInitial:: when used by clients of the
i_RetailerInitial interface.

4.4.2.1.1. requestNamedAccess()

void requestNamedAccess (
in TINACommonTypes::t_UserId userId,
in TINACommonTypes::t_UserProperties userProperties,
out Object namedAccessIR, // type: i_ProviderNamedAccess
out TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out TINAAccessCommonTypes::t_AccessSessionId asId

) raises (
e_AccessNotPossible,
e_AuthenticationError,
TINAAccessCommonTypes::e_UserPropertiesError

);

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 66

The requestNamedAccess() allows the consumer to identify himself and request the establishment
of an access session with the retailer. The access session provides access to use his subscribed
services, etc, through a i_RetailerNamedAccess interface.

If CORBA security services are being used by both the consumer and retailer domains’ DPEs, then
both domain’s credentials and other authentication information will be exchanged through the DPE
before this operation is invoked on the retailer. This means a secure context for messages may have
already been set-up between the domains, and the identify of the consumer will have been
authenticated. In this case, an access session is established, and a reference to the
i_RetailerNamedAccess interface will be returned. Along with this, an
t_AccessSessionSecretId is returned, to be used in all requests on the new interface.

If CORBA security services are not being used, then no secure context for messages will have been
set-up, and DPE messages could potentially be intercepted and read by third-parties.

If the consumer has not already been authenticated, and the DPE is unable to perform the
authentication and establish an access session when this operation is invoked, then the operation will
fail. An e_AuthenticationError exception will be raised, which contains a reference to a
i_RetailerAuthenticate interface. This interface may be used to authenticate and set-up the
secure context. Then this operation can be invoked again to establish the access session.

userId identifies the consumer to the retailer. For details on the structure of the userId, see Section
3.3.2, "User Information".

userProperties are a sequence of user properties associated with this consumer. In general the
consumer would not send sensitive information to the retailer until an access session has been
established. However this parameter can be used to pass the consumer’s password to the retailer, if
both domains use DPE security to encrypt the messages. Security context, and other information
which is understood by the specific retailer can also be sent. For more details, see Section 3.3.2,
"User Information".

If the request is successful, and the consumer has been authenticated, then the following out
parameters are returned:

namedAccessIR is the reference to the i_RetailerNamedAccess interface, which the consumer
domain uses during the access session. NOTE: Although the IDL specifies the type (in text) as
i_ProviderNamedAccess, it is only to state the base reference type. An abstract interface
(reference) is never exported over a reference point. The requestNamedAccess() operation is
defined inside the i_ProviderNamedAccess interface which is later inherited into
i_RetailerNamedAccess and thus uses interface (references) of type i_Retailer<...>. The
reason for stating the base reference type in the IDL is to allow re-use in other reference point
definitions. For that matter, the namedAccessIR could just as well be of i_3ptyNamedAccess type.

asSecretId is an t_AccessSessionSecretId used whenever the consumer domain invokes an
operation on the namedAccessIR within this access session. The asSecretId identifies the
consumer domain from which invocations on namedAccessIR are made. This parameter should be
used during this access session only , and only by the consumer domain to which it was returned.
See Section 4.3.1, "Access Session Information".

asId is an t_AccessSessionId used to identify this access session. It is available to all the access
sessions for this consumer. It can be used identity this access session when making requests on any
i_RetailerNamedAccess interface between this consumer and retailer, e.g. using
listServiceSessions(), an t_AccessSessionId can be used to scope the list to those started
from a specific access session.

 page 67

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

If the request is unsuccessful, either the consumer has not been authenticated, or the authentication
has failed.

An e_AccessNotPossible exception is raised if the retailer is unable, or refuses to allow the
consumer domain to establish an access session with them.

An e_AuthenticationError exception is raised if the retailer has not authenticated the consumer.
This contains a list of authentication methods that can be used with the i_RetailerAuthenticate
interface. The interface is returned as either an interface reference, or a stringified object reference,
depending on the retailer. This reference is used to authenticate the consumer with the retailer. Once
the consumer has been successfully authenticated, (using one of the authentication methods
indicated), then the consumer can call this operation again to request the establishment of an access
session, and get a reference to the i_RetailerNamedAccess interface.

If an e_UserPropertiesError exception is raised, then there is a problem with the
userProperties. The errorCode provides the reason for the error.

4.4.2.1.2. requestAnonymousAccess()

void requestAnonymousAccess (
in TINACommonTypes::t_UserProperties userProperties,
out Object anonAccessIR, // type: i_ProviderAnonAccess
out TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out TINAAccessCommonTypes::t_AccessSessionId asId

) raises (
e_AccessNotPossible,
e_AuthenticationError
TINAAccessCommonTypes::e_UserPropertiesError

);

The requestAnonymousAccess() allows the consumer to request the establishment of an access
session with the retailer. It is used when the consumer does not have a user identity with the retailer.
This may be because they have not previously contacted this retailer, or they wish to remain
anonymous to this retailer.

This operation returns a reference to a i_RetailerAnonAccess interface, through which the
consumer can access services, and register as a named user with the retailer, if they wish to do so.

If CORBA security services are being used by both the consumer and retailer domains’ DPEs, then
both domain’s may exchange credentials through the DPE before this operation is invoked on the
retailer. This means a secure context for messages may have already been set-up between the
domains, but the credentials will not contain any information about the identity of the specific
consumer.

If CORBA security services are not being used, then no secure context for messages will have been
set-up, and DPE messages could potentially be intercepted and read by third-parties.

userProperties are a sequence of user properties associated with this consumer. They may
contain security context and other information which is understood by the specific retailer. For more
details, see Section 3.3.2, "User Information".

If the request is successful, an access session has been established with the consumer. The following
out parameters are returned:

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 68

anonAccessIR is the reference to the i_RetailerAnonAccess interface, which the consumer
domain uses during the access session.

asSecretId is an t_AccessSessionSecretId used whenever the consumer domain invokes an
operation on the namedAccessIR within this access session. The asSecretId identifies the
consumer domain from which invocations on namedAccessIR are made. This parameter should be
used during this access session only , and only by the consumer domain to which it was returned.
See Section 4.3.1, "Access Session Information".

asId is an t_AccessSessionId used to identify this access session. It is available to all the access
sessions for this consumer. It can be used identity this access session when making requests on any
i_RetailerNamedAccess interface in an access session between this consumer and retailer. (In
general, anonymous users can only have one access session with the retailer, as each access
session with each anonymous user must be treated separately. Since the consumers are anonymous
to the retailer, each consumer appears to be a separate individual, even if they are, in fact, the same
person.)

If the request is unsuccessful, either the consumer has not been authenticated, or the authentication
has failed.

An e_AccessNotPossible exception is raised if the retailer is unable, or refuses to allow the
consumer domain to establish an access session with them.

An e_AuthenticationError exception is raised if the retailer requires that the consumer domain
is authenticated. This contains a list of authentication methods that can be used with the
i_RetailerAuthenticate interface. (Authentication methods may authenticate the domains only,
and not the specific consumer). The interface is returned as either an interface reference, or a
stringified object reference, depending on the retailer. This reference is used to authenticate the
consumer domain with the retailer. Once the consumer domain has been successfully authenticated,
(using one of the authentication methods indicated), then the consumer can call this operation again
to request the establishment of an access session, and get a reference to the
i_RetailerAnonAccess interface.

If an e_UserPropertiesError exception is raised, then there is a problem with the
userProperties. The errorCode provides the reason for the error.

4.4.2.2 i_RetailerAuthenticate Interface
// module TINARetRetailerInitial

interface i_RetailerAuthenticate:

TINAProviderInitial::i_ProviderAuthenticate

{
// Inherited operations shown in following subsections.

};

The i_RetailerAuthenticate interface allows the consumer and the retailer to be authenticated.
It provides a generic mechanism for authentication which can be used to support a number of different
authentication protocols.

The purpose of this interface is to verify to the consumer and retailer that each domain is interacting
with the domain they have been told they are talking to. This mutual authentication of both domains.
Other authentication schemes which authenticate only one of the domains is also possible using this

 page 69

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

interface. The interface provides a set of generic operations, that can be used in authentication.
However, the operations only provide a mechanism for ‘transporting’ authentication information. Both
domains must know and use a common authentication protocol, and perform this protocol using these
operations in order to authenticate the domains. Ret-RP does not specify any particular
authentication protocol. The getAuthenticationMethods() operation on this interface can be
used to determine the authentication protocols supported by the retailer, and a protocol chosen for
authentication. The authentication protocol may, or may not identify the individual consumer. It may
only identy and authenticate the consumer’s domain.

The following operation signatures are taken from the module TINAProviderInitial. All
unscoped types need to scoped by TINAProviderInitial:: when used by clients of the
i_RetailerInitial interface.

4.4.2.2.1. getAuthenticationMethods()

void getAuthenticationMethods {
in t_AuthMethodSearchProperties desiredProperties,
out t_AuthMethodDescList authMethods

) raises (
e_AuthMethodPropertiesError,
TINACommonTypes::e_ListError

);

The getAuthenticationMethods() allows the consumer to ask the retailer for a list of the
authentication methods supported. A particular authentication method can then be chosen by the
consumer to use in authenticate().

desiredProperties is a list containing the properties that the consumer wishes the authentication
method to support. (See t_MatchProperties in Section 3.3.1). For example, the consumer can
request that the authentication methods returned support mutual authentication, or retailer
authentication only. Currently no specific property names and values have been defined for
t_AuthMethodSearchProperties, and so its use is retailer specific.

authMethods is a list of authentication methods which match the desiredProperties, and which
the retailer supports. The t_AuthMethodDesc structure contains the authentication method
identifier, and a list of properties of the method. It is assumed that both the consumer and retailer both
know the protocol to follow in order to use the authentication method defined.

The authMethods list may be empty. This may occur if the retailer does not support any methods
matching the properties requested, or if the retailer does not wish to allow the consumer to
authenticate using a method with the desired properties. e.g. if the consumer requests a method for
retailer only authentication, and the retailer wishes to have mutual authentication.

If the desiredProperties parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not
recognised can be ignored, if desiredProperties requires that only some, or none of the
properties are matched.)

If the authMethods list is unavailable, then raise an e_ListError exception with the
ListUnavailable error code.

4.4.2.2.2. authenticate()

void authenticate(
in t_AuthMethod authMethod,

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 70

in string securityName,
in t_opaque authenData,
in t_opaque privAttribReq,
out t_opaque privAttrib,
out t_opaque continuationData,
out t_opaque authSpecificData,
out t_AuthenticationStatus authStatus

) raises (
e_AuthMethodNotSupported

);

authenticate() allows the consumer to select an authentication method, pass authentication data
to the retailer.

Once the consumer domain has determined an authentication method with the retailer, this operation
is used to transport authentication data, and other credentials to the retailer. This data is used to
perform the type of authentication appropriate to the authentication method, (this may be mutual
authentication, or authentication of the consumer/retailer domain only, etc.).

The retailer then returns its authentication data (if required), challenge data for the consumer to
respond using continueAuthentication() (if required), and the requested credentials (if
possible). If further authentication protocol is required before credentials are returned then these can
be returned by continueAuthentication().

The following parameters are sent by the consumer to the retailer:

authMethod is used to identify the authentication method proposed by the consumer. It affects the
composition and generation method of the other opaque data parameters. Currently no specific
authentication methods values have been defined for t_AuthMethod, and so its use is retailer
specific.

securityName is the name assumed by consumer for authentication. It may be an empty string
according to the authentication method used.

authenData is opaque data containing consumer attributes to be authenticated. Its format depends
upon the authentication method used.

privAttribReq is opaque data which is used to specify the rights and privileges which the
consumer domain requests from the retailer domain. This data may correspond to levels of security
to access different areas of the retailer domain. Its format depends upon the authentication method
used.

The following parameters are returned by the retailer to the consumer:

privAttrib is opaque data which defines the privilege attributes granted to the consumer, based
upon the privAttribReq, and their authentication data. Its format depends upon the authentication
method used.

continuationData is opaque data which is used to challenge the consumer. The consumer has
not yet been authenticated, and must process this data and return the result to the retailer using the
continueAuthentication() operation. Its format depends upon the authentication method used.
This parameter may be ignored if the value of authStatus is not SecAuthContinue.

authSpecificData is opaque data which is specific to the authentication method used.

 page 71

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

authStatus identifies the status of the authentication process. It is an enumerated type with the
following values:

• SecAuthSuccess
Authentication has completed successfully. No (more) calls to
continueAuthentication() are necessary. The consumer can call
requestNamedAccess() on i_RetailerInitial interface to gain a reference to the
i_RetailerNamedAccess interface. (Or if they wish to be an anonymous user, call
requestAnonymousAccess() for a i_RetailerAnonAccessinterface.)

• SecAuthFailure
Authentication has completed unsuccessfully. The consumer has not been authenticated,
and will not be able to establish an access session. Calls to requestNamedAccess()
will continue to raise an e_AccessNotPossible, or e_AuthenticationError
exception.

• SecAuthContinue
Authentication is continuing, and the consumer must reply to this result by calling
continueAuthentication().

• SecAuthExpired
Authentication has timed out. The consumer did not make this invocation of
continueAuthentication() quickly enough, after the reply from authenticate(), or
the previous call to continueAuthentication(). Authentication must be started again
from the beginning by calling authenticate(). (This enumeration should not be
returned by authenticate().

4.4.2.2.3. continueAuthentication()

void continueAuthentication{
in t_opaque responseData,
out t_opaque privAttrib,
out t_opaque continuationData,
out t_opaque authSpecificData,
out t_AuthenticationStatus authStatus

);

continueAuthentication() allows the consumer to continue an authentication protocol, started
using authenticate(), and pass authentication data to the retailer.

This operation should be invoked by the consumer if the authStatus returned from
authenticate(), or a previous call to continueAuthentication(), is SecAuthContinue. The
authStatus is used by both operations to indicate if the consumer needs to make another call to
this operation. Parameters returned by this operation must be processed by the consumer according
to the authentication method, and the results provided as in parameters to the subsequent call to this
operation.

responseData is opaque data from the consumer. This data has been generated by the consumer
according to the authentication method, based on the continuationData returned by the previous
call to authenticate() or continueAuthentication(). Precisely how this data is generated, and
formatted is specific to the authentication method used.

continuationData is opaque data which is used to challenge the consumer. The consumer has
not yet been authenticated, and must process this data and return the result to the retailer using the
continueAuthentication() operation. Its format depends upon the authentication method used.
This parameter may be ignored if the value of authStatus is not SecAuthContinue.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 72

authSpecificData is opaque data which is specific to the authentication method used.

authStatus identifies the status of the authentication process. It has the same values as for
authenticate().

4.4.2.3 i_RetailerAccess Interface
// module TINAProviderAccess

interface i_RetailerAccess

{
};

i_RetailerAccess interface is an abstract interface, used to inherit common operations in to the
i_RetailerNamedAccess, and i_RetailerAnonAccess interfaces.

The purpose of this interface is for inheritance, as described above. It should not be available over
the Ret RP. No instances of this interface type should be created.

Currently no operations are defined for this interface. It will be contain operations which are shared
between the i_RetailerNamedAccess, and i_RetailerAnonAccess interfaces. Currently all
operations are defined on the i_RetailerNamedAccess interface, and no operations have been
identified for the i_RetailerAnonAccess interface.

4.4.2.4 i_RetailerNamedAccess Interface
// module TINAProviderAccess

interface i_RetailerNamedAccess

: i_ProviderNamedAccess, i_RetailerAccess

{
// Inherited operations shown in following subsections.
};

i_RetailerNamedAccess interface allows a known consumer access to his subscribed services.
The consumer uses it for all operations within an access session with the retailer.

This interface is returned when the consumer has been authenticated by the retailer and an access
session has been established. It is returned by calling requestNamedAccess() on the
i_RetailerInitial interface.

This interface inherits from i_ProviderNamedAccess and i_RetailerAccess interfaces.
i_ProviderNamedAccess defines all of the operations which are generic to access user-provider
roles, and can be re-used in other inter-domain reference points. All the operations on this interface
are inherited from there. The i_RetailerAccess interface is currently blank. It will be contain
operations which are shared between the i_RetailerAnonAccess interface, and this interface,
that are specific to the Ret RP.

The following operation signatures are taken from the module TINAProviderAccess. All unscoped
types need to scoped by TINAProviderAccess:: when used by clients of the
i_RetailerAccess interface.

 page 73

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

4.4.2.4.1. setUserCtxt()

void setUserCtxt (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in t_UserCtxt userCtxt

) raises (
TINAAccessCommonTypes::e_AccessError,
e_UserCtxtError

);

The setUserCtxt() allows the consumer to inform the retailer about interfaces in the consumer
domain, and other consumer domain information. (e.g. user applications available in the consumer
domain, operating system used, etc).

userCtxt is a structure containing consumer domain configuration information and interfaces.

This operation should be called immediately after receiving the reference to this interface. If this
operation has not been called successfully, subsequent operations may raise an e_AccessError
exception with a UserCtxtNotSet error code.

If there is a problem with userCtxt, then e_UserCtxtError should be raised with the appropriate
error code.

4.4.2.4.2. getUserCtxt()

void getUserCtxt (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_UserCtxtName ctxtName,
out t_UserCtxt userCtxt

) raises (
TINAAccessCommonTypes::e_AccessError,
e_UserCtxtError

);

This operation allows the consumer to retrieve information about user contexts that have been
registered with the retailer.

ctxtName is the name of the context that the consumer wishes to retrieve user context information
about. (ctxtName is set by the consumer when registering a user context, and is the consumer term
for the context, e.g. “Home”, “Work”, “Mum’s House”, etc.

userCtxt is a structure containing consumer domain configuration information and interfaces.

4.4.2.4.3. getUserCtxts()

void getUserCtxts (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in t_SpecifiedUserCtxt ctxt,
out t_UserCtxtList userCtxts

) raises (
TINAAccessCommonTypes::e_AccessError,
e_UserCtxtError,
TINACommonTypes::e_ListError

);

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 74

4.4.2.4.4. listAccessSessions()

void listAccessSessions (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out TINAAccessCommonTypes::t_AccessSessionList asList

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_ListError

);

The listAccessSessions() returns a list of access sessions. The list contains all the access
sessions the consumer currently established with this retailer. It is a sequence of
t_AccessSessionInfo structures, which consist of the t_AccessSessionId,
t_UserCtxtName, and t_AccessSessionProperties. The last of these is a t_PropertyList.
Currently no specific property names and values have been defined for
t_AccessSessionProperties, and so its use is retailer specific.

The information returned by this operation can be used by the consumer to found out which other
access sessions are currently established; end some of those access sessions (see
endAccessSession()); list the service sessions of those access sessions (see
listServiceSessions()); and be informed of changes to those access sessions and service
sessions (see i_ConsumerAccessSessionInfo and i_ConsumerSessionInfo interfaces).

If the asList list is unavailable, because the consumer’s access sessions are not available, then the
operation should raise an e_ListError exception with the ListUnavailable error code.

4.4.2.4.5. endAccessSessions()

void endAccessSession(
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINAAccessCommonTypes::t_SpecifiedAccessSession as,
in t_EndAccessSessionOption option

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_SpecifiedAccessSessionError,
e_EndAccessSessionError

);

The endAccessSession() allows the consumer to end an access session.

The operation can end the current access session; a specified access session; or all access sessions
(including the current one), through the use of the t_SpecifiedAccessSession parameter.

t_EndAccessSessionOptions allows the consumer to choose the actions the retailer should take,
if there are active or suspended service sessions, when the access session ends. The actions are
only used as part of this invocation. The retailer does not remember the action chosen. (Retailers may
define a default policy for service sessions when a consumer ends the access session in which they
were created, or allow the consumer to define the policy. Currently, Ret RP does not support the
definition of such a policy by the consumer.)

 page 75

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

If as is wrongly formatted, or provides an invalid access session id, then the
e_SpecifiedAccessSessionError exception should be raised.

e_EndAccessSessionError is raised if option is invalid, or service sessions remain active, or
suspended, which are not allowed by the retailer. (A consumer may end an access session, leaving
active or suspended sessions if this is allowed as a policy of the retailer for this consumer.)

4.4.2.4.6. getUserInfo()

void getUserInfo(
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out TINAAccessCommonTypes::t_UserInfo userInfo

) raises (
TINAAccessCommonTypes::e_AccessError

);

The getUserInfo() allows the consumer to request information about himself.

This operation returns a t_UserInfo structure as an out parameter. This contains the consumer’s
t_UserId, their name, and a list of user properties. Currently no specific property names and values
have been defined for t_UserProperties, and so its use is retailer specific.

4.4.2.4.7. listSubscribedServices()

void listSubscribedServices (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in t_SubscribedServiceProperties desiredProperties,
out TINAAccessCommonTypes::t_ServiceList services

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

The listSubscribedServices() returns a list of the services to which the consumer has
previously been subscribed.

The desiredProperties parameter can be used to scope the list of subscribed services.
t_SubscribedServiceProperties identifies the properties which the suscribed services must
match. It also defines whether a subscribed service must match one, all or none of the properties.
(See t_MatchProperties in Section 3.3.1). Currently no specific property names and values have
been defined for t_SubscribedServiceProperties, and so its use is retailer specific.

The list of services subscribed to by the consumer, and matching the desiredProperties, is
returned in the t_ServiceList. This is a sequence of t_ServiceInfo structures, which contain
the t_ServiceId, t_UserServiceName (consumers name for the service), and a sequence of
service properties, t_ServiceProperties. Currently no specific property names and values have
been defined for t_ServiceProperties, and so its use is retailer specific.

If the desiredProperties parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not
recognised can be ignored, if desiredProperties requires that only some, or none of the
properties are matched.)

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 76

If the services list is unavailable, because the retailer’s services are not available, then the
operation should raise an e_ListError exception with the ListUnavailable error code.

4.4.2.4.8. discoverServices()

void discoverServices(
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in t_DiscoverServiceProperties desiredProperties,
in unsigned long howMany,
out TINAAccessCommonTypes::t_ServiceList services,
out Object iteratorIR // type: i_DiscoverServicesIterator

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

The discoverServices() returns a list of the services available from this retailer.

This operation is used to discover the services provided by the retailer, for use by the consumer. It
can be used to retrieve information on all of the services provided, or be scoped by the
desiredProperties parameter. (See t_MatchProperties in Section 3.3.1).

The list of retailer services matching the desiredProperties is returned in services. This is a
sequence of t_ServiceInfo structures, which contain the t_ServiceId, t_UserServiceName
(consumers name for the service), and a sequence of service properties, t_ServiceProperties.
Currently no specific property names and values have been defined for t_ServiceProperties,
and so its use is retailer specific.

The howMany parameter defines the number of t_ServiceInfo structures to return in the
services parameter. The length of services will not exceed this number. Any remaining services
which match the desiredProperties, but which aren’t included in services are accessible
through iteratorIR, the i_DiscoverServicesIterator interface. If there are no remaining
services, then iteratorIR should be null.

If the desiredProperties parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not
recognised can be ignored, if desiredProperties requires that only some, or none of the
properties are matched.)

If the services list is unavailable, because the retailer’s services are not available, then the
operation should raise an e_ListError exception with the ListUnavailable error code.

4.4.2.4.9. getServiceInfo()

void getServiceInfo (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINAAccessCommonTypes::t_ServiceId serviceId,
in TINAProviderAccess::t_SubscribedServiceProperties

desiredProperties,
out TINAAccessCommonTypes::t_ServiceProperties serviceProperties

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAProviderAccess::e_ServiceError

);

 page 77

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

The getServiceInfo() returns information on a specific service, identified by the serviceId. The
desiredProperties list can scope the information which is requested to be returned.

4.4.2.4.10. listServiceSessions()

void listServiceSessions (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINAAccessCommonTypes::t_SpecifiedAccessSession as,
in t_SessionSearchProperties desiredProperties,
out TINAAccessCommonTypes::t_SessionList sessions

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_SpecifiedAccessSessionError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

The listServiceSessions() returns a list of the service sessions, which the consumer is
involved in. This includes active and suspended sessions.

The as parameter scopes the list of sessions by the access session in which they are used. It can
identify the current access session; a list of access sessions; or all access sessions. (A session is
associated with an access session if it is being used within that access session, or it has been
suspended (or participation suspended), and was being used within that access session when it was
suspended).

The desiredProperties parameter can be used to scope the list of sessions.
t_SessionSearchProperties identifies the properties which the sessions must match. It also
defines whether a session must match one, all or none of the properties. (See t_MatchProperties
in Section 3.3.1). The following property names and values have been defined for
t_SessionSearchProperties:

• name: “SessionState”
value: t_SessionState
If a property in t_SessionSearchProperti es has the name “SessionState” , then
the session must have the same t_SessionState as given in the propery value.

• name: “UserSessionState”
value: t_UserSessionState
If a property in t_SessionSearchPrope r ties has the name “UserSessionState” ,
then the session must have the same t_UserSessionState as given in the propery
value.

Other retailer specific properties can also be defined in desiredProperties .

The list of sessions matching the desiredProperties and the accessSessio n are returned in
sessio ns . This is a sequence of t_SessionInfo structures, which define the t_SessionId ,
t_Part i cipantSecretId , t_PartyId , t_Use r SessionState , t_InterfaceList ,
t_Sess i onModelList , and t_Se ssionProperties of the session.

If as is wrongly formatted, or provides an invalid access session id, then the
e_Spec i fiedAccessSessionError exception should be raised.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 78

If the desiredProperties parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not
recognised can be ignored, if desiredProperties requires that only some, or none of the
properties are matched.)

If the sessions list is unavailable, because the consumer’s sessions are not known, then the
operation should raise an e_ListError exception with the ListUnavailable error code.

4.4.2.4.11. getSessionModels()

void getSessionModels (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_SessionModelList sessionModels

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
TINACommonTypes::e_ListError

);

The getSessionModels() returns a list of the session models supported by a service session. It
can be used on active and suspended sessions.

sessionId identifies the session whose session models are retrieved.

sessionModels are the session models supported by the session. It is a sequence of
t_SessionModel structures, which contain the name of the session model, and a list of properties
for that session model. For the “TINA Session Model”, a number of properties have been defined, (see
??Sesscion Model section in the Usage part of Ret RP??) including a list of the feature sets supported
by the session.

e_SessionError is raised if the sessionId is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to return sessionModels.

If the sessionModels list is unavailable, because the session models supported by the session are
not known, then the operation should raise an e_ListError exception with the ListUnavailable
error code.

4.4.2.4.12. getSessionInterfaceTypes()

void getSessionInterfaceTypes (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_InterfaceTypeList itfTypes

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
TINACommonTypes::e_ListError

);

The getSessionInterfaceTypes() returns a list of the interface types supported by a service
session. It can be used on active and suspended sessions.

sessionId identifies the session whose interface types are retrieved.

 page 79

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

itfTypes are all the interface types supported by the session. It is a sequence of
t_InterfaceTypeName’s, which are strings representing the interface types supported by the
session. itfTypes should include all the interface types that can be supported by the session.

e_SessionError is raised if the sessionId is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to return itfTypes.

If the itfTypes list is unavailable, because the interface types supported by the session are not
known, then the operation should raise an e_ListError exception with the ListUnavailable
error code.

4.4.2.4.13. getSessionInterface()

void getSessionInterface (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_InterfaceTypeName itfType,
out TINACommonTypes::t_InterfaceStruct itf

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
TINACommonTypes::e_InterfacesError

);

The getSessionInterface() returns an interface, of the type requested, supported by a service
session. It can be used on active sessions.

sessionId identifies the session whose interface are retrieved.

itfType identifies the interface type of the interface reference to be returned.

itf is returned by this operation. It contains the t_InterfaceTypeName, an interface reference
(t_IntRef) and the interface properties (t_InterfaceProperties) of the interface type
requested.

e_SessionError is raised if the sessionId is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to return itfTypes.

If the session does not support interfaces of itfType, then the operation should raise the
e_SessionInterfacesError, with the InvalidSessionInterfaceType error code.

4.4.2.4.14. getSessionInterfaces()

void getSessionInterfaces (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_InterfaceList itfs

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
TINACommonTypes::e_ListError

);

The getSessionInterfaces() returns a list of all the interfaces supported by a service session.
It can be used on active sessions only.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 80

sessionId identifies the session whose interface types are retrieved.

itfs is returned by this operation. It is a sequence of t_InterfaceStruct structures which
contain the t_InterfaceTypeName, an interface reference (t_IntRef) and the interface
properties (t_InterfaceProperties) of each interface.

e_SessionError is raised if the sessionId is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to return itfTypes.

If the itfs list is unavailable, because the interface supported by the session are not known, then
the operation should raise an e_ListError exception with the ListUnavailable error code.

4.4.2.4.15. listSessionInvitations()

void listSessionInvitations (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
out TINAAccessCommonTypes::t_InvitationList invitations

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_ListError

);

The listSessionInvitations() returns a list of the invitations to join a service session, which
have been sent to the consumer through this retailer.

invitations is returned by this operation. It is a sequence of t_SessionInvitation
structures:

struct t_SessionInvitation {
t_InvitationId id;
t_UserId inviteeId;
t_SessionPurpose purpose;
t_InvitationReason reason;
t_InvitationOrigin origin;

};

id identifies the particular invitation. It uniquely identifies this invitation from others for this consumer
at this retailer. (Other consumers with this retailer may have invitations with the same id). This id is
used in joinSessionWithInvitation() to join the session refered to by this invitation.

inviteeId is the user id of this consumer. (It is not necessary here, as the user id is known through
the access session. It is included in this structure to allow invitations to be deliverable outside of an
access session, and allow the receiptant to check that the invitation was for them.)

purpose is a string containing the purpose of the session.

reason is a string containing the reason this consumer has been invited to join this session.

origin is a structure containing the userId of the consumer that requested that the invitation was
sent to this consumer, and their sessionId for the session that this consumer has been invited to join.
(The sessionId is provided so that if the invited consumer contacts the inviting consumer, he is able
to tell which session the invited consumer is refering to).

If the invitation list is not available, then the operation should raise the e_ListError, with the
ListUnavailable error code.

 page 81

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

4.4.2.4.16. listSessionAnnouncements()

void listSessionAnnouncements (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in t_AnnouncementSearchProperties desiredProperties,
out TINACommonTypes::t_AnnouncementList announcements

) raises (
TINAAccessCommonTypes::e_AccessError,
TINACommonTypes::e_PropertyError,
TINACommonTypes::e_ListError

);

The listSessionAnnouncements() returns a list of the session announcements, which have
been announced through this retailer.

Sessions can be announced due to requests from session participants (see Multiparty Feature Set),
or due to properties of the session intialisation, service factory or policies of the user starting the
service. The process by which sessions are announced is not defined by Ret-RP. However, this
operation is provided in order to allow a consumer to request a list of sessions which have been
announced. (Announcements may be scoped in order to restrict the distribution of the announcement
to particular groups). This operation returns a list of announcements which match the
desiredProperties, as specified by the consumer.

The desiredProperties parameter can be used to scope the list of announcements.
t_AnnouncementSearchProperties identifies the properties which the announcements must
match. (See t_MatchProperties in Section 3.3.1). Currently no specific property names and
values have been defined for t_AnnouncementSearchProperties, and so its use is retailer
specific.

announcements is a list of announcements available to the consumer, and matching the
desiredProperties. This is a sequence of t_SessionAnnouncement structures, which
contain the properties od the announcement, t_AnnouncementProperties. Currently no specific
property names and values have been defined for t_AnnouncementProperties, and so its use is
retailer specific.

If the desiredProperties parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not
recognised can be ignored, if desiredProperties requires that only some, or none of the
properties are matched.)

If an announcement list is not available, then the operation should raise the e_ListError, with the
ListUnavailable error code.

4.4.2.4.17. startService()

void startService (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINAAccessCommonTypes::t_ServiceId serviceId,
in t_ApplicationInfo app,
in TINACommonTypes::t_SessionModelReq sessionModelReq,
in t_StartServiceUAProperties uaProperties,
in t_StartServiceSSProperties ssProperties,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 82

e_ServiceError,
e_ApplicationInfoError,
TINACommonTypes::e_SessionModelError,
e_StartServiceUAPropertyError,
e_StartServiceSSPropertyError

);

The startService() starts a service session for the consumer.

serviceId is the service type identifier, which indicates the service type of the session which the
consumer wishes to start.

app is a structure containing information on the application, which will be used to interact with the
service session. It includes: application name, version, serial number, property list, etc. It also
includes: a list of interfaces supported by the application, which can optionally include references to
some of those interfaces if they are available; a list of session models, and feature sets, again
including interface references if appropriate; and a stream interface description list.

sessionModelReq defines the session models and feature sets that the consumer domain wishes
the session to have. It allows the consumer to request that some, all or none of the session models
are supported by the session.

uaProperties is a property list that will be interpreted by the retailer domain before the service
session is started. No property names or values are defined, so it use it retailer-specific. Its purpose
is to allow the consumer to define some preferences or other constraints that they wish to be applied
to this service session only, and that the retailer needs to know before the session is started. (These
properties may affect the choice of service factory for the session.)

ssProperties is a property list that will be interpreted by the service session, as soon as it has
started. (i.e. before the references to the session are returned to the consumer domain). No property
names or values are defined. Its use is entirely service specific, and only the service session is
intended to interpret the properties given. (This parameter allows the consumer domain/application
to pass service specific information to the service session, which is not intended for the retailer
domain to interpret.)

sessionInfo is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See Section 4.3.4).

The following are exceptions which are raised by this operation:

e_ServiceError is raised if the serviceId is invalid/unknown by the retailer, or if a service
session cannot be created.

e_ApplicationInfoError is raised if there are unknown or invalid values for
t_ApplicationInfo, or if the application is incompatable with the type of service being started.

e_SessionModelError is raised if invalid session models and/or feature sets are required for the
service session.

e_StartServiceUAPropertyError is raised if there is an error in the properties for
uaProperties. It has the same properties error codes as e_PropertyError. (See Section 3.3.1
for more details.)

 page 83

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

e_StartServiceSSPropertyError is raised if there is an error in the properties of
ssProperties. It has the same properties error codes as e_PropertyError.

4.4.2.4.18. endSession()

void endSession (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError

);

The endSession() ends a service session for the consumer. It can be used to end sessions which
the consumer is currently active in, and sessions which have been suspended, or the consumer has
suspended his participation.

sessionId is the identifier of the session to be ended.

The exception e_SessionError is raised if sessionId is invalid; or the session refuses to end
because of the user’s session state; or the user does not have permission.

4.4.2.4.19. endMyParticipation()

void endMyParticipation (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError

);

The endMyParticipation() ends the consumer’s participation in a service session. It can be
used on a session which the consumer is currently active in, or which has been suspended, or the
consumer has suspended his participation.

sessionId is the identifier of the session to end this user’s participation.

The exception e_SessionError is raised if sessionId is invalid; or the session refuses to end this
user’s participation because of their session state; or the user does not have permission.

4.4.2.4.20. suspendSession()

void suspendSession (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError

);

The suspendSession() suspends a service session for the consumer. It can be used to suspend
sessions which the consumer is currently active in, and sessions which the consumer has already
suspended his participation.

sessionId is the identifier of the session to suspend.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 84

The exception e_SessionError is raised if sessionId is invalid; or the session refuses to suspend
because of this user’s session state; or the user does not have permission.

4.4.2.4.21. suspendMyParticipation()

void suspendMyParticipation (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError

);

The suspendMyParticipation() suspends the consumer’s participation in a service session. It
can be used on a session which the consumer is currently active in.

sessionId is the identifier of the session to suspend this user’s participation.

The exception e_SessionError is raised if sessionId is invalid; or the session refuses to suspend
this user’s participation because of their session state; or the user does not have permission.

4.4.2.4.22. resumeSession()

void resumeSession (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINACommonTypes::t_SessionId sessionId,
in t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
e_ApplicationInfoError

);

The resumeSession() resumes a service session. It is used on a session which is suspended.

sessionId is the identifier of the session to resume.

app is a structure containing information on the application, which will be used to interact with the
service session. This application may be different to the user’s original application that they were
using when the session was suspended .

sessionInfo is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See Section 4.3.4).

The exception e_SessionError is raised if sessionId is invalid; or the session refuses to resume
because of the user’s session state; or the user does not have permission.

The exception e_ApplicationInfoError is raised if there are unknown or invalid values for
t_ApplicationInfo, or if the application is incompatable with the type of service being resumed.

4.4.2.4.23. resumeMyParticipation()

void resumeMyParticipation (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,

 page 85

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

in TINACommonTypes::t_SessionId sessionId,
in t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
e_ApplicationInfoError

);

The resumeMyParticipation() resumes the consumer’s participation in a service session. It can
be used on a session which the consumer has previously suspended his participation from.

sessionId is the identifier of the session to resume the user’s participation.

app is a structure containing information on the application, which will be used to interact with the
service session. This application may be different to the user’s original application that they were
using when they suspended their participation.

sessionInfo is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See Section 4.3.4).

The exception e_SessionError is raised if sessionId is invalid; or the session refuses to resume
the user’s participation because of their session state; or they do not have permission.

The exception e_ApplicationInfoError is raised if there are unknown or invalid values for
t_ApplicationInfo, or if the application is incompatable with the type of service being resumed.

4.4.2.4.24. joinSessionWithInvitation()

void joinSessionWithInvitation (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINAAccessCommonTypes::t_InvitationId invitationId,
in t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
TINAAccessCommonTypes::e_InvitationError,
e_ApplicationInfoError

);

The joinSessionWithInvitation() allows the consumer to join an existing service session, to
which the consumer has received an invitation.

invitationId is the identifier of the invitation. The invitation, kept by the retailer, contains sufficient
information for retailer to contact the service session, and request that the consumer be allowed to
join the session.

app is a structure containing information on the application, which will be used to interact with the
service session.

sessionInfo is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See Section 4.3.4).

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 86

The exception e_SessionError is raised if the session refuses to allow the consumer to join it.

The exception e_InvitationError is raised if the invitationId is invalid.

The exception e_ApplicationInfoError is raised if there are unknown or invalid values for
t_ApplicationInfo, or if the application is incompatable with the type of service being joined.

4.4.2.4.25. joinSessionWithAnnouncement()

void joinSessionWithAnnouncement (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINAAccessCommonTypes::t_AnnouncementId announcementId,
in t_ApplicationInfo app,
out TINAAccessCommonTypes::t_SessionInfo sessionInfo

) raises (
TINAAccessCommonTypes::e_AccessError,
e_SessionError,
e_AnnouncementError,
e_ApplicationInfoError

);

The joinSessionWithAnnouncement() allows the consumer to join an existing service session,
to which the consumer has discovered an announcement. Session announcements may be gained
in a number of ways (not described in Ret RP), including through a specialised service session.

announcementId is the identifier of the announcement. The announcement, kept by the retailer,
contains sufficient information for retailer to contact the service session, and request that the
consumer be allowed to join the session.

app is a structure containing information on the application, which will be used to interact with the
service session.

sessionInfo is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See Section 4.3.4).

The exception e_SessionError is raised if the session refuses to allow the consumer to join it.

The exception e_AnnouncementError is raised if the announcementId is invalid.

The exception e_ApplicationInfoError is raised if there are unknown or invalid values for
t_ApplicationInfo, or if the application is incompatable with the type of service being joined.

4.4.2.4.26. replyToInvitation()

void replyToInvitation (
in TINAAccessCommonTypes::t_AccessSessionSecretId asSecretId,
in TINAAccessCommonTypes::t_InvitationId invitationId,
in TINACommonTypes::t_InvitationReply reply

) raises (
TINAAccessCommonTypes::e_AccessError,
TINAAccessCommonTypes::e_InvitationError,
TINACommonTypes::e_InvitationReplyError

);

 page 87

Access Part Ret Reference Point Specifications
Version 1.1; 30 April 1999

The replyToInvitation() allows the consumer to reply to an invitation, which the consumer has
received. It allows the consumer to inform the retailer of his intention to join, or not, the session, or of
a different location to look for the consumer. (Joining the session cannot be accomplished through
this operation.)

invitationId is the identifier of the invitation.

reply is a structure which contains the information about the consumer’s reply. (For details, see
Section 3.3.5, "Invitations and Announcements").

The exception e_InvitationError is raised if the invitationId is invalid.

The exception e_InvitationReplyError is raised if there is an error in reply.

4.4.2.5 i_RetailerAnonAccess Interface

interface i_RetailerAnonAccess

: i_RetailerAccess

{
// No operations defined at present
};

i_RetailerAnonAccess interface allows an anonymous consumer access to services. The
consumer uses it for all operations within an access session with the retailer.

This interface is returned when the consumer has established an anonymous access session with the
retailer. It is returned by calling requestAnonAccess() on the i_RetailerInitial interface.

This interface inherits from i_RetailerAccess interface. The i_RetailerAccess interface is
currently blank. It will be contain operations which are shared between the
i_RetailerNamedAccess interface, and this interface. This means that the operations offered by
this interface will change in the future.

4.4.2.6 i_DiscoverServicesIterator Interface

interface i_DiscoverServicesIterator

{
// Operations defined in the following subsections
};

This interface returned by the discoverServices() operation on the i_RetailerNamedAccess
interface. It is used to access remaining services, which were not returned by the
discoverServices() operation.

The discoverServices() operation returns a list of services which matched some properties
defined by the consumer. This interface allows the consumer to access the remaining services which
were not returned by the call to discoverServices(). This is necessary because the list of
services matching the properties could be very large, and include large amounts of information,
potentially too much for the consumer’s application to handle.

Ret Reference Point Specifications Access Part
Version 1.1; 30 April 1999

 page 88

Using the discoverServices() operation, following by possibly multiple calls on the nextN()
operation on this interface, allows the consumer to access all of the services matching the properties,
without having to receive all of them at once

4.4.2.6.1. maxLeft()

void maxLeft (
out unsigned long n

) raises (
e_UnknownDiscoverServicesMaxLeft

);

The maxLeft() returns the maximum number of services which will be returned through this
interface. These services can be accessed through multiple calls on the nextN() operation.

maxLeft() raises the if it is not possible for the retailer to determine the number of maximum number
of services which could be returned.

4.4.2.6.2. nextN()

void nextN (
in unsigned long n,
out TINAAccessCommonTypes::t_ServiceList services,
out boolean moreLeft

) raises (
TINACommonTypes::e_ListError

);

The nextN() allows the consumer to access the remaing services which were not returned by the
discoverServices() operation, or by previous calls to this operation. These services can be
accessed through multiple calls on the nextN() operation.

The n parameter determines the maximum number of services to be returned. The length of the
services list will not exceed n.

The remaining services are returned as the t_ServiceList services. This is a sequence of
t_ServiceInfo structures, which contain the t_ServiceId, t_UserServiceName (consumer’s
name for the service), and a sequence of service properties, t_ServiceProperties.

The moreLeft parameter is a boolean to inform the consumer if there are any remaining services,
after this call to nextN().

4.4.2.6.3. destroy()

void destroy ();

The destroy() operation is used to inform the retailer that the consumer has finished with the
i_DiscoverServicesIterator interface. It may be called at any time by the consumer, (i.e. the
consumer does not has to have retrieved all the services before destroying the interface). After it has
returned, the consumer will not be able to use their reference to the
i_DiscoverServicesIterator interface again.

 page 89

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5. Usage Part

This section contains a definition and explanation of the usage part of Ret-RP. The usage part
describes the interactions between the consumer and retailer domains during the use of a service
session.

In fact, the usage part of Ret-RP defines interactions between usage party and usage provider
session roles, (refer to Section 3). This means the usage part of Ret-RP may be used for usage
across other reference points. Parties are users of the service, (human or otherwise), and providers
are the providers of the service. For Ret-RP, a consumer corresponds to a party session role; a retailer
to a provider session role.

Also a service session can involve multiple parties. The usage part defines interactions between a
single party and a provider. However, it recognizes that there may be many instances of this reference
point for a single service session, and so defines interactions that cope with actions from other parties.

Services offered by a provider will come in many different types, each offering functions which a user
wants to use. The usage part of Ret-RP is not about these service-specific functions, and does not
want to restrict the sort of functionality offered by services. It is about sets of generic operations which
many services, and classes of services, will want to offer, in a consistent and interoperable manner.

The usage part of Ret-RP defines a set of profiles in terms of Session Models. A session model
defines feature sets to encompass these generic operations. Each feature set provides some facet of
session control, and defines interfaces to make this accessible across an interoperable reference
point. They can be combined to provide the specific functionality required by the service.

Similar to the access part, usage part interfaces are first defined informally using plain text and
diagrams, then by means of semi-formal OMG-IDL specifications; behavior is described in plain text.

NOTE: The main body of this document describes only interfaces and operations on interfaces. A
complete listing of the IDL specifications, and how the interfaces are grouped into modules can be
found in Annex A - Annex F:

The remainder of the usage part of Ret-RP is structured as follows

Section 5.1 contains a description of session models. Session Models define a set of interactions
between the usage party and usage provider session roles. A number of session models might be
defined by TINA and by other organisations.

Section 5.2 describes the TINA Service Session Model. It defines feature sets which are related to
service session control.

Section 5.3 describes the TINA Communication Session Model. It defines feature sets which are
related to communication session control.

IDL definitions of each of the interfaces can be found in Annex E:.

5.1 Session Models

Session models define how service session components in each domain can interact in a generic
manner. These session models allow components which have been designed and implemented
separately to interact to support the service session. A session model also defines an information

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 90

model for the session, and relates how operations on interfaces affect the information model, and so
the behavior of the session. Sessions may support one or more session models to describe their
behavior.

Currently defines a 2 session models: TINA Service Session Model, and TINA Communication
Session Model.

The TINA Service Session Model is related to service session control. It defines interfaces which
allow service session components to make requests to end and suspend the session; list the parties
involved; set of stream bindings between parties, for example. The interfaces are grouped into ‘self-
contained’ feature sets, allowing a session to support only those generic operations that are
applicable to it.

The TINA Communication Session Model is related to communication session control. It defines
interfaces which support requests required to set up Stream Flow Connections that support stream
bindings initiated by service sessions (or their members). These interfaces are grouped into a single
feature set.

The TINA session models enable interoperability between the domains, for a set of generic session
control operations. These operations are offered on a set of interfaces. The interfaces are grouped
into ‘self-contained’ feature sets, allowing a session to support only those generic operations that are
applicable to it.

Service session related components may support one or more of a variety of session models. These
session models may be defined by a variety of organizations. Each session may support a number of
session models, or may only support a single model. A session may support either the TINA Service
Session Model, or the TINA Communication Session Model, or may support both session models. It
may also support other session models (not defined by TINA, or Ret-RP) in addition to, or in place of
the TINA defined session models. Services may also decide not to support a session model. All of
these alternatives are acceptable, following the statement in [7], that “the access part includes the
possibility to negotiate alternative usage interfaces”.

The Ret-RP allows services to support one of more of a variety of session models. These session
models may be defined by a variety of organisations, or be specific to a particular provider. (e.g. T.120
defines a specific session model.)

Each session may support a number of session models, or may only support a single model. The
models supported may be defined by the service type, (e.g. the service type identifies the type of
service as well as the session models it supports), or unrelated to the service type. The usage part of
Ret-RP allows sessions to support any models they wish. However, currently the only session models
defined for the Ret-RP, are the TINA Service Session Model, and the TINA Communication Session
Model. We will assume that the session models act independently, and will only describe TINA
session model interactions.

In addition to the session models, a session may also support other service specific interfaces.

In the access part of Ret-RP, when the consumer domain requests to start a service, it can ask that
the service session supports a particular session model. Each session model is identified by a specific
string, e.g. for the TINA Service Session Model, it is “TINAServiceSessionModel”. This string is
passed as part of the request to start the service. If successful, the new session will support the
specified session model. If unsuccessful, the request raises an exception, indicating that the session
model cannot be supported by the service.

 page 91

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

In the usage part of Ret, it is possible to ask a session which session models it supports. The same
identifying strings are used as in the access part. If the session supports the TINA Communication
Session Model, then it will return “TINACommSessionModel” as a value in the list of session models.
(The list may contain a one or more session model names, or none at all.)

The following sections describe the TINA session models. Other session models, and how they may
be requested through the access part of Ret-RP, are described in the Access part of Ret-RP.

5.2 TINA Service Session Model

The TINA Service Session Model provides generic service session control operations, applicable to
single and multi-party services. It defines interfaces which allow service session components to make
requests to end and suspend the session; list the parties involved; set of stream bindings between
parties, for example. The interfaces are grouped into ‘self-contained’ feature sets, allowing a session
to support only those generic operations that are applicable to it.

The TINA service session model defines a number of feature sets and interfaces which can be used
to interact with a session. The session may also support other service specific interfaces, (and
probably will), and may support other session models. We will assume that the session models act
independently, and will only describe TINA service session model interactions.

It also defines the Session Graph [2] information model. This information model can be used to define
the behavior of operations on the interfaces. It is not necessary for the service session components
to implement the session graph information model. The session graph information model is used
purely to describe the behaviour of the session model operations, with Ret-RP. Ret-RP does not
prescribe how to implement the interfaces it defines.

The TINA service session model is identified by the string “TINAServiceSessionModel”1, in the
access and usage parts of Ret-RP.

The TINA service session model defines a basic feature set, (BasicFS). It must be supported by all
sessions which support the service session model. It provides sufficient functionality to control a
single party session.

The TINA service session model also defines additional feature sets which may also be supported by
the session. The feature sets which a session supports is available through the access part of Ret-
RP, and through operations on the interface defined by the basic feature set.

5.2.1 TINA Service Session Model Feature Sets

The table below provides a brief description of each of the feature sets. All feature sets are ‘optional’,
(except BasicFS). This means a session can support the TINA service session model, and only
support the feature sets that are useful to the session. For example, a single party service (e.g. Video-
on-demand) may not wish to support the interfaces associated with the multiparty feature set, but may
wish to support the functionality of multimedia streams from the participant-oriented stream binding
feature set.

1. Previous versions of the Ret-RP used: TINA Session Model, for the TINA Service Session Model, and the identifying strings:
“TINASessionModel” and “TINA Session Model”. This name and identifying strings are no longer used.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 92

The feature sets define interfaces that must be supported by the appropriate domain. The session
role of a domain determines which interfaces of a feature set supported by the domain. A domain in
a usage provider role offers usage provider type interfaces, and requires usage party interfaces from
the other domain in the service session.

Current feature sets are defined for the usage party and provider roles only. Feature sets for peer
roles have not yet been defined. Other more specialised roles may have specific feature sets to
support those roles. E.g. a domain in a manager role may require a management feature set (not
defined).

The behavior of the operations on each interface is also defined. However, the precise behavior of an
operation can be affected by the service, and other feature sets supported. For example, a request
to end the session, if it returns successfully, will always mean that the session has ended. However,
if the multiparty feature set is supported, it also means that the other parties are told to execute any
actions required to end the session. If MultipartyIndFS is supported, then the other parties will be
informed that a party has requested that the session end, and may be allowed to vote (VotingFS),
refuse (through service specific interactions). Or the request may be automatically refused because
the party doesn’t have permission to end the session (ControlSRFS).

Feature sets generally rely on other feature sets. E.g. the multiparty feature set provide operations to
support inviting new users, and ending a user’s participant. But it doesn’t provide operations to end
the session, as these are supported by the basic feature set. This means a session that supports
MultipartyFS must also support BasicFS. (MultipartyFS is dependant upon BasicFS).

Table 5-1. TINA Service Session Model Feature Sets

Feature Set Description Dependant on

BasicFS Support end and suspend session requests.
Allows the party domain to discover interfaces and
session models supported by the session.

Mandatory for
TINASessionModel

BasicExtFS Allows the provider domain to discover interfaces and
session models supported by the party domain
components.

BasicFS

MultipartyFS Allows the session to support multiparty services.
Supports requests for:
- information on other parties
- ending/suspending a party in the session
- inviting a user to join session
- announcing the session

BasicFS

MultipartyIndFS Allows the session to indicate requests that are to be
processed, to the party components.

MultipartyFS

VotingFS Supports parties voting to determine if a request should
be accepted, and executed.

MultipartyIndFS

ControlSRFS Supports parties having ownership, and read/write
rights on session entities, (i.e. parties, resources,
streams, etc.)

MultipartyFS

ParticipantSBFS Participant type stream binding feature set: provides
high level support for setting up stream bindings.
Stream bindings are described in terms of session
members participation.

BasicFS

 page 93

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999 Version 1.1; 30 April 1999

5.2.1.1 BasicFS

The basic feature set (“BasicFS”) must be supported by all sessions which support the TINA service
session model.

BasicFS provides sufficient functionality to control a single party session. The basic feature set
enables a party domain to:

• discover the interfaces, session models and feature sets supported by a session;

• retrieve the interfaces supported by the session, (including service-specific, and ‘feature
set interfaces’);

• register the client’s own interfaces and session models with the session;

• end and suspend the session.

The basic feature set allows domains to exchange and agree the use of additional non-standardized
interfaces. This is essential to obtain service-specific interfaces and value added interfaces above or
instead of TINA standard session control.

BasicFS supports a client-server paradigm, where the party domain is the client, and the provider
domain is the server. All requests using BasicFS interfaces are initiated from the client applications,
and are serviced by the provider domain components. This means that the simplest service that can
be implemented using BasicFS is a single party service, that has interfaces on the provider domain
components, with no interfaces on the party domain applications. This does not mean that services
using BasicFS are restricted to single-party services, or only client-server interactions. Service
sessions may support additional feature sets, and service-specific interfaces that support multiple
parties in the session, and peer-to-peer interactions.

5.2.1.2 BasicExtFS

BasicExtFS allows provider domain components to discover interfaces and session models
supported by the party domain.

ParticipantSBIndFS Participant type stream bindings with indications ParticipantSBFS

Table 5-2. BasicFS Interfaces

BasicFS interfaces on:

Party domain components (none)

Provider domain components i_ProviderBasicReq

Table 5-1. TINA Service Session Model Feature Sets

Feature Set Description Dependant on

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 94

BasicExtFS is an optional feature set, which requires that the session also support BasicFS.

BasicExtFS provides the inverse of the BasicFS. It supports the opposite of the client-server
paradigm, in that the provider domain can gain information about the session models and interfaces
supported by the party domain.

It does not support any session control operations, such as ending or suspending the session, from
the provider’s domain.

5.2.1.3 MultipartyFS

MultipartyFS allows the session to support multiparty services.

MultipartyFS is an optional feature set, which requires that the session also support BasicFS.

It supports the party domain making requests for generic multiparty control actions, such as
suspending a party’s participation in the session. It also supports the session providing information
on events that have happened to other participants, e.g. another party has suspended; and the
session asking the party domain to execute an action, (e.g. the party is being suspended, and the
party domain components need to perform some actions before the party is suspended.)

MultipartyFS provides operation to request and execute generic multiparty control actions, such as
suspending a party’s participation in the session. It does not define whether a particular party is
allowed to perform the action. The operations are defined with exceptions that can be raised, if the
session determines that a request for an action it not allowed. It is up to the session, and possibly
parties to decide if an action should be allowed, or should not be performed.

The session may use entirely service specific mechanisms to decide if an action should be performed.
Alternatively, ControlSRFS may be used to associate owners to session entities, which determine if
an action is allowed. Also MultipartyIndFS and VotingFS allow the session to indicate to party domain
that an action has been requested, and to vote on whether an action is performed. All three may also
be used together to determine which parties are indicated about the action, and which can vote.

i_PartyMultipartyInfo interface allows the session to inform the party domain of changes in the state
of the session and its participants.

Table 5-3. BasicExtFS Interfaces

BasicExtFS interfaces on:

Party domain components i_PartyBasicExtReq

Provider domain components (none)

Table 5-4. MultipartyFS Interfaces

MultipartyFS interfaces on:

Party domain components i_PartyMultipartyExe
i_PartyMultipartyInfo (optional)

Provider domain components i_ProviderMultipartyReq

 page 95

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.2.1.4 MultipartyIndFS

MultipartyIndFS allows the session to indicate that an action will be taken shortly. (e.g. a party is going
to be suspended.) The party may be able to vote on whether they wish this action to be taken, if the
session supports the Voting feature set.

This feature set is dependant on the session supporting MultipartyFS.

5.2.1.5 VotingFS

VotingFS allows the parties to vote on whether an action should occur. (The party domain finds out
that action is going to occur by receiving an indication through the MultipartyIndFS.)

This feature set is dependant on the session supporting MultipartyIndFS.

5.2.1.6 ControlSRFS

The Control Session Relationships feature set (ControlSRFS) is used when Session Relationships
need to be modified. Session relationships define the ownership and permission of parties, resources,
etc. in a service session. This feature set allows parties to change the ownership and permissions of
other parties to perform operations that affect the owned entities.

This feature set is dependant on the session supporting MultipartyFS.

Table 5-5. MultipartyIndFS Interfaces

MultipartyIndFS interfaces on:

Party domain components i_PartyMultipartyInd

Provider domain components (none)

Table 5-6. VotingFS Interfaces

VotingFS interfaces on:

Party domain components i_PartyVotingInfo

Provider domain components i_ProviderVotingReq

Table 5-7. ControlSRFS Interfaces

ControlSRFS interfaces on:

Party domain components i_PartyControlSRInd
i_PartyControlSRInfo

Provider domain components i_ProviderControlSRReq

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 96

5.2.1.7 ParticipantSBFS

This feature set provides capabilities to setup, modify, and delete stream bindings between members
of the session. It supports a high level description of the feature set, based on members participating
in the stream binding. Session members use these descriptions to determine their participation and
return suitable SI information to allow the stream binding to proceed.

5.2.1.8 ParticipantSBIndFS

ParticipantSBIndFS allows the session to indicate that an action will be taken shortly. (e.g. a stream
binding will be deleted.) The party may be able to vote on whether they wish this action to be taken,
if the session supports the Voting feature set.

5.2.2 Types of Operations and Interfaces.

The feature sets support 4 main types of operations:

• Request operationsReq()

• Indication operationsInd()

• Execution operationsExe()

• Information operationsInfo()

Not all operations support this convention, but the following describe how to interpret operations
which do. (Operations which don’t support the convention are all described individually in the feature
set description.)

In general, each type of operation is supported on a separate interface. Interfaces supporting request
operations are suffixed by Req; interfaces supporting information operations are suffixed by Info, etc.

5.2.2.1 Request operations.

Request operations (Req()) are generally supported by interfaces on the provider domain. They allow
the party to request for a particular generic control operation to be performed, (e.g. end the session).
Each feature set supports requests for generic control operations which are applicable to the purpose

Table 5-8. ParticipantSBFS Interfaces

Participant SBFS interfaces on:

Party domain components i_PartyPaSBExe
i_PartyPaSBInfo (i_ConnInfo)

Provider domain components i_ProviderPaSBReq

Table 5-9. ParticipantSBIndFS Interfaces

ParticipantSBIndFS interfaces on:

Party domain components i_PartyPaSBInd

Provider domain components (none)

 page 97

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

of the feature set. (E.g. BasicFS supports generic operations to end and suspend the session;

R
eq

ue
st

in
g

P
ar

ty
 D

om
ai

n
P

ro
vi

de
r

D
om

ai
n

O
th

er
 P

ar
tie

s
D

om
ai

ns

G
en

er
ic

 R
eq

ue
st

 P
ha

se
s

M
od

ifi
ed

 P
ar

ty
’s

 D
om

ai
n

In
di

ca
tio

ns
 a

re
 N

O
T

 s
en

t t
o

th
e

re
qu

es
tin

g
pa

rt
y.

S
es

si
on

 m
ay

 w
ai

t f
or

 v
ot

es
 to

 b
e

se
nt

.
(N

ot
 s

ho
w

n)

...
..E

xe
 is

 s
en

t t
o

th
e

pa
rt

y(
s)

th
at

 m
ay

 n
ee

d
to

 p
er

fo
rm

 a
n

ac
tio

n
to

 e
xe

cu
te

 th
e

re
qu

es
t.

D
ec

id
e

if
th

e
re

qu
es

t i
s

ac
ce

pt
ed

.
If

th
e

re
qu

es
t i

s
ac

ce
pt

ed
 th

en
:

S
es

si
on

 m
ay

 n
ee

d
to

 p
er

fo
rm

 s
om

e
ac

tio
ns

...
.In

fo
()

 is
 s

en
t t

o
th

e
pa

rt
y

do
m

ai
n

co
m

po
ne

nt
s

th
at

 h
av

e
re

gi
st

er
ed

 th
e

an
 ..

...
In

fo
 in

te
rf

ac
e.

(C
on

tr
ol

S
R

F
S

 m
ay

 b
e

us
ed

 to
de

fin
e

w
ho

 to
 s

en
d

...
..I

nf
o(

)'s
 to

.

...
.In

fo
()

's
 a

re
 N

O
T

 s
en

t t
o

th
e

re
qu

es
tin

g
pa

rt
y,

 n
or

 to
 p

ar
tie

s
w

ho
 r

ec
ei

ve
d

an
 ..

...
E

xe
()

T
he

 s
es

si
on

 m
ay

 s
en

d
in

di
ca

tio
ns

th
at

 a
n

ac
tio

n
ha

s
be

en
 r

eq
ue

st
ed

.
(C

on
tr

ol
S

R
F

S
 m

ay
 h

av
e

be
en

 u
se

d
to

 te
ll

th
e

se
ss

io
n

w
ho

to
 s

en
d

th
e

in
di

ca
tio

ns
 to

.)

...
..R

eq
()

on
ew

ay
 ..

...
In

fo
()

[v
oi

d]

...
..I

nd
()

[v
oi

d]

...
..I

nd
()

[v
oi

d]

...
..E

xe
()

[v
oi

d]

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 98

MultipartyFS supports operations to end and suspend my participation in the session, and invite
others to join the session).

All Req() operations include a t_ParticipantSecretId as the first parameter. This allows the
session to distinguish which participant has sent the request. (This is useful even if requests from
each participant arrive on different instances of the interface.) (See Section 3.3.4.2,
"t_ParticipantSecretId" for more details.)

Req interfaces support Req()s to perform generic session control actions, such as suspending a
party’s participation in the session. The interfaces do not define whether a particular party is allowed
to perform the action. The operations are defined with exceptions that can be raised, if the session
determines that a Req() for an action is not allowed. It is up to the session, and possibly parties to
decide if an action should be allowed, or should not be performed.

A Req() operation will eventually return to the requesting party. If it returns successfully. (i.e. no
exception is raised,) then the request has been agreed by the session, and actions have been taken
to perform the request. It is no longer possible for the request to be ‘rolled back’. The request has
been executed by the session, and the requesting party MUST now perform any action necessary for
it to complete the request, (i.e. remove a party whose participation has been ended from the party‘s
model of the session). Equally the session cannot return successfully to the requesting party until
there is no possibility for the request to be ‘rolled back’, i.e. the session must both agree to the action,
and perform the actions required to ensure the request is performed, before success is returned to
the client. This effectively means that a Req() cannot return until all corresponding execution
operations have returned successful to the session. (However, info operations do not have to return

Requests may not be performed because the requesting party does not have permission to perform
the request, (e.g. a request to end another party’s participation in a session may be denied because
only the other party have the right to end their participation; or all the parties in the session have voted
on this request and it has been denied.)

The session may use entirely service specific mechanisms to decide if an action should be performed.
Alternatively, ControlSRFS may be used to associate owners to session entities, which determine if
an action is allowed. Also MultipartyIndFS and VotingFS allow the session to indicate to the Party
domain that an action has been requested, and to vote on whether an action is performed. All three
may also be used together to determine which parties are indicated about the action, and which can
vote.

All Req() operations have a common set of exception codes which can be raised to indicate that the
request has failed. They include failure due to invalid t_ParticipantSecretId; failure due to not
allowed; and failure due the operation not being supported, (e.g. BasicFS mandates a
suspendSessionReq() operation to be available, but a particular service that has not implemented
suspend, should always raise the ‘not supported’ error code in response to this Req().)

If this session additionally supports the MultipartyIndFS, then Indication operations (Ind()) will be
invoked on the other parties in the session. (Precisely which parties receive indications is decided by
the session, and may be defined by use of the ControlSRFS.)

If this session supports MultipartyFS, then an Execution operation will be sent to the party to which
the action is being applied. (No Execution operation will be sent if the operation pertains to the
requesting party, see Execution operation for more details). After the Execution operation has

 page 99

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

successfully completed, a Information operation will be sent to the other party’s, (except the
requesting party, and the party receiving the Execution operation, see Information operation for more
details.)

5.2.2.2 Indication operations

Indication operations (Ind()) are supported by interfaces on the party domain. They allow a session
to indicate to the party that a generic control action is about to be taken.

The Ind()s are sent out to party domain components before the generic control action actually occurs.
This allows the component to potentially perform some (internal) action before the action is executed.
The party may also be able to send a vote to the session indicating whether they wish the action to
be completed, (if both support the voting feature set).

Indications are never sent to the requesting party. It is always assumed they are aware that they have
sent the Req() to the session. (In the voting feature set the requesting party is not able to vote, but is
automatically assumed to have sent an ‘Agreed’ vote response.)

After receiving an indication, the party domain component will either receive an Information (Info()),
Execution (Exe()), or a operationCancelled() operation. Info() and Exe() operations are described in
the following sections.

5.2.2.3 Execution operations

Execution operations (Exe()) are supported by interfaces on the party domain. They are invoked on
parties which have to perform explicit actions, due to a request for a generic control operation.

These operations are invoked when the session has determined that the request is allowed. The party
must execute the operation, and should only raise an exception if it is unable to execute the operation,
(e.g. if the party is suspended, due to a request from another party, they must suspend.)

If the party does raise an exception, then the whole request and action must be ‘rolled back’ by sendig
an operationCancelled() operation to all the parties that have received and performed Exe()
operations. This allows the party’s to update their internal representation of the session to the state
before the Exe() was sent.

Since Exe()‘s can raise exceptions, it effectively means that the request cannot be considered to have
been successful, until all the Exe() operations have returned successfully to the session.

The requesting party does not receive executions. They are assumed to have performed the required
actions before issuing the request (for ‘creations’), or after the request has been successfully
completed, (for ‘deletions’).

5.2.2.4 Information operations

Information operations (Info()) are supported by interfaces on the party domain. They are invoked
after a generic session control operation has successfully completed. (i.e. after all Indications, and
Executions have returned successfully, and the action has been successfully completed in the
session, but just before the Req() operation returns to the requesting party.)

They are invoked on parties which have previously registered their interfaces to the session. (The
ControlSRFS may determine which parties receive Information operations; otherwise all parties
should receive Information operations when a generic control operation request is successful.)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 100

The Information operation are always ‘oneway’ operations. It is not possible for a party to raise an
exception due to receiving an Information operation about an action that has already been
successfully completed.

5.3 TINA Communication Session Model

The TINA Communication Session Model describes the interfaces required to support communication
session level interactions across the Ret-RP. The communication session does not (currently) support
requests for connections from party domains: these types of requests are handled by the stream
binding feature sets of the TINA service session model. Instead, the communication session supports
lower level requests required to set up Stream Flow Connections that support stream bindings
initiated by service sessions (or their members).

The TINA communication session model is identified by the string “TINACommSessionModel”, in the
access and usage parts of Ret-RP.

The communication session interface specifications here are not mandatory. The interface described
here only supports basic functionality. Other interfaces may be used, but should at least support the
basic functionality specified here. Extra abilities and communications from the party to the provider
may be desired. A list of desirable extra functionality can be found in Section 6.2.2.1, "TINA
Communication Session Model additional functionality".

Currently the communication session model does not define its interfaces in terms of feature sets.
This is because the functionality defined is equal to a basic feature set for the communication session.
When interfaces to support the extra functionality are defined, the session model will be structured
according to feature sets. The interfaces defined here will become the basic feature set for the TINA
communication session model.

Definitions of these interfaces and the operations they support can be found in Section 5.6.2,
"Communication Session Model Interfaces".

Party Domain Provider Domain
Figure 5-1. Interfaces in TINA Communication Session Model of Ret-RP.

i_ProviderPaSBReqi_PartyPaSBExe
i_PartyPaSBInfo

Ret-RPAvailable during a Communication Session

Available during a service session supporting stream binding

i_TerminalFlowControl

 page 101

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.4 Usage Information View

The information model of the usage part of the Ret-RP is described in 4 parts:

• TINA Service Session Model related information. This is mainly defined by a Session
Graph, a network of related information objects, that describe the session and its
participants. The session graph provides an overview of the session, and chnges to
it descibe changes in the session. Section 5.4.1 describes the session graph
concept, as well as common types related to many of the feature set of the TINA
service session model.

• Stream Binding Terminology.

• Common Communication Session and Stream Binding Data Types.

• Communication Session Model Information View.

5.4.1 TINA Service Session Model related Information

The basic concept used to describe the information contained in and exchanged within the service
session control is the Service Session Graph (SSG). It is important to make the difference between a
particular instance of a service session graph and the concept itself: the concept provides the tool
with potential operations and elements which are generic (service independent) while a particular
instance is a specific instantiation or activation of one or more of those elements. The SSG
information model is valid for both the local (user) views and the central (provider) view.

The service session control's SSG information model is described below using OMT notation, by
means of the diagram in Figure 5-2.

Resource

Session RelationshipSession Member

Service Session Graph

Party ControlSRStream Binding SR

Stream Interface Stream Flow End Point
1+

be
lo

ng
s

to

1+

: association
: aggregation
: constraint
: zero or more
: one or more

Figure 5-2. Service Session Graph aggregation.

OwnershipSR PermissionSR

Read Per. SR Write Per. SR

participate in

Ret Reference Point Specifications Usage PPart
Version 1.1; 30 April 1999

 page 102

First of all, the SSG is composed of (aggregates) several objects as shown in Figure 5-2. The figure
just gives a first idea of the model and is neither complete nor self explanatory: the classes, relations
and cardinalities and their usage are explained in more detail in the document “Service Component
Specification” [19].

The abstract classes (for which there is no object instance) are shown in dash style: these are the
session member and the session relationship classes: they have no other purpose but to simplify the
object oriented modeling.

The Service Session Graph (SSG) model defines all the generic classes that are necessary to fulfil
its mission: offering a generic platform to services. The concept is used to model and control the state
of a TINA service session. An instance at a certain point of time of an SSG models a “snapshot” of
the resources, the parties and the relationships established into the service session. Note that in
Figure 5-2 the cardinality of most relationships is defined as “zero or more” for reasons of flexibility.
Most of the classes described in the model are optional (zero instances when not used), or can be
used many times (for multi-party and multi-media requirements, as many instances of the classes will
be required as parties and medias involved). This flexibility allows to reuse the model for every
features set that has been defined. Details of the information model are given in the following
sections.

The Session Graph concept, which provides an overall framework, that is described in Section 5.4.1
through Section 5.4.1.4. The session graph has to be considered as the overall framework on which
the different Feature Sets of the TINA Session model are based. A description of the Feature sets can
be found in Section 5.2.1. The relationship between TINA session model Features Sets and the
session graph information objects are explained in Section 5.4.1.5.

5.4.1.1 Service Session Graph Object Classes

The service session information object is manipulated by the components in the consumer and
retailer domains, which are defined in [19]: they provide the operations for modifying the service
session. Every feature set allows the modification and manipulation of subsets of the Information
Classes here described. In the session graph model, this corresponds to operations defined for each
IO class in the model.

The detailed operations specification is done in TINA in the computational viewpoint and can be found
in the individual descriptions of TINA Session Model Feature Sets. Nevertheless, it is useful to define
high-level operations on IO classes.

These high-level operations1 are:

• create: this type of operation will initiate the creation of a new object in the service
session; it includes its configuration, i.e. the need for specifying the objects from which
this new object depends, and to set its attributes. Default value mechanisms will be
foreseen. The respect of the relations cardinality is checked at creation time;

• modify: this type of operation will be used to modify object's attribute values at any time
in the service session's lifetime;

• delete: this type of operation will be used to remove one or more objects and their
dependant objects from the SSG;

• suspend: to put an active object into the suspended state;

• resume: to put a suspended object into the active state.

1. Sometimes these operations are not offered to external clients

 page 103

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.4.1.2 Service Session Graph Information Model

This section gives an high level description of all SG Information objects classes apart from those
related to control session relationships that will be described in the following section.

The Service Session Graph (SSG) class is the top class of the information model, and represents
the service session as a whole. It contains (aggregates) all other objects in the model. It can contain
information for scheduling the entire service session.

Party. It is defined as a negotiating entity taking part in the service session, not to be confused with
the usage party session role: it can be either an end-user, a subscriber or a service or resource
provider. It models a (potential) “user” in the service session. The party object is used to maintain
information about a user in the service session and/or any of the user service sessions participating
into the service session. In supplement of the generic attributes already described, an attribute that
is maintained for the party is its name, which uniquely identifies the user.
A user can request to take part in the service session by requesting to become a party in the SSG. A
party can invite another user to join the service session by requesting such a party to be created for
that invited user. If there are already other parties involved in the same service session, they might
have to confirm the invitation while the service session negotiation is taking place. A party can request
to remove another party (or himself) from the service session by requesting the corresponding party
object to be deleted. This might involve negotiation again, depending on the presence of control
session relationships. In general, any negotiation of any operation handled by the service session will
have a behavior that depends on the presence of control session relationships: this is further
elaborated in Section 5.4.1.4.
The SSG contains zero or more party objects: there will be as many party objects as negotiating
entities in the service session. What is meant by negotiation in this context is explained in detail in
Section 5.4.1.4.1. The case with zero party will be transitory and is shown for completeness.
The party is the only class that is present in every feature set.

Resource. It models a source of support for the execution of the service (session). It can model many
types of resources to be identified or shared in the service session (e.g. a file to be retrieved, a shared
pointer in that file (global cursor), a conference bridge, a service or service subscription file, a VOD
server, etc.). The resource is identified as a part of the service session upon request of parties or upon
request of the service logic itself. The interaction held between a party and a resource is “not
negotiated”. Resources do not take an active part in the negotiation, in the sense that resources
cannot initiate negotiations but only react to requests: resources answer positively or negatively to
requests whenever they are involved in a service session negotiation2.
The SSG contains zero or more resource objects: there will be as many resource objects as resource
used in the service session.
Resource is the main information object class of the Resource Feature Set.

Session member abstract class: The party objects and the resource objects that have been
described above have several commonalities. First they both will require to be interconnected:
connections between Parties for audio and video communication, connections between Parties and
resources for information retrieval, connections between resources for information transfer, etc. This
shows the need for defining means of communication for both the party class and the resource class.
Another commonality is that the party and the resource will both require scheduling. In order to exploit

2. This does not imply any assumption on the behavior of the entities modelled as resources outside of the scope of
the model. For example, entities that are modelled as resources in the SSG model (such as video bridges) can emit
notifications, within or outside of a service session, according to service specific or context specific policies. This
has nothing to do with the behavior of such entities during a negotiation process based on the SSG model, which
is a “passive” role by definition. Negotiation is presented in Section 5.4.1.4.1.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 104

fully the strength of Object Oriented Modelling (OOM) and enable the service designers and
implementors to reduce redundancy, a class generalization of the party and resource classes will be
defined: the Session Member (SM) class. This class is abstract because it cannot be instantiated: only
the specialized classes can. Since party and resource classes are now defined as specializations of
the session member class, they will be more completely named as respectively Party Session
Member (PSM) and Resource Session Member (RSM).
Sometimes it is useful to group Party Session Member and/or Resource Session Member in order to
be able to define relations in the service session that are valid for each member of such a group. The
following group are defined: Session Member Group3, Party Session Member Group4 and Resource
Session Member Group5. These classes are not depicted in the overall diagram of the TINA session
model, more details can be found in the Service Component Specification [19].

5.4.1.3 Stream binding related parts of the SSG

In order for a session member to express its ability to communicate with other session members by
means of streams6, the session member is associated to stream interfaces belonging to it, as shown
in the overall figure (Figure 5-2). The stream binding session relationship class represents the binding
between parties or their corresponding stream interfaces and stream flow endpoints.

Stream Flow Endpoint (SFEP): It represents the termination of a single flow by an application. In
other words, it can be seen as the logical representation of a physical stream device I/O port of a ter-
minal (e.g. the outlet of a camera). Further details can be found in NRA [9].

Stream Interface (SI): It represents a dynamic grouping of SFEPs. The session member will associ-
ate as many stream interfaces as required (eventually none, when the stream binding feature set is
not supported); the cardinality is shown in the Figure 5-3. It’s worth noting that the session member -
stream interface relationship is inherited by the SM's specialized classes: party, peer and resource.
The stream interface class used here is defined in NRA (see [9]).

Stream flow connection (SFC): It describes point-to-point or point-to-multipoint connections be-
tween SFEPs. Figure 5-3 describes stream flow connections and the relationships between SM, SIs,
SFEPs and SFCs.

Stream binding session relationship(SBSR)7: It can be described by a number of different infor-
mation models. The stream binding information model is related to the setup of the binding (i.e., it is
used to describe the stream binding we want to set up) and any explicit setup and modification control
operations. Many models are possible, but we are most interested in those that relate the stream bind-
ing to SI and SFEPs, since these have computational aspects that may be supported by a DPE. TINA
has defined three different ways (below described) to provide stream binding; all of them are based
on the concept of stream flow connections.

3. Session Member Group (SMG): it can contain any number of session member of any kind (indifferently PSMs or
RSMs, even mixed together; see Service Component Specification.

4. Party Session Member Group (PSMG): it is a specialization of the SMG because it will contain PSMs only; note
that this class could carry Closed User Group (CUG) identification; see Service Component Specification.

5. Resource Session Member Group (RSMG): it is a specialization of the SMG because it will contain RSMs only;
see Service Component Specification.

6. As opposed to using operational interfaces.

7. Stream binding and stream binding session relationship (SBSR) will be used as synonyms. Normally ‘session
relationship’ will be suffixed when the emphasis is on SBSR as a subclass of session relationship (SR).

 page 105

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

Participant oriented stream binding: In this high level approach, stream bindings are described in
terms of participating session members, type and QoS. Each participant is then requested for suitable
stream interfaces which are to be bound by the stream binding. This high level description can be
mapped by the service logic to a number of stream flow connections. These stream flows may be of
different types and QoS. Special resources, such as bridges, may also be introduced to support the
binding. The stream binding may be manipulated by modifying the type, QoS and participants.
This type of stream binding specification allows a high level request of multi-party-multi-media stream
bindings8. The type and QoS parameters may be used to implicitly specify multimedia requirements9.

Depending on the type of service, there may be different needs for explicit manipulation of individual
SFEPs and SFCs. Hence, TINA supports all three models. There might also be cases where SBSR
groups may be defined10. The different feature sets for the three different approaches are listed in
Table 5-1. Detailed descriptions of these Feature Sets can be found in Section 5.2.1.7,
"ParticipantSBFS" and Section 5.2.1.8, "ParticipantSBIndFS".

In addition to the SSG related objects, the following terms related to the communication session are
also useful in understanding stream binding concepts. These terms are briefly introduced here to aid
later discussions of stream binding.

• Network Flow Connection (NFC): It describes point-to-point or point-to-multipoint
connections between NFEPs.

• Network Flow End Point (NFEP): It describes a network termination in a technology
independent manner.

• Network Flow End Point Pool (NFEPPool): It identifies either a group of existing NFEPs
or a resource that can dynamically create NFEPs on request.

• Resource Flow End Point (RFEP): It represents either a NFEP or a NFEPPool.

• Terminal Flow Connection (TFC): It describes a point-to-point connection between an
SFEP and an NFEP.

8. (i.e., one stream binding representing a multipoint-to-multipoint binding, that maps onto a number of stream flow
connections, each representing point-to-multi-point connections between SFEPs).

9. However, it is also suitable for simple stream bindings with little overhead (i.e., this approach allows for a
computationally ‘lightweight’ way of setting up stream bindings).

10. SBSRs may also be grouped together with CtrSRs into SRG.

Figure 5-3. Stream binding model

participates_in

connectsassociated

binds

maps
SBSRSession Member

2+

1+

SI

SFC

SFEP

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 106

5.4.1.4 Expressing Control Relationships in the Service Session

The control session relationship (ControlSR) class allows to perform enhanced control on the service
session objects. They support the mechanism of negotiation and voting, therefore they are the basis
for the Control Session Relationships (ControlSRFS, Section 5.5.8) and Voting Feature Sets (Section
5.5.7). In other words if ControlSRFS is not supported, this information object is not present and no
negotiation can take place.

Several specialized classes are defined for the ControlSR, for each specific control requirement, as
shown in Figure 5-4. Their usage is explained below.

When a control session relationship has to be established between two objects in the SSG, there will
always be one object having the “controller” role, and another having the “controlled” role.

In a similar way as was done for the PSM and the RSM classes, it might be useful to define a grouping

class for both the ControlSR, and the SBSR already introduced in the previous section. This new
grouping class is called Session Relationship Group (SRG) and relates to the SSG, the ControlSR
and the SBSR.

The following sections describe the ownership session relationship and the permission session
relationships, which are both specializations of the ControlSR.

5.4.1.4.1. Ownership Session Relationship (OSR)

The Ownership SR (OSR) associates a partySM or partySMG (a controller class object) to a
controlled class object in the SSG. It is used to force multi-party negotiation when an operation is
requested on an object that is owned by one or more other Parties. The Ownership SR specifies
which party SM or party SMG owns that object instance in the SSG. The ownership of that object

ControlSR

Controller Controlled

Note:
The ‘zero or more’ cardinality bullets in OMT do not relate to the describing class for the relation
(in this case control SR class), so the correct reading of this diagram is:

• a control SR instance must always have one controller and one controlled class
instance;

• a controller instance can be related to zero, one or more control SR instances;

• a controlled instance can be related to zero, one or more control SR instances.

Figure 5-4. The Control SR.

SSG Party SBSR PSROSRSFEPSIParty

 page 107

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

instance includes its eventual attributes, its attachment to associations / relations with other objects,
the objects it eventually aggregates, and the OSR itself. The OSR allows multiple PSMs and/or
PSMGs to be owners of an object instance at the same time (multi-party ownership).

When one or more controller objects have an OSR relation with a controlled object, they will be called
“owners” of that object, and the controlled object will be “owned”. As a consequence of this OSR
relation, the behavior of the negotiations in the service session will be modified: when a party (e.g. an
end-user) requests a modification of the controlled (owned) object, the service session will:

• authorize the modification if the requesting party is one of the owners;

• start a negotiation with the owners if the requesting party is not an owner.

If a negotiation is required, each owner will be informed of the request, and will have to answer either
positively or negatively. An attribute of the OSR will indicate the voting rule in effect for this OSR
instance.

The possible “modifications” of the owned objects include the following:

• a modification of one or more of the attributes of the owned object;

• a modification of the associations of the owned object (adding or removing such an
association);

• adding or removing any object aggregated by the owned object;

• adding to or removing the owned object from a “group” object.

The OSR allows services to customize negotiation on a service session, and enables the concept of
“third party control” for any operation taking place in the service session.

The OSR is meant to be established by the owning entities themselves.

Default situation: when no OSR is specified in the SSG it means that all parties (and party groups)
have a shared ownership of all the object instances in the service session: no negotiation is required.
The only exception to that rule is that a party SM implicitly owns itself, which includes its eventual
attributes, its attachment to associations / relations with other objects and the objects it eventually
aggregates. These default rules are important because it means that the initial situation in a service
session (when no OSR has been defined yet) is a shared ownership. This way most of the operations
can take place without negotiation.

5.4.1.4.2. Permission Session Relationship (PSR) specialization

The Permission SR class can be further specialized in read-permission and write-permission so that
they can be modelled separately (see Figure 5-2). Their usage is here briefly described below.

• Read Permission Session Relationship (RPSR): it associates a party SM or party SMG
(a controller class object) to a controlled class object in the SSG. The read permission SR
specifies whether yes or no that party SM or party SMG has the ability to see that object
instance in the SSG. The visibility (or non-visibility) of that object instance includes its
eventual attributes, its attachment to associations / relations with other objects, the
objects it eventually aggregates, and the RPSR itself. This means that if the RPSR
specifies a “read: no”, the RPSR itself will not be visible to the concerned party SM or party
SMG, just like the controlled class objects it is hiding. The RPSR is meant to be
established by a “third party” entity (PSM), in order for that third party to be able to hide
parts of information from other parties in the service session.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 108

Default situation: when no RPSR is specified it means that all parties (and party groups)
have read permission on all the object instances in the service session. If information
hiding is required, specific RPSRs have to be established.

• Write Permission Session Relationship (WPSR): it associates a party SM or party
SMG (a controller class object) to a controlled class object in the SSG. The write
permission SR specifies whether yes or no that party SM or party SMG has the ability to
write on (modify) that object instance in the SSG. The modification ability (or non-ability)
on that object instance means the ability to modify or delete it, which includes its eventual
attributes, its attachment to associations / relations with other objects, the objects it
eventually aggregates, but not the WPSR itself.The WPSR can be established by a “third
party” entity (PSM), in order for that third party to be able to inhibit other parties to modify
some parts of the service session.
Default situation: when no WPSR is specified it means that all parties have write
permission on all the object instances. If write inhibition is required, specific WPSRs have
to be established.

5.4.1.5 Relationship between Features sets and SG information Objects

Table 5-10 summarizes the relationship between the information objects described above and the
Features Set of TINA session model as described in Section 5.2.1. The possible dependencies be-
tween Feature Sets are shown in Table 5-1.

Table 5-10. Relationships between FSs and IOs

Feature Set SSG information object classes
Allowed

operation

BasicFS Party (1) suspend
delete
resume

BasicExtFS Party (1) suspend
delete
resume

MultipartyFS Party (1+) create
suspend
delete
modify

MultipartyIndFS
(with indications)

Party (1+) create
suspend
delete
modify
resume

VotingFS Party (1+) create
suspend
delete
modify

 page 109

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.4.1.6 Specific Types:

5.4.1.7 Exception Types for the TINA Session Model

5.4.1.7.1. e_UsageError Exception

// module TINAUsageCommonTypes
enum t_UsageErrorCode {

UnknownUsageError,
InvalidParticipantSecretId,
UsageNotAllowed,
UsageNotAccepted,
UsageOpNotSupported

};

exception e_UsageError {
t_UsageErrorCode errorCode;

};

The e_UsageError exception can be raised by all operations on interfaces defined by the TINA
Session Model. It is used to inform the client of the basic problems which are experienced by the
object servicing in the operation. If the exception is raised then the operation has failed, and has not
performed the required action

The following error codes can be used to define the problem encountered:

• UnknownUsageError
An error of an unknown type has occurred during the processing of the operation. The
operation has failed, and has not performed the required action. (This error code should
only be used when an error has occured which is not covered by the other error codes or
exceptions, which the operation can raise. That means it shouldn’t be raised frequently.)

ControlSRFS ControlSR
OwnershipSR
PermissionSR (Write & Read)
Party (1+)

create
delete
modify

ParticipantSBFS
(Participant oriented
stream binding)

SB session Relationship
Stream Flow End Point
Stream Interface
Party
(Resource)

create
suspend
delete
modify
resume

ParticipantSBIndFS
(with Indications)

SB session Relationship
Stream Flow End Point
Stream Interface
Party
(Resource)

create
suspend
delete
modify
resume

Feature Set SSG information object classes
Allowed

operation

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 110

• InvalidParticipantSecretId
The t_ParticipantSecretId parameter does not contain a valid
t_ParticipantSecretId for this interface. This error code should be used when the
session determines that the value of the t_ParticipantSecretId parameter does not
match the value expected.

Some sessions do not check the t_ParticipantSecretId parameter and so will not
raise use this error code under any circumstances.

Other sessions that use a single interface for all request operations may use the
parameter to distinguish requests from different client applications. In this case the error
code will be used when the value sent does not match any of the clients values.

Sessions that use a separate interface for each client, may check the security context,
passed by the ORB along with the request, in addition to the t_ParticipantSecretId
parameter. If the value of t_ParticipantSecretId does not match expected, due to
the security context, then this error code will be raised.

• UsageNotAllowed
The client application is not allowed to request this operation. The operation has failed,
and has not performed the required action. (The reason the client is not allowed to request
the operation may be due to the ControlSRFS, or may be service specific. The client may
be able to use the operations defined by ControlSRFS, if the session supports them, or
other service specific operations in order to allow them to request the operation
subsequently.)

• UsageNotAccepted
The client application request has not been accepted by the sesssion. The operation has
failed, and has not performed the required action. (The reason the request is not accepted
is that ‘owners’ of the entities the operation affects have declined to allow the operation.
This is defined by the ControlSR feature set. The client may be able to use the operations
defined by ControlSR, if the session supports them, or other service specific operations
in order to change the ownership of the entities, or ‘persuade’ the owners to change their
decision, to allow them to successfully complete the operation subsequently.)

• UsageOpNotSupported
The operation is not supported by the session. The operation has failed, and has not
performed the required action. All subsequent requests for the same operation will raise
the e_UsageError exception with this error code.

(This error code allows the session to support a feature set, but not to support specific
operations if there is a service specific reason they cannot. e.g. for some sessions, there
is no concept of suspending the session, so the session may use this error code to inform
the client that the session cannot be suspended.)

5.4.1.7.2. e_PartyDomainError Exception

// module TINAUsageCommonTypes
enum t_PartyDomainErrorCode {

PD_UnknownError,
PD_InvalidSessionId,
PD_OpNotSupported

};

exception e_PartyDomainError {

 page 111

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

t_PartyDomainErrorCode errorCode;
};

The e_PartyDomainError exception is defined for the Execution (Exe) operations in the Multiparty
feature set, and other interfaces supported by the user domain. It is used by the user’s application to
inform provider domain session of problems performing the Exe. If this exception is raised then the
application has been unable to perform the Exe, and the required action has not been performed.

Party domain components should should only raise this exception due to a problem which means they
are unable to comply with the Exe operation. It should not be used to avoid performing the Exe
operation because the ‘user’ doesn’t want to. (This is as described for Exe operations in general.)

The following error codes can be used to define the problem encountered:

• PD_UnknownError
An error of an unknown type has occurred during the processing of the operation. The
operation has failed, and has not performed the required action. (This error code should
only be used when an error has occurred which is not covered by the other error codes or
exceptions, which the operation can raise. That means it shouldn’t be raised frequently.)

• PD_InvalidSessionId
The t_SessionId parameter does not contain a valid t_SessionId for this interface.
This error code should be used when the user domain application determines that the
value of the t_SessionId parameter does not match the value expected.

Some applications may not check the t_SessionId parameter and so will not raise use
this error code under any circumstances. (Though they probably should always check that
the Exe operations are coming from the session they think they are.)

Other applications that use a single interface for Exe operations from more than one
provider domain session may use the parameter to distinguish operations from different
sessions. In this case the error code will be used when the value sent does not match any
of the sessions.

Applications that use a separate interface for each provider domain session, may check
the security context, passed by the ORB along with the request, in addition to the
t_SessionId parameter. If the value of t_SessionId does not match expected, due
to the security context, then this error code will be raised.

• PD_OpNotSupported
The operation is not supported by the application. The operation has failed, and has not
performed the required action. All subsequent requests for the same operation will raise
the e_PartyDomainError exception with this error code.

This error code allows the application to support a feature set, but not to support specific
operations if there is a service specific reason they cannot. e.g. for some applications,
there is no concept of suspending the session, so if the session invoked a
suspendSessionExe() on the application, it could use this error code to inform the
session that it doesn’t know how to suspend. (This should be used with caution, as in
general the application should perform the Exe invoked. Frequently, if the application
doesn’t need to perform any action, e.g. due to suspendSessionExe(), it should return
successfully and not raise any exception.)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 112

5.4.1.7.3. e_PartyError Exception

// module TINAUsageCommonTypes
enum t_PartyErrorCode {

InvalidPartyId,
InvalidPartyType,
PartySuspended

};

exception e_PartyError {
t_PartyErrorCode errorCode;
t_PartyId id;
t_PartyType type;

};

The e_PartyError exception is defined for operations which require a t_PartyId parameter. The
t_PartyId parameter indicates the party upon which the action should be performed. If the
t_PartyId is invalid, then the exception is raised with the appropriate error code. This exception can
also be raised when an invalid t_PartyType parameter is passed, or the t_PartyId parameter
refers to a party upon which this action cannot be performed

The following error codes can be used to define the problem encountered:

• InvalidPartyId:
The t_PartyId parameter does not contain a valid party identifier. (This can be because
the t_PartyId is wrongly formatted, or the t_PartyId given does not refer to a party
in the session.)

The t_PartyId id variable in the exception contains the value of the t_PartyId
parameter passed in the operation invocation.

• InvalidPartyType:
The t_PartyType parameter does not contain a valid party identifier. (This can be
because the t_PartyType is wrongly formatted, or it isn’t a party type recognised by the
session.)

The t_PartyId id variable in the exception contains the value of the t_PartyId
parameter passed in the operation invocation. (The party whose party type is trying to be
modified.)

The t_PartyType type variable in the exception contains the value of the
t_PartyType parameter passed in the operation invocation.

• PartySuspended:
This operation cannot be performed because the party is suspended. It may be raised if
the operation cannot be completed because the party is suspended. (e.g. a
suspendPartyReq() on a party that is already suspended will raise the exception with
this error code.)

Some operations may be able to be completed even though the party identified is
suspended, (e.g. endPartyReq() may succeed, and remove the party from the session,
even though the party is already suspended). Such operations do not need to raise the
exception with this error code. (See specific operation descriptions for details.)

 page 113

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.4.1.7.4. e_AnnouncementError Exception

// module TINAUsageCommonTypes
enum t_AnnouncementErrorCode {

UnknownAnnouncementError,
InvalidAnnouncementProperty

};

exception e_AnnouncementError {
t_AnnouncementErrorCode errorCode;
TINACommonTypes::t_PropertyErrorStruct propertyError;

};

The e_AnnouncementError exception is defined for the announceSessionReq() operation. The
exception is raised if the t_AnnouncementProperties are invalid.

The following error codes can be used to define the problem encountered:

• UnknownAnnouncementError:
An error in announcing the session of an unknown type has occurred during the
processing of the operation. The operation has failed, and has not performed the required
action. (This error code should only be used when an error has occurred which is not
covered by the other error codes or exceptions, which the operation can raise. That
means it shouldn’t be raised frequently.)

• Invalid AnnouncementProperty:
The t_AnnouncementProperties parameter is in error.

The propertyError element of the exception describes the type of error in the
announcement property.

If the propertyError contains InvalidProp ertyName , then the property name is not
legal for this operation. If it contains InvalidPropertyValue , then the value is not a
legal value for the property name.

If the propertyError contains UnknownPropertyName , then the session does not
recogise the property name. Some sessions may ignore t_ PropertyName ’s that they do
not recognise. They should not process t_PropertyValue associated with the
t_PropertyName but may process the other t_ Property’s in the
t_Annou ncementProperties parameter. Such sessions do not need to raise the
exception with this error code.

5.4.1.7.5. e_IndError Exception

// module TINAUsageCommon Types
enum t_IndErrorCode {

UnknownIndError,
UnknownIndId,
InvalidIndId};

exception e_IndError {
t_IndErrorCode errorCode ; };

This exception is defined for the Voting feature set, and other feature sets, that accept an t_IndId in
order to identify a previously sent indication.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 114

5.4.2 Stream binding terminology

Stream bindings represent multipoint-to-multipoint, multimedia connections and are used to describe
service level communication requirements. TINA’s stream binding model has been introduced in
Section 5.4.1.3. The terminology and parameters used to describe stream bindings derive from those
models and the service session graph.

This section introduces particular terminology used to describe stream bindings, expands on
supporting concepts, and introduces new parameters. The stream binding feature set also uses the
common parameter types described in Section 5.4.1.6 and exceptions described in Section 5.4.1.7.

5.4.2.1 Terminology:

• Media type: A description of the data flow types which may be associated with a stream
binding or stream binding component such as a SFC or SFEP. Examples include video,
audio, and data. A media type can be associated with a number of attributes, such as
service quality, for a more precise description or requirements.

• Session member: An existing resource or party associated with a service session (from
SSG). As stream bindings may be established between resources as well as parties, this
term is used to indicate elements in a service session that can potentially be bound.

• Stream binding (SB) or Stream Binding Session Relation (SBSR): Describes a
multipoint-to-multipoint multimedia connection between parties and resources.

• Participant Oriented SB: A stream binding description which describes communication
requirements in terms of type and participants rather than SFEPs to be connected.

• SB controller: Any party that establishes a control relation with the stream binding but
does not offer SIs or SFEPs to be bound.

• SB member: Any session member associated with the stream binding as a SB participant
or SB controller.

• SB participant: Any party or resource that offers SIs or SFEPs to be bound by the stream
binding.

• Stream binding (Overall) type: A type label used by SB participants to determine which
SFEPs they need to offer to the stream binding. The stream binding type is service
dependent and is interpreted by the participants’ UAPs where it may be associated with
particular media types and stream binding configurations.

• Stream flow connection (SFC): Describes point-to-point or point-to-multipoint
connections between SFEPs. A SFC supports a particular media type, and is described
by branches each terminated by an SFEP. Each SFEP in an SFC must support the same
media type (e.g. video) but may support different attributes of the media type, e.g. different
levels of service quality or different data formats. In the latter case, the provider is
responsible for locating suitable resources for translating and bridging between formats.

• Associated SFCs: SFCs associated with a particular media type or participant. Each media
type with in a stream binding requires the support of a group of SFCs as determined by the
service logic. Any SFC that has the attributes of a media type is said to be associated with it.
An SFC is also associated with all participants whose SFEPs it connects.

• Implicit SFCs: The set of SFCs that support a participant oriented stream binding’s
communication requirements. This set of SFCs is determined by a stream binding algorithm
and the service logic’s knowledge of extra resources such as bridges. It is not explicitly defined
by the SB members.

 page 115

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• (SFEP) Bind tags: tags associated with SFEPs and used by the service logic’s stream
binding algorithm to help determine which SFEPs need to be connected.

• Service quality: Expresses the acceptable levels of service performance. This concept
is most usefully associated with particular media type: i.e. it is easier to consider
performance in relation to video or audio rather than the overall performance of a stream
binding which may be associated with many different media types.

• Success criteria: The criteria that need to be met in order for an operation on a stream
binding (including its creation) to be considered successful. If an operation is not
successful, any completed steps should be reversed.

5.4.2.2 Stream Binding Algorithms

When a participant oriented stream binding description specifies communication requirements, a
mapping from this model to one suited to the communication layer is required. In TINA, we assume
the existence of a communication session supporting communication functionality which uses SFCs
to model communication requirements. The service session logic needs an algorithm that will map
the information from the stream binding model to SFCs. The stream binding algorithm uses
information from stream binding request and exe operations to determine which SFEPs need to be
connected and hence what SFCs to generate.

This section introduces a simple algorithm that is supported by existing parameters of PaSB feature
set operations. This algorithm is not mandatory, but some algorithm that produces consistent
behaviour, at least for a service type, is required. A binding algorithm needs to be run after stream
binding creation, modification (including withdrawal and registration of SFEPs), and rebind requests.

Simple algorithm: When a stream binding is requested, it is associated with a service dependent
stream binding type. This type is interpreted by the participants’ software (not by the service logic)
possibly in conjunction with a service specific role that participant has (e.g. teacher or student) to
determine which SFEPs are required. When a participant registers its SFEPs for use in a stream
binding, they are tagged with a bind tag. The service logic can then use a binding algorithm to
determine which SFEPs need to be connected by:

• matching the bind tags;

• checking that SFEP media types match11;

• ensuring that SFEP directions (i.e. sink and source) are consistent.

The provider may need to find additional resources (e.g. bridges) to make the mapping to SFCs (e.g.
it is possible to have a multiparty-to-multiparty connection which is not directly supported by SFCs).

Variations: The TINA PaSB feature set allows for variations on this simple binding algorithm by
allowing requesters to specify media types and their attributes and particular participation roles.

• Media types: Media type descriptions can be used to request particular media types be
supported by the stream binding and specify particular requirements, such as service
quality. If media types are specified, they should be used in conjunction with the overall
type by a participant’s UAP to determine which SFEPs to return.

11. The media type of each SFEP in an SFC must match (e.g. all should be video).If there are a number of similar
media types (e.g. presentation video and participant video in a conference service) then there may be other
attributes may that require matching.However, not all attributes need match (e.g. service quality - only the terminal
knows what quality it can meet; data formats - e.g. PAL/NTCS). The provider determines if the SFC be can created.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 116

• Participant roles: The TINA PaSB feature set allows a requester to modify SB participation
roles from those imposed by service specific roles. This could be used where no specific
roles are specified in the service logic or a where a service specific role needs to be
overridden for a particular stream binding or particular session members.

• Stream binding configuration: Additional configuration information could be included in the
media type descriptions if desired. This possibility has not been investigated fully.

5.4.2.2.1. Roles

It is useful to describe behaviour with in a stream binding in terms of particular roles. Across the Ret
reference point, the consumer or retailer domains are constrained to particular roles. Roles include
the SB participant and SB controller roles introduced earlier.

SB participant (or party) role: The party domain components (the UAP) usually support a participant
role. A participant can supply SFEPs to a stream binding and also request the creation, modification
or removal stream bindings. A participant requires request interfaces from the Retailer and supports
exe and information type interfaces.

SB provider role: The retailer domain components (i.e. USM or SSM) support the provider role. A
provider supports requests to establish, modify or remove a stream binding. After a request, it may
optionally initiate negotiations, before completing the request. A provider component typically relies
on another provider component or a communication session to establish the stream binding.

SB controller role: A controller can make requests to create, modify or remove a stream binding but
can not actually have SFEPs bound in a stream binding. If consumer components support this role,
then they require request interfaces from the SB provider, but need not support exe interfaces. This
concept may also be used to model internal logic or a composing service requesting a stream binding.

Passive participant role: A passive participant can have SFEPs bound in a stream binding but can
not make requests to create, modify or delete a stream binding. Components supporting this role do
not require a request type interface from the provider, but do support exe and information interfaces
like a normal participant. This role would usually be assumed by resources, but may be applicable to
consumers in some service specific roles.

5.4.2.3 General Stream Binding Data Types

This section introduces some widely used types. Some are discussed at greater length in Section
5.4.3, "Common Communication Session and Stream Binding Data Types".

• t_SBType: // module TINAStreamCommonTypes
A string used to identify the stream binding type to a party’s UAP. The UAP can use it to
determine how many SFEPs of which types are required to support the stream binding. It
is not usually interpreted by the service logic. It may be supplemented by a number of
media type descriptions.

• t_AdministrativeState: // module TINASBCommSCommonTypes
An enumerated type that indicates the administrative state of an object, see Section
5.4.3.4. An object may have a locked (inactive) or unlocked (active) state. If a stream
binding member is locked, then all associated SFEPs and associated SFC branches are
locked. If an SFEP is locked then it and any associated SFC branch are locked. If an SFC
branch is locked, the associated resources (including SFEPs) are reserved by not in use.

 page 117

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• t_MediaDesc: // module TINASBCommSCommonTypes
A complex data type used to describe and set requirements for a media type within a
stream binding. Media types include audio, video, and data. A media description includes
a string type label, and a list of attributes. Attributes would normally describe service level
requirements such as service quality12 or format requirements. See also Section 5.4.3.3.

• t_MediaDescList: // module TINASBCommSCommonTypes
A sequence of media type descriptors. (A sequence is a variable length list of items.)

5.4.2.4 Participant Description Data Types

Each participant is described by an identifier, control information (e.g. ownership of stream binding),
stream binding membership role, initial administrative state, success and recovery criteria, and any
additional information (e.g. particular media requirements).

// module TINAPaSBTypes::

• t_SBFSParticipationType:
An enumerated type that indicates the participation role in a stream binding The
participation role modifies the stream binding type and service specific session roles of
the participant (if it has one). Possible values are:

• SBFSApplicationSpecific: Use default stream binding type and service specific role.

• SBFSSinkAll: Sink the SFCs of any associated media types (i.e. do not a act as source).

• SBFSSourceAll: Source the SFCs of any associated media types (i.e. do not act as a sink).

• SBFSSinkSourceAll: For each media type, act as a sink and source

• SBFSSinkSource: Sink or source media types as applicable.

• SBFSAssociate: A resource, such as a bridge, that may be used to support the stream binding
if necessary.

• SBFSInitiator: An SB controller who does not participate in the stream binding.

• t_SBControlSRType:
An enumerated type that indicates the control relationship between the participant and a
stream binding. Control relationships are discussed in Section 5.4.1.4. This parameter
sets the initial ownership and read/write permissions of the stream binding. Ownerships
permissions must be set when the stream binding is created to prevent other parties
gaining control of it before control relations can be set up. Possible values are:

• DefaultSBControl: The SB member’s control relationship is determined by the service logic.

• OwnershipSBControl: The SB member has an ownership relation to the stream binding

• ReadSBControl: The SB member has read access to the stream binding. All SB participants
must have at least read permission for the stream binding.

• WriteSBControl: The SB member has write access to the stream binding.

• t_ParticipantId:
This is an element identifier previously set by the session to identify some object. Only
element identifiers relating to parties, resources, or groups of these are valid in this
context13. Participant identifiers are part of the participant description and are also used

12. It would also be possible to include communication level information (e.g. the terminal’s supported capabilities) if
desired when returning the media type of a SFEP. This information would not be interpreted by the service logic but
passed to the communication session or equivalent. The only reason for sending it with the service information
would be to make the later communication set up more efficient.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 118

to identify participants affected by a stream binding request when no description is
required (e.g. when deleting participants). If a participant identifier identifies a group, then
each member of that group must be participating in the stream binding. A stream binding
action on a group affects all its members (e.g. deleting a group deletes all its elements
from the stream binding; adding a group adds all its elements with the same participation
requirements).

• t_ParticipantIdList: A sequence of participant identifiers

• t_ParticipantDesc:
A complex data type that describes the requested participation requirements for a
particular session member. This data type includes the participant’s identifier,
participation role, success criteria and recovery actions (see Section 5.4.2.6), control
relation to the stream binding, and initial administrative state. A string acts as an additional
information parameter.

• t_ParticipantDescList: A sequence of participant descriptions

5.4.2.5 Stream Flow Endpoint Service Description Data Types

SFEPs are described a name unique to the consumer domain, media description (e.g. type “video”,
video quality “broadcast”), direction (sink or source), current administrative state, an interface
reference to the associated TCSM and a bind tag. This tag is used by the stream binding algorithm
to determine which SFEPs should be connected. Each SFEP may be associated with an Stream
Interface (SI) which groups SFEPs. The SFEP will be given a unique session identifier for use within
the session as the local SFEP name may not be unique in the session.

SFEPs are returned by SB participants in response in response to join and modify stream binding
requests. The SFEPs should match the given stream binding and media types, but some
requirements, such as service quality, may be varied. Before it can be used in a stream binding, an
SFEP must be known to the supporting Terminal Communication Session Manager (TCSM)14.

• t_SFEPId // module TINAStreamCommonTypes
An session element identifier used to identify objects to the service session. This is
assigned once the SFEP is registered with a session.

• t_SFEPBindName // module TINAStreamCommonTypes
A string bind tag used by the service logic to help determine which SFEPs need to be
connected with each other.

• t_SFEPName // module TINASBCommSCommonTypes
A name (see Section 5.4.3.1) unique to the consumer domain that identifies a SFEP, and
used by the communication level SFEP description.

• t_SIName // module TINASBCommSCommonTypes
A name unique to the consumer domain that identifies a stream interface. It is used by the
service level SFEP description to indicate the associated SI.

• t_SIRef // module TINAStreamCommonTypes
A general interface reference to an SI which may be used to control data flow, if there is
DPE support. An SI reference is included in the SFEP and SI descriptions for future DPE
support. The SFEP’s SI reference belongs to its associated SI.

13. A session relation (of any type) or a group of session relations are not valid participant types for a stream binding.

14. How this is achieved and how SFEPs are created is not part of this reference point. However, standard methods
of creating and/or registering SFEPs would help the portability of application code.

 page 119

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• t_SFEPComDesc // module TINASBCommSCommonTypes
A complex data type used to describe SFEPs at the communication level, but included in
the service level description. This description includes the local identifier, the “direction”
of the SFEP (i.e. sink or source), the administrative state, the media type description, and
associated the TCSM interface reference.

• t_SFEPComDescList // module TINASBCommSCommonTypes
A sequence of SFEP communication level descriptions.

• t_SFEPServDesc // module TINAStreamCommonTypes
A complex data type used to describe SFEPs at the service level. This data type contains
the communication level descriptor required by communication session level. It also
includes the t_SFEPId, the t_SFEPBindName, and the associated SI identifier and
interface reference.

• t_SFEPServDescList // module TINAStreamCommonTypes
A sequence of SFEP service level descriptions

5.4.2.6 Success and Recovery Criteria Data Types

Success criteria are used to determine the success of creation and subsequent operations on a
stream binding. Recovery criteria (or actions) are used to determine what actions to take on the failure
of a stream binding during operation. Criteria may be set for the overall stream binding or for particular
stream binding members or media types. Supported criteria types are listed below.

// module TINAStreamCommonTypes::

• t_SBSuccessCriteria
The overall stream binding success criteria. This is a enumerated data type that specifies
the criteria to be met for the creation of, or subsequent operations on, the stream binding
to be judged successful. The value is set during stream binding set up and may be
modified later. The following values are supported:

• SBSuccessDefault: Use the service logic’s default success criteria.

• SBBestEffort: Best effort to connect as many parties to as many media types (or associated
SFCs) as possible.

• SBBEOnParties: Best effort to connect as many parties as possible to all required media types
and associated SFCs. If the party can not be connected for all associated SFCs, then it wil l not
be connected for any.

• SBBEOnFlows: Best effort to connect as many media types and associated SFCs to all parties.
An SFC will only be created if all parties can be connected.

• SBAllOrNone: All parties will be connected for all associated SFCs or the entire stream
binding operation will fail.

• SBPartySpecific: Success criteria are set individually for each stream binding member.

• t_ParticipantSuccess
The stream binding success criteria for a particular stream binding member. The following
values are supported:

• ParticipantDefault: Use default service specific stream binding success criteria for this
participant.

• ParticipantMustAll: The participant must be connected for all associated SFCs, otherwise the
stream binding operation will fail.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 120

• ParticipantMustBE: The participant must be connected for at least one associated SFC,
otherwise the stream binding operation will fail.

• ParticipantBE: Best effort to connect as many associated SFCs as possible. The stream binding
operation will not fail if the participant can not be connected for all or any SFCs.

• ParticipantBEAll: Best effort to connect all associated SFCs to the participant. Do not connect
any SFCs if can not connect all SFCs. The stream binding operation will not fail if the
participant can not be connected.

• t_SBRecoveryCriteria
The overall stream binding recovery criteria. This is a enumerated data type that specifies
the actions to be taken on a failure and the criteria for the recovery to be judged
successful. The value is set during stream binding set up and may be modified later. The
following values are supported:

• DefaultRecovery: Use default overall recovery actions determined by service logic.

• IgnoreFailure: Take no recovery actions on a full or partial failure.

• ReestablishBE: Try to reestablish, best effort to reestablish previous setup. (i.e. If party or SFC
can not be recovered, stream binding does not fail.)

• ReestablishBEOnParties: Participant must have previous setup or drop it from the stream
binding. This does not cause the stream binding overall to fail.

• RestablishBEOnFlows: Recover SFCs to previous state or drop it from the stream binding.

• ReestablishAll: Try to reestablish all flows and all participants as before or recovery fails

• DeleteAll: Pull down rest of stream binding on partial failure

• PartySpecificRecovery: Use specified criteria for each party.

• FlowSpecificRecovery: Use specified criteria for a SFC or Media Type (and associated SFCs).

• t_ParticipantRecovery
The recovery actions associated with a particular stream binding member and the
associated success criteria. The following values are supported:

• RecoverDefault: Use default service specific SB recovery actions for this participant.

• RecoverMustAll : Participant must be recovered for all associated SFCs otherwise the stream
binding recovery will fail.

• RecoverMustBE: Participant must be reconnected for at least one SFC, otherwise SB recovery
will fail.

• RecoverBEAll: Best effort to recover all the participant’s associated SFCs: do not reconnect
any if not all SFCs recovered. The stream binding will not fail if the participant is not
reconnected.

• RecoverBE: Best effort to recover as many SFCs as possible for the participant. The stream
binding will not fail if the participant can not be recovered for any or all SFCs.

• IgnoreParticipantFailure: Ignore failure of this participant.

• DeleteOnParticipantFailure: Delete the stream binding if this participant fails.

• t_SBRecover
Overall recovery actions, including the t_SBRecoveryCriteria specified above and
the number of retries for any recovery action. This is valid only if the boolean flag is true.

Success criteria are used at a number of stages during a stream binding request. These include:

 page 121

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• After the exe operations: check that returns from participants meet success criteria. There
is no point continuing with a request if criteria are not met here. Examples include:

• A stream binding request will fail if a participant that must be connected for any media type
throws an exception on an exe request.

• A stream binding request may fail if a participant must be connected for all media types and
does not return SFEPs for all requested media types.

• At the SFC mapping (before communication stage): ensure that success criteria of SFCs
match stream binding and participant criteria. (This aids later SB criteria checks.)

• During the communication stage: the communication session should check that the
success criteria of each SFC is met. (If mapping SFCs to NFCs, it should also ensure that
NFC success criteria are set appropriately as well.)

• After the communication stage: check the success criteria are met when assessing the
state of the SFCs supporting the stream binding. For example:

• The stream binding request may fail if an operation on a supporting SFC fails

• Some SB criteria may not be met even if all operations on supporting SFCs succeed, requiring
a check on the returned state of SFCs.

Recovery action and criteria are used after the failure of the stream binding or any part of it. First,
these parameters are used determine what, if anything, should be done to recover communications.
Then they are used to determine if the recovery actions have succeeded. If the recovery actions do
not succeed, then the entire stream binding may be deleted.

5.4.2.7 Stream Binding Description Data Types

We will only consider the participant oriented stream binding description, which describe stream
bindings in terms of overall type, media types, and participants. The advantage of this model is that
a requester need not know details such as a potential SB participants’ SFEPs which makes the
creation or modification of the stream binding simpler. This stream binding data type builds on the
types described previously. Other types of stream binding description are possible, for example it
would be possible to describe an SB as a group of SFCs.

• t_PaSBFSDesc // module TINAPaSBTypes
A complex data type that describes a stream binding in terms of its overall type
(t_SBType), media type descriptions (t_MediaDescList), administrative state
(t_AdministrativeState), success and recovery criteria (t_SBSuccessCriteria
and t_SBRecoveryCriteria), and a list of SB members and their participation
descriptions (t_ParticipantDescList). The media type descriptions identify various
media types associated with the stream binding and specify service level requirements
such as service quality. The t_PaSBFSDesc data type is used to describe a new stream
binding to be setup by an addProviderPaSBReq() type request.

5.4.2.8 Return Data Types

These are data types that may be returned by stream binding request or information operations.

// module TINAStreamCommonTypes::

• t_RequestId:
Identifies a request by the requester’s identifier and an integer assigned by the provider.
This data type supports asynchronous operations and helps in distributing stream binding
state information to SB participants.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 122

• t_FailureCode:
An unsigned short integer to which an error code can be assigned.

• t_RetElementId:
An identifier that maps the local identifier of an object to a session element identifier. It is
especially useful for distributing SFEP and SI information to SB participants. It may also
be used to return identities of items that have different types of identifier.

• t_RetElementIdList: a sequence of t_RetElementId.

• t_FailedElementDesc:
Identifies an element and describes why it, or an operation on it, failed.

• t_FailedElementDescList:a sequence of t_FailedElementDesc.

• t_SBElementFailure:
Describes the failure of a complex element or an operation on it. It identifies the complex
element and lists associated failed elements (e.g. a participant and associated SFEPs).

• t_SBElementFailureList: a sequence of t_SBElementFailure.

• t_SBElementSuccess:
Describes the success of an operation on a complex element in terms of the complex
element’s identifier and lists of associated elements and their success or failure state.

• t_SBElementSuccessList: a sequence of t_SBElementSuccess.

• t_SBBindState:
Describes the state of a stream binding after a request. It identifies the stream binding,
then lists elements successfully setup or modified by the operation, followed by elements
for which the operation failed.

• t_ProblemType:
An enumerated type that specifies the kind of object causing a failure: an element,
operation parameter, or complex communication element.

• t_ReqProblem:
A union of an element identifier, a parameter type label, and a complex failure state. It is
used as additional information describing failure in a failurePartyGSInfo() operation.

5.4.2.9 Error Codes and Exceptions

As well as the general exceptions and error codes associated with e_BasicFSError and
e_UserDomainError, PaSB feature set have a number of specific exceptions. Most exceptions
indicate errors of some variety, but they are also used to support asynchronous responses.

// module TINAProviderPaSBUsage
exception e_NoSynchronousReqResp {

t_RequestId;
};

This exception is thrown when an request is to be processed asynchronously, whether at the parties’
request or because the provider does not support synchronous processing. The parameter
t_RequestId is used to identify the request for later notification of the operation’s success or failure.

// module TINAProviderPaSBUsage
enum t_PaSBSetupErrors{

PaSBSetup_InvalidSBId,

 page 123

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

PaSBSetup_InvalidSBOp,
PaSBSetup_UnknownSBType,
PaSBSetup_UnknownMediaType,
PaSBSetup_IncompatibleParameters,
PaSBSetup_UnknownParticipantType,
PaSBSetup_SuspendedParticipant
PaSBSetup_UnknownParticipantId,
PaSBSetup_UnknownCriteria,
PaSBSetup_InvalidCriteria,
PaSBSetup_UnsupportedCriteria,
PaSBSetup_CriteriaNotMet,
PaSBSetup_CommsNotAvailable,
PaSBSetup_InsufficientBandwidth,
PaSBSetup_QoSCannotBeMet,
PaSBSetup_InsufficientResources,
PaSBSetup_NoPathFound,
PaSBSetup_UnknownSFEP,
PaSBSetup_UnknownRFEP

};

exception e_PaSBSetupError {
t_PaSBSetupErrors errorCode;
t_ElementId name;

};

This exception is returned for errors on setup type requests to the provider. Setup requests include
the creation of the stream binding, adding participants, withdrawing or registering SFEPS, and
changing media types or their requirements. As well as the error code, the identity of unknown or
problem entities is returned, if valid for the error type. The following error codes can be used to specify
the problem encountered:

• PaSBSetup_InvalidSBId:
The given stream binding identifier for the operation is not correct.

• PaSBSetup_InvalidSBOp:
This stream binding operation is not valid for this stream binding.

• PaSBSetup_UnknownSBType:
The given stream binding type is not known by either the other participants or the service
logic and cannot be set up.

• PaSBSetup_UnknownMediaType:
The given media type is not known to this session or other SB participants and can not be
supported.

• PaSBSetup_IncompatibleParameters:
The operation parameters are not compatible. E.g. a media type is not compatible with
the stream binding type, or the service quality is not compatible with its media type.

• PaSBSetup_UnknownParticipantId:
The given participant identifier is not known to the session.

• PaSBSetup_UnknownParticipantType
The given participant description is not understood by the session or a participant.

• PaSBSetup_SuspendedParticipant:
The given participant is currently suspended and cannot participate.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 124

• PaSBSetup_UnknownCriteria:
The given success or recovery criteria is not known to this session.

• PaSBSetup_InvalidCriteria:
The given success or recovery criteria is invalid for this stream binding.

• PaSBSetup_UnsupportedCriteria:
The given success or recovery criteria are not supported by this session.

• PaSBSetup_CriteriaNotMet:
This operation did not meet the given (or established) success criteria.

• PaSBSetup_CommsNotAvailable:
Supporting communications were not available (i.e. did not respond or not found).

• PaSBSetup_InsufficientBandwidth:
Insufficient bandwidth was found to setup this stream binding.

• PaSBSetup_QoSCannotBeMet:
Minimum service quality could not be met (due to lack of bandwidth, lack or participant
support for the requested quality etc.).

• PaSBSetup_InsufficientResources:
Not enough resources could be found to establish this stream binding (this could include
service level resources such as bridges).

• PaSBSetup_NoPathFound:
Paths could not be found to connect the nominated participants for these media types.

• PaSBSetup_UnknownSFEP:
Could not find supporting SFEPs.

• PaSBSetup_UnknownRFEP:
Could not find supporting network endpoints (RFEPs) associated with the SFEPs.

Other retailer domain stream binding exceptions give error codes that are a subset of the error codes
described here. These subsets are introduced to ensure that exceptions thrown are relevant to the
operation generating the exception. The following additional exceptions and related error codes are
supported by stream binding providers:

// module TINAProviderPaSBUsage

• e_PaSBOperationError // module TINAProviderPaSBUsage
Used for state change and deletion errors with t_PaSBOperationErrors error codes.

• e_PaSBQueryError // module TINAProviderPaSBUsage
Used for state change and deletion errors with t_PaSBQueryErrors error codes.

The consumer domain interfaces also throw exceptions. Two sets have been identified for exe
operations which have similar error types to those specified for the e_PaSBSetupError exception.
there are no exceptions associated with information operations.

• e_PaSBPartySetupError // module TINAPartyPaSBUsage
Used for state change and deletion errors with t_PaSBPartySetUpErrors error codes.
This exception is associated with join and modify type exe operations.

• e_PaSBPartyExeError // module TINAPartyPaSBUsage
Used for state change and deletion errors with t_PaSBPartyExeErrors error codes.
This exception is associated with leave and state change type exe operations.

 page 125

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.4.3 Common Communication Session and Stream Binding Data Types

This section describes data types common to the communication session and stream binding feature
sets. Common data types include names, attributes, type descriptions, state values, and SFEPs.

5.4.3.1 Naming Data Types

Names are used to identify objects, such as SFEPs, SFCs, resources, and domains. To cope with
complex naming schemes, these are implemented using a sequence of name attributes. Type name
labels are used to identify data types. These are simply strings and are used for convenience. They
need not follow a formal naming scheme.

// module TINASBCommSCommonTypes::

• t_TinaName:
A sequence of strings that can be used to implement a formal naming scheme. The
interpretation of the strings depends on the naming scheme, but generally they form pairs
of name attribute types and values.

• t_TinaNameList: A sequence of t_TinaName.

• t_TinaNameAttribute:
A string identifying a particular name attribute type in a t_TinaName.

• t_TinaNameValue:
A string giving the value of a particular name attribute in a t_TinaName.

• t_Identifier:
A t_TinaName used to identify resources, including SFEPs, and domains.

• t_TypeId:
A string used as a type name or label (e.g. name attribute types, media types).

5.4.3.2 Attribute Data Types

Attributes are named data types that can take any data type as a value. The type of the value can be
determined from the identifier.

// module TINASBCommSCommonTypes::

• t_Attrib:
An attribute value pair, where the attribute type identifier is given by a t_TinaName and
the value is given by an any data type.

• t_AttribList: A sequence of t_Attrib.

• t_AttribIdList: A sequence of attribute identifiers (i.e. of t_TinaName).

5.4.3.3 General Type Descriptions and Media Data Types

General type descriptions are a flexible way of describing types: they may be considered a template
listing attributes and their values. Type descriptions may be used to describe complex information
types which have variable attributes, such as media types associated with SFEPs and SFCs.

// module TINASBCommSCommonTypes::

• t_TypeDesc:
A general type descriptor consisting of a type identifier label of type t_TypeId and a list
of attributes (t_AttribList) that describe the type.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 126

• t_TypeDescList: A sequence of t_TypeDesc.

• t_TypeChangeDesc:
A descriptor that specifies how a type has changed. It consists of a type identifier label
(t_TypeId), a list of identifying attributes, a list of new attributes that are to replace
current attribute values or be added to the description, and a list of attributes that are no
longer valid. Identifying and new attributes are listed in a t_AttribList while the
attributes to be removed are identified by a t_AttribIdList.

• t_TypeChangeDescList: A sequence of t_TypeChangeDesc.

• t_MediaDesc:
A media type descriptor based on the generic type descriptor (t_TypeDesc).

• t_MediaDescList: A sequence of t_MediaDesc.

• t_MediaChangeDesc:
A media type change descriptor, based on the generic type change descriptor
(t_TypeChangeDesc).

• t_MediaChangeDescList: A sequence of t_MediaChangeDesc.

5.4.3.4 State Data Types

These parameters describe the state of a stream binding, its implied SFCs, and other supporting
objects. These are also used in the NRA and across the ConS reference point. Only the administrative
state is used directly in stream binding operations. The other states in the following groups are ones
that could be used in confirmation and notification operations on the information interface.

// module TINASBCommSCommonTypes::

• t_AdministrativeState:
The administrative state of a resource indicates if a resource is available for use. It does
not indicate if the resource is operable. Changing this state can enable or disable an
object. Possible values are: Locked (inactive); ShuttingDown (changing state); and
Unlocked (active).

• t_OperationalState:
The current operational state of an object or resource that indicates if a resource is
operable. Possible values are Disabled and Enabled.

• t_UsageState:
The usage state of an object or resource indicates how the resource is being used.
Possible values are: Idle, Active, Busy, and Reserved.

• t_ManagementState:
The current operational, usage, and administrative state of an object.

• AlarmStatus:
ISO alarm state which indicate the priority of an alarm. Possible values are:
UnderRepair, Critical, Major, Minor, and AlarmOutstanding.

Other states are more closely related to resource operation and maintenance. These are not directly
used by stream bindings or the communication session and include:

// module TINASBCommSCommonTypes::

• ServiceState: Life-cycle related state of service.

• StandByStatus: Indicate if a resource is being used as a standby.

 page 127

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• ControlStatus: Testing status.

• AvailabilityStatus: A more detailed indication of why a resource is not available.

• ProceduralStatus: Indicates the management activities of a resource.

5.4.3.5 Stream Flow Endpoint Communication Description Data Types

Communication level SFEP descriptions are simpler than the service level descriptions described in
Section 5.4.2.5. It contains the most basic attributes used at both service and communication levels:
a name, the administrative state, the direction, and the associated media type description. Service
related attributes such as session identifiers and stream interfaces are not included.

// module TINASBCommSCommonTypes::

• t_SFEPName:
A t_TinaName used to identify a SFEP at a terminal. This name needs to be unique to
the consumer domain (or at least the TCSM), but may not be unique to a session.

• t_SFEPNameList: A sequence of t_SFEPName.

• t_SFEPDirection:
An enumerated type that describes an SFEP’s data flow direction.

• SFlowSink: Data flows into the SFEP.

• SFlowSource: Data flows out of the SFEP.

• t_SFEPComDesc:
Specifies the name, direction and administrative state of an SFEP as described above. It
also describes the associated media type with a t_MediaDesc type media attribute. It
includes an interface reference to help with communication level SFC setup. For the TINA
communication session, this interface can be cast to the TCSM’s terminal flow control
interface. (See also Section 5.4.2.5.)

5.4.4 Communication Session Model Information View

The communication session is concerned with the establishment of Stream Flow Connections (SFCs)
to support service level stream bindings. To setup an SFC, the communication session needs to
establish Terminal Flow Connections (TFCs) for each terminal between SFCs and associated
Network Flow Connections (NFCs). The Ret-RP is only concerned with the interactions between the
provider and party domains required to configure SFEPs and to establish and control TFCs. This
section will introduce the information models supporting this interface.

Figure 5-3 shows the relation between SFCs, NFCs and TFCs. The TFC provides the links between
the SFC’s SFEPs and the NFC’s NFEPs. Point-to-point, point-to-multipoint and bidirectional
topologies are allowed. These topologies result in the following options:

• NFEP (sink/bidirectional) to one or more SFEPs (sink);

• SFEP (source) to one or more NFEPs (source/bidirectional);

• SFEP (source) to multiple SFEPs (sinks - internal branches) or NFEPs (source);

• NFEP (bidirectional) to SFEP (sink) and SFEP (source). This option allows unidirectional
SFCs map to bidirectional NFCs.

The Ret-RP needs to support functionality to initiate TFCs for the above topologies, and support their
modification and deletion. To initiate a TFC, the branches of the TFC need to be defined, either in
terms of known SFEPs (known from the SFCs) and NFCs (the network connections to which the CSM

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 128

intends to map the SFCs). The NFEPs are not initially known by the communication session. Instead
it knows of ANfeps that represent either a NFEP or a group of NFEPs (or an ability to create NFEPs).
This information is used at lower layers to select a suitable NFEP for an NFC.

As well, the Ret-RP needs to support the configuration of SFEPs to support SFC type and quality
requirements. At the service level, quality is described in service related terms, e.g. FM or CD quality
audio. At the communication level, these requirements are translated into a set of supporting session
and terminal capabilities (e.g. codecs). The communication session needs to determine the
capabilities available for each SFEP and select which ones will be used

A group of SFEPs is located on a terminal. The terminal supports the SFEPs by a capability set that
consists of a list of possible capabilities and lists of simultaneously supported capabilities, see Figure
5-3. This means that using one capability may exclude using another capability for a different SFEP
if the two capabilities are not in the set of simultaneously supported capabilities. Capabilities types
include terminal, session, and transport related capabilities. A capability may be dependent on a
number of other capabilities. Dependencies are described by sets of simultaneous dependencies
which are made up of a list of capabilities that may be used as alternatives to each other.

5.4.4.1 Terminology

The following terminology is used to describe communication session functions and requirements.
This is used in conjunction with terminology previously described for stream bindings.

Figure 5-5. Simple relation between SFCs, NFCs and TFCs.l

SISI

CPE

SISI

CPE

NFEP NFEP

SFC

NFC

TFC

SFEP

Figure 5-6. SFEPs and Supporting Capabilities.l

CapabilitySet

Capability

ObjectIdentifierdependencies

Simultaneous
Capabilities

SFEP
1+

terminal support

Terminal

located

simultaneous

dependencies
alternative

1+

dependencies

 page 129

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• ANfep: Represents a potential network termination. It is the super class of the NFEP and
NFEPpool. An ANfep description includes layer network technology, direction, and a list
of descriptive attributes. Attributes may include the transport quality and associated
connectivity provider. They are used to determine which ANfeps to include in a NFC and
which connectivity provider to use to setup a NFC.

• Capability: Describes an ability to support certain functionality, e.g., an ability to support
an audio stream with a particular type of coding from a particular type of codec.
Capabilities may be associated with terminal, session or transport requirements. TINA
capability descriptions draw on the H.245 standards.

• Capability Set: Represents terminal support for SFEPs. It includes a list of capabilities
associated with the SFEPs.15 It also lists the sets of capabilities it can support
simultaneously. Use of some capabilities may exclude the use of others.

• Correlation Identifier: Is the TFC branch identifier, unique to the terminal. It is used to
correlate a NFEP (selected by connectivity layers) with the TFC branch (and hence SFEP)
with which it is associated. This allows the completion of the TFC branch setup.

• Dependencies: Capabilities are not all independent. One capability may require a
number of other types capabilities present to be used. Other capabilities may be used as
alternatives to one another.

- Simultaneous Dependencies: A set of capabilities types that are required together to
support a capability. Each type is described by an alternative dependencies set.

- Alternative Dependencies: A set of capabilities that may be used as alternatives to
each other to support another capability.

• Initiation: The communication session may initiate a TFC or a TFC branch. However a
TFC branch is not be completely set up until the ANfeps returned by the initiation step is
resolved to a NFEP and this NFEP is associated with the TFC branch.

• Completion: The setup of a TFC branch by the association with a resolved NFEP.

• Terminal : equipment in the party domain terminating a SFC connection.

• Terminal Flow Connection (TFC): A point-to-point or point-to-multipoint connection
between a SFEP and NFEPs/SFEPs or a NFEP and SFEPs. TFCs also support
bidirectional topologies between a sink and source SFEP and bidirectional NFEP. Each
TFC branches represents the terminal part of a SFC branch, usually joining it to a NFC.

5.4.4.2 Communication Session related parameters

The communication session shares a number of common parameters with stream bindings. It also
requires the following communication related parameters. Of these, ANfep descriptors and NFC
names are also shared with the ConS parameter set.

// module TINACommSCommonTypes::

• t_AlternativeCapabilities: A list of mutually exclusive capabilities. Only one of
the set may be used at a time. Capabilities are described by their identifiers.

• t_AlternativeDependencies: Describes a set of alternative capabilities on which
another capability is dependent. This capability needs to be used in conjunction with one
of these capabilities.

15. SFEPs of different types and service quality are associated with different capabilities - e.g. an audio SFEP is only
associated with capabilities supporting audio.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 130

// module TINAConSCommSCommonTypes::

• t_ANfep: Describes an ANfep. It gives the ANfep name, the layer technology,
directionality, and the type (NFEP or NFEPpool). It also includes list of descriptive
attributes that may be used to describe transport quality and other requirements. If it is an
NFEPpool type ANfep, it may include a list of NFEPs or NFEPPool within the NFEPpool.

• t_ANfepList: A sequence of ANfep descriptions.

• t_NFCName: The name of a NFC to be associated with a TFC branch.

// module TINACommSCommonTypes::

• t_BranchUpdate: Describes the updates required to a TFC branch after a change of
SFEP capabilities. It includes the branch’s correlation identifier, the type of NFEP change
required (see t_NFEPUpdate), and describes the required NFEP changes or the new
connection requirements and ANfeps using a t_ANfep list.

• t_Capability: Describes a capability in terms of:

- Capability description scheme identifier (e.g. ASN.1);

- Local capability type and instance identifiers;

- Directionality (i.e. receive, transmit, or receive and transmit associate capability);

- Simultaneous Dependencies;

- Descriptive attributes.

• t_CapabilityDescriptor: Identifies a capability and the set of simultaneously
supported capability types. Each simultaneously supported type is described by a set of
mutually exclusive capabilities using a t_AlternativeCapabilities data type.

• t_CapabilityList: A sequence of t_Capability.

• t_CapabilitySet: This data type describes a terminal’s capability set. It lists the
capabilities the terminal potential supports and the simultaneously available capabilities.

• t_CorrelationId: A TFC branch identifier unique to the terminal.

• t_CorrelationIdList: A sequence of correlation identifiers.

• t_NFCCorrelation: A correlation identifier, a NFC, and a list of ANfeps associated with
a TFC branch.

• t_NFCCorrelationList: The correlation information returned after initiating a SFEP to
multiple NFEP TFC or new branches of such a TFC.

// module TINACommSCommonTypes

• t_NFEPUpdate: Describes the updates required to TFC branches’ supporting NFEP
after a change of SFEP capabilities. Possible changes are: no change, modify the existing
NFEP, or select a new NFEP.

• t_SFEPCorrelation: A correlation identifier and SFEP associated with a TFC branch.

• t_SFEPCorrelationList: The correlation information returned after initiating a NFEP
to multiple SFEP TFC or new branches of such a TFC.

• t_SFEPSelect: A SFEP and it required capability lists. The capability list describes the
capabilities to be associated with the SFEP. These need to be reserved for its use.

• t_SFEPSelectList: A sequence of t_SFEPSelect.

 page 131

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• t_SimultaneousDependencies: Describes a set of capability types on which another
capability is dependent. This capability needs to be used in conjunction with all of these
capability types. The capability types are described by t_AlternativeDependencies.

• t_TFCName: A TFC identifier, unique in the party domain. It is set by the TCSM on the
initiation of a TFC.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 132

 page 133

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5 TINA Service Session Model Feature Sets

This section gives a detailed description of the feature sets, currently defined for the TINA Service
Session Model.

The first subsection (i_SessionModels interface) does not define a feature set, but describes an
interface that is inherited by interfaces in two of the feature sets (BasicFS and BasicExtFS).

5.5.1 i_SessionModels interface

i_SessionModels interface provides generic operations for accessing the session models
supported by a domain. It is inherited into interfaces on the Basic and BasicExt feature sets.

The following descriptions use the terms client and server domains. this is because this interface is
inherited into interfaces supported by both the party and provider domains. When the party domain is
the client, then the provider domain is the server, and vice versa.

// module TINASessionModel

interface i_SessionModel {};

void getSessionModels (
out TINACommonTypes::t_SessionModelList sessionModels

);

getSessionModels() allows the client to find out the session models supported by the server
domain. sessionModels contains a list of all the session models supported by the server domain.

void setSessionModel (
in TINACommonTypes::t_SessionModel requestedSM,
out TINACommonTypes::t_SessionModelList supportedSMs

) raises (
TINACommonTypes::e_SessionModelError

);

setSessionModel() allows the client to tell the server domain to use a particular session model. The
server domain will use only that session model, and not use any of the other session models that it
supports. The client can only tell the server to use a model that it supports.

When the session model is set, the server domain assumes that the client domain is also using the
same session model. In general, sessions are likely to only support a single session model, and so
will not have much choice in the session model that is used. Before this operation is invoked, or if this
operation is not called, then the server must support operations on all the session models it supports,
(or fail to perform the operations of any of them.)

void registerSessionModel (
in TINACommonTypes::t_SessionModel clientModel

) raises (
TINACommonTypes::e_SessionModelError

);

registerSessionModel() allows the client to inform the server domain of the session models that
it supports. It does not ‘force’ the server to use the same session model as setSessionModel()
does.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 134

 page 135

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.2 Basic Feature Set

The Basic feature set (“BasicFS”) must be supported by all sessions which support the TINA session
model.

BasicFS provides sufficient functionality to control a single party session. It allows a client application
in the party’s domain to:

• end and suspend the session;

• to discover the interfaces, session models and feature sets supported by the session;

• to retrieve the interfaces supported by the session, (both service specific and those
supporting a particular feature set);

• to register the client’s own interfaces and session models with the session.

BasicFS requires that the provider domain components support the following interface:

• i_ProviderBasicReq: which inherits from the i_ProviderInterfaces, and
i_SessionModels interfaces. It additionally supports operations to end and suspend a
session.

// module TINAProviderBasicUsage

interface i_ProviderBasicReq

: i_ProviderInterfaces,
TINASessionModel::i_SessionModel

{
};

The following are the inherited interfaces:

• i_ProviderInterfaces: allows a client application in the party domain to discover the
interfaces, and interface types, supported by the provider domain components. (This
includes the service-specific interfaces supported.) Also allows client to register the
client's interfaces, and interface types, with the session. See Section 5.5.3

• i_SessionModels: allows client to discover the session models/feature sets supported
by the session, and to get the interfaces associated with those feature sets. Also allows
the client to register its session models, feature sets and interfaces with the session. See
Section 5.5.1

BasicFS supports a client-server paradigm, where the party domain’s components are the clients, and
the provider domain components are the server. All requests using BasicFS interfaces are initiated
from the client applications, and are serviced by the provider components.

Table 5-11. BasicFS Interfaces

BasicFS interfaces on:

Party domain components (none)

Provider domain components i_ProviderBasicReq

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 136

This means that the simplest service that can be implemented using BasicFS is a single party service,
that has interfaces on the provider domain components, with no interfaces on the party domain
applications.

This does not mean that services using Basic feature set are restricted to single-party services, or
only client-server interactions. Using Basic feature set, multiple parties can discover session models
and interfaces, and register their own. Also, client applications can have interfaces, and register these
with the provider domain components.

5.5.2.1 endSessionReq()
void endSessionReq (

in TINACommonTypes::t_ParticipantSecretId myId
) raises (

TINAUsageCommonTypes::e_UsageError
);

Figure 5-7. End Session event trace.

The endSessionReq() allows a participant to request that the session end. The requesting
participant’s t_ParticipantSecretId is sent as the myId parameter.

After this request completes successfully, the session will end. The session parties’ will no longer be
able to make invocations on any of the interfaces belonging to this session. The session will not make
any invocations on interfaces of any of the parties. The t_SessionId of this session will be released
by the access components of the provider. It can no longer be used to refer to this session through
the Access part of Ret-RP.

If this is a single party session, then the session will end. (See exceptions below.)

If this is a multiparty session, then the session may send endSessionInd() to the
i_PartyMultipartyInd interface of all the other parties in the session, (if the parties support
MultipartyInd feature set), and may wait for votes to be received, (if the session supports Voting
feature set). (Precisely who is sent endSessionInd() may be determined by ControlSR feature
set, or be service specific.)

Party Domain Provider Domain
’

 Other Parties

If the session supports
MultipartyIndFS:

If ending the session is accepted
and it supports MultipartyFS:

i_ProviderBasicReq::
 endSessionReq()

i_PartyMultipartyExe::
 endSessionExe()

[void]

i_PartyMultipartyInd::
 endSessionInd()

[void]

[void]

 page 137

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

If session doesn’t support Voting feature set, or if the request is agreed (see Voting feature set for
details), then endSessionExe() will be sent to the i_PartyMultipartyExe interface of all
parties except the requesting party.

If, after the endSessionExe()operations return, the request has been successful, then the
endSessionReq() will return successfully, and the session ends. endSessionReq() can only
return success, when there is no possiblity that the session will abort the end action.

Exceptions:

When an exception is raised for whatever reason, endSessionReq() has failed and the session will
not be ended.

If myId parameter is not recognised, then an e_UsageError exception with the
InvalidParticipantSecretId error code will be raised.

If the session decides that this participant is NOT allowed to end the session (e.g. due to ControlSR
feature set; voting or a service specific reason), then a e_UsageError exception with the
UsageNotAllowed error code will be raised.

If the operation is unsuccessful for any other reason, then a e_UsageError exception with the
UnknownUsageError error code will be raised.

This operation should not raise the e_UsageError exception with the UsageOpNotSupported
error code, as this operation must always be supported by every session.

5.5.2.2 suspendSessionReq()
void suspendSessionReq(

in TINACommonTypes::t_ParticipantSecretId myId,
out TINACommonTypes::t_SessionId sessionId

) raises (
TINAUsageCommonTypes::e_UsageError

);

The suspendSessionReq() allows a party to request that the session is suspended. The
requesting participant’s t_ParticipantSecretId is sent as the myId parameter.

After this request completes successfully, the session will be suspended. The session parties will no
longer be able to make invocations on any of the interfaces belonging to this session. The session
will not make any invocations on interfaces of any of the parties. The t_SessionId of this session
will be continue to refer to this session through the access componets of the provider. It can be used
to resume the session through the Access part of Ret RP.

If this is a single party session, then the session will suspend. (See exceptions below.)

If this is a multiparty session, then the session may send suspendSessionInd() to the
i_PartyMultipartyInd interface of all the other parties in the session, (if the parties support
MultipartyInd feature set), and may wait for votes to be received, (if the session supports Voting
feature set). (Precisely who is sent suspendSessionInd() may be determined by ControlSR feature
set, or be service specific.)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 138

Figure 5-8. Suspend Session event trace.

If session doesn’t support Voting feature set, or if the request is agreed (see Voting feature set for
details), then suspendSessionExe() will be sent to the i_PartyMultipartyExe interface of all
parties except the requesting party.

If, after the suspendSessionExe()operations return, the request has been successful, then the
suspendSessionReq() will return successfully, and the session will be suspended.

Exceptions:

When an exception is raised for whatever reason, suspendSessionReq() has failed and the
session will not be suspended.

If t_ParticipantSecretId myId parameter is not recognised, then an e_UsageError
exception with the InvalidParticipantSecretId error code may be raised.

If the session decides that this participant is NOT allowed to suspend the session (e.g. due to
ControlSR feature set; voting or a service specific reason), then a e_UsageError exception with the
UsageNotAllowed error code will be raised.

If the operation is unsuccessful for any other reason, then a e_UsageError exception with the
UnknownUsageError error code will be raised.

Some services may not support suspending of the session. If this is the case, the session must still
provide an implementation of the suspendSessionReq() operation, however it must always raise
the e_UsageError exception with the UsageOpNotSupported error code. It must not perform any
other action.

Party Domain Provider Domain Other Parties

If the session supports
MultipartyIndFS:

If suspension of the session is accepted
and it supports MultipartyFS:

Suspend a service session

i_ProviderBasicReq::
 suspendSessionReq()

i_PartyMultipartyExe::
 suspendSessionExe()

[sessionId]

i_PartyMultipartyInd::
 suspendSessionInd()

[void]

[void]

 page 139

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.3 i_ProviderInterfaces interface and inherited interfaces

i_ProviderInterfaces interface provides generic operations for accessing the interfaces
exported by the provider domain, as part of a service session.

Three interfaces are defined.

• i_ProviderGetInterfaces - This interface allows the client to get interfaces exported
by this domain.

• i_ProviderRegisterInterfaces - This interface allows the client to register
interfaces exported by the client domain.

• i_ProviderInterfaces - This interface inherit from the other two, and so allows the
client to get interfaces exported by this domain, and register interfaces exported by the
client domain.

None of the interfaces should be exported directly by the provider domains. They can be inherited into
another interface which is defined as being exported across Ret RP. For the Basic feature set, the
i_ProviderInterfaces interface is inherited into the i_ProviderBasicReq interface. Other
feature sets, or service specific interface can also inherit these interfaces in the same way.

5.5.3.1 i_ProviderGetInterfaces interface

// module TINAProviderBasicUsage

interface i_ProviderGetInterfaces

{
};

void getInterfaceTypes (
in TINACommonTypes::t_ParticipantSecretId myId,
out TINACommonTypes::t_InterfaceTypeList itfTypeList

) raises (
TINAUsageCommonTypes::e_UsageError

);

getInterfaceTypes() allows the party domain to retrieve the interface types supported by the
provider domain components. itfTypeList includes all the interface types that the provider domain
components offer to the party domain, including all the service specific interface types.

void getInterface (
in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_InterfaceTypeName type,
in TINACommonTypes::t_MatchProperties desiredProperties,
out TINACommonTypes::t_InterfaceStruct itf

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_PropertyError

);

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 140

getInterface() allows the party domain to retrieve an interface of a given type, supported by the
provider domain components. Only a single interface reference is returned. If multiple interfaces of
the given type are supported, then the desiredProperties parameter can be used to select one
them to be returned. If all the interfaces match the desiredProperties, then an interface is chosen
at random. (See t_MatchProperties in Section 3.3.1).

void getInterfaces (
in TINACommonTypes::t_ParticipantSecretId myId,
out TINACommonTypes::t_InterfaceList itfList

) raises (
TINAUsageCommonTypes::e_UsageError

);

getInterfaces() allows the party domain to retrieve a list of interfaces supported by the provider
domain components.

The desiredProperties parameter can be used to scope the list of interfaces.
t_MatchProperties identifies the properties which the interface must match. It also defines
whether an interface must match one, all or none of the properties. (See t_MatchProperties in
Section 3.3.1). If ‘none’ properties are to be matched, then all the interfaces supported by the provider
domain components are returned. Currently no specific property names and values have been
defined, and so its use is service specific.

5.5.3.2 i_ProviderRegisterInterfaces interface

// module TINAProviderBasicUsage

interface i_ProviderRegisterInterfaces

{
};

This interface allows the party domain to registering interfaces with the provider domain components.
Registration allows the party domain to inform the provider domain about interfaces it supports. It
allows the interfaces to be registered and later unregistered. The provider domain is only allowed to
use the registered notifies reference between these times.

Registration of interface types is slightly different, in that no references to the interface types are given
to the provider domain. This allows the provider domain to know about the types of interfaces which
the party domain supports, but retrieve interface references through another means, (such as the
BasicExt feature set, (Section 5.5.4)).

void registerInterface (
in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_InterfaceStruct itf,
out TINACommonTypes::t_InterfaceIndex itfIndex

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError

);

registerInterface() allows the party domain to inform the provider domain of an interface it
supports. The party domain should continue to support this interface until it unregisters the interface.

 page 141

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

itf describes the interface type, reference and properties being registered.

itfIndex is used to identify the interface, and is used when unregistering the interface, (see
unregisterInterface() below.)

void registerInterfaces (
in TINACommonTypes::t_ParticipantSecretId myId,
inout TINACommonTypes::t_RegisterInterfaceList itfs

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_RegisterError

);

registerInterfaces() allows the party domain to register multiple interfaces with the provider
domain.

itfs is a list of interfaces, including the type, reference and properties of each interface. It is an inout
parameter, as the list also includes an t_InterfaceIndex with each interface. The value for the
t_InterfaceIndex is set by the operation, and returned to the party domain. The party domain can
then use the t_InterfaceIndex associated with each interface description to unregister the
appropriate interface as necessary.

void registerInterfaceTypes (
in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_InterfaceTypeList types

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError

);

registerInterfaceTypes() allows the party domain to inform the provider domain of the interface
types it supports.

types includes all the interface types that the party domain component wish to offer to the provider
domain, including service specific interface types. It does not have to include all the types of interfaces
the party domain can offer, just the ones it wishes to inform the provider domain about.

void listRegisteredInterfaces (
in TINACommonTypes::t_ParticipantSecretId myId,
out TINACommonTypes::t_RegisterInterfaceList registeredItfs

) raises (
TINAUsageCommonTypes::e_UsageError

);

listRegisteredInterfaces() allows the party domain to find out the interfaces which have been
registered with the provider domain.

registeredItfs is the list of interfaces which this party domain has registered with the provider
domain. Note: it does NOT include interfaces registered by other party domains.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 142

void unregisterInterface (
in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_InterfaceIndex index

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_UnregisterError

);

unregisterInterface() allows the party domain to unregister an interface with the provider
domain. Once the interface has been unregistered, the provider domain should not longer make use
of that interface reference.

index is the t_InterfaceIndex which identifies the interface to be unregistered. The
t_InterfaceIndex is returned when the interface is registered, or by
listRegisteredInterfaces().

void unregisterInterfaces (
in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_InterfaceIndexList indexes

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_UnregisterError

);

unregisterInterfaces() allows the party domain to unregister multiple interfaces at a time from
the provider domain. Once the interface has been unregistered, the provider domain should not
longer make use of that interface reference.

5.5.3.3 i_ProviderInterfaces interface

// module TINAProviderBasicUsage

interface i_ProviderInterfaces

: i_ProviderGetInterfaces,
i_ProviderRegisterInterfaces

{
};

This interface does not define any new operations, it merely inherits all the operations from
i_ProviderGetInterfaces and i_ProviderRegisterInterfaces.

 page 143

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.4 BasicExt Feature Set

The Basic Extended feature set (“BasicExtFS”) allows provider domain components to discover
interfaces and session models supported by the party domains’ components.

BasicExtFS is an optional feature set, which requires that the session also support BasicFS . .

BasicExtFS requires that party domain components support the following interface:

• i_PartyBasicExtReq: which inherits from the i_PartyGetInterfaces, and
i_SessionModels interfaces.

The i_PartyGetInterfaces interface is described below in Section 5.5.4.1.

The i_SessionModels interface is described in Section 5.5.1

BasicExtFS is an extension to the BasicFS . It supports the opposite of the client-server paradigm, in
that the provider domain can gain information about the session models and interfaces supported by
the party domain components.

It does not support any session control operations, such as ending or suspending the session, from
the providers domain.

// module TINAPartyBasicExtUsage

interface i_PartyBasicExtReq

: i_PartyGetInterfaces,
TINASessionModel::i_SessionModels

{
};

5.5.4.1 i_PartyGetInterfaces interface

i_PartyGetInterfaces interface provides generic operations for accessing the interfaces exported by
the party domain, as part of a service session.

The following interface is defined.

• i_PartyGetInterfaces - This interface allows the provider to get interfaces exported
by this domain.

This interfaces should be exported directly by the party domain. It is inherited into the
i_PartyBasicExtReq interface which is defined as being exported across Ret RP.

Table 5-12. BasicExtFS Interfaces

BasicExtFS interfaces on:

Party domain components i_PartyBasicExtReq

Provider domain components (none)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 144

// module TINAPartyBasicExtUsage

interface i_PartyGetInterfaces

{
};

void getInterfaceTypes (
in TINACommonTypes::t_SessionId sessionId,
out TINACommonTypes::t_InterfaceTypeList itfTypeList

) raises (
TINAUsageCommonTypes::e_UsageError);

getInterfaceTypes() allows the provider domain to retrieve the interface types supported by the
party domain components. itfTypeList includes all the interface types that the party domain
components offer to the provider domain, including all the service specific interface types.

void getInterface (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_InterfaceTypeName type,
in TINACommonTypes::t_MatchProperties desiredProperties,
out TINACommonTypes::t_InterfaceStruct itf

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_InterfacesError,
TINACommonTypes::e_PropertyError);

getInterface() allows the provider domain to retrieve an interface of a given type, supported by
the party domain components. Only a single interface reference is returned. If multiple interfaces of
the given type are supported, then the desiredProperties parameter can be used to select one
them to be returned. If all the interfaces match the desiredProperties, then an interface is chosen
at random. (See t_MatchProperties in Section 3.3.1).

t_InterfaceTypeName identifies the type of the interface to be returned.

void getInterfaces (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_MatchProperties desiredProperties,
out TINACommonTypes::t_InterfaceList itfList

) raises (
TINAUsageCommonTypes::e_UsageError
TINACommonTypes::e_PropertyError);

getInterfaces() allows the provider domain to retrieve a list of interfaces supported by the party
domain components.

The desiredProperties parameter can be used to scope the list of interfaces.
t_MatchProperties identifies the properties which the interface must match. It also defines
whether an interface must match one, all or none of the properties. (See t_MatchProperties in
Section 3.3.1). If ‘none’ properties are to be matched, then all the interfaces supported by the party
domain components are returned. Currently no specific property names and values have been
defined, and so its use is service specific.

 page 145

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.5 Multiparty Feature Set

The Multyparty feature set (“MultipartyFS”) allows the session to support multiparty services.
MultipartyFS is an optional feature set, which requires that the session also support BasicFS. It
supports the party domain components making requests for generic multiparty control actions, such
as suspending a party’s participation in the session. It also supports the session providing information
on events that have happened to other participants, eg. another party has suspended; and the
session asking the party domain components to execute an action, (eg. the user of a UAP is being
suspended, and the UAP needs to perform some action before they are suspended.)

MultipartyFS requires that the provider domain components support the following interface:

• i_ProviderMultipartyReq: supports operations to:

- request details on other participants in the session;

- request the end of a party’s participation in the session;

- request the suspension of a party’s participation in the session;

- request that a user is invited to join the session;

- request that the session is announced, in some manner.

MultipartyFS requires that party domain components support the following interface:

• i_PartyMultipartyExe:
supports the execution of generic session control actions, (such as the operations on
i_ProviderMultipartyReq, and i_ProviderBasicReq. Operations ask the party
domain component to execute an action for this participant, due to a change in the session
state, such as:

- changing this participant’s party type;

- ending the session; or this participant’s participation in the session;

- suspending the session; or this participant’s participation in the session.

• i_PartyMultipartyInfo:
supports the provider domain informing the party domain components of changes in the
session state. Party domain components do not have to support this interface. If they do
support this interface, and register it with the provider domain, then it will call operations
on this interface to inform the party domain of changes in the session, such as:

- changes to another party’s type;

- another party having ended/suspended/resumed their participation in the session;

- another party having joined the session;

- a user having been invited to join the session;

- the session having been announced, in some manner.

Table 5-13. MultipartyFS Interfaces

MultipartyFS interfaces on:

Party domain components i_PartyMultipartyExe
i_PartyMultipartyInfo (optional)

Provider domain components i_ProviderMultipartyReq

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 146

MultipartyFS provides operation to request and execute generic multiparty control actions, such as
suspending a party’s participation in the session. It does not define whether a particular party is
allowed to perform the action. The operations are defined with exceptions that can be raised, if the
session determines that a request for an action it not allowed. It is up to the session, and possibly
parties to decide if an action should be allowed, or should not be performed.

The session may use entirely service specific mechanisms to decide if an action should be performed.
Alternatively, ControlSR feature set may be used to associate owners to session entities, which
determine if an action is allowed. Also MultipartyInd and Voting feature sets allow the session to
indicate to party domain components that an action has been requested, and to vote on whether an
action is performed. All three may also be used together to determine which parties are indicated
about the action, and which can vote.

Once an action has been performed and Exe messages sent, party domain components that have
passed a reference of their i_PartyMultipartyInfo to the provider domain will receive an Info
message. All party domains that have registered their interface will receive the Info messages, unless
the ControlSR feature set defines who should receive these messages.

// module TINAProviderMultipartyUsage

interface i_ProviderMultipartyReq

{
};

5.5.5.1 listParties()
void listParties (

in TINACommonTypes::t_ParticipantSecretId myId,
out TINACommonTypes::t_PartyIdList partyIdList

) raises (
TINAUsageCommonTypes::e_UsageError

);

The listParties() allows a participant to request the id’s of the parties in the session. The
requesting participant’s t_ParticipantSecretId is sent as the myId parameter.

The request returns a list of the party ids’ of all parties currently in the session.

Exceptions: See e_UsageError exception description.

5.5.5.2 listPartiesWithDetails()
void listPartiesWithDetails (

in TINACommonTypes::t_ParticipantSecretId myId,
out TINAUsageCommonTypes::t_PartyDetailsList partyDetailsList

) raises (
TINAUsageCommonTypes::e_UsageError

);

The listPartiesWithDetails() allows a participant to request the party details of the parties in
the session. The party’s t_ParticipantSecretId is sent as the myId parameter.

The request returns a list of the party details’ of all parties currently in the session.

Exceptions: See e_UsageError exception description.

 page 147

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.5.3 getPartyDetails()
void getPartyDetails (

in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_PartyId partyId,
out TINAUsageCommonTypes::t_PartyDetailsList partyDetailsList

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_PartyError

);

The getPartyDetails() allows a participant to request the party details of the specified party in
the session. The requesting participant’s t_ParticipantSecretId is sent as the myId parameter.
The t_PartyId, of the party’s details to be retrieved, is sent as the partyId.

The request returns the party detail’s of the party identified by partyId.

Exceptions:

If partyId is not a valid id of any party in the session, then an e_PartyError exception with the
InvalidPartyId error code will be raised.

See e_UsageError exception description for other reasons for raising exceptions and the error
codes to use.

5.5.5.4 getMyPartyDetails()
void getMyPartyDetails (

in TINACommonTypes::t_ParticipantSecretId myId,
out TINAUsageCommonTypes::t_PartyDetails myDetails

) raises (
TINAUsageCommonTypes::e_UsageError

);

The getMyPartyDetails() allows a participant to request their own party details. The requesting
participant’s t_ParticipantSecretId is sent as the myId parameter.

The request returns the party detail’s of the requesting participant. (This is useful in case the
participant ‘looses’ their party id, and so can retrieve their own party id based on their
t_ParticipantSecretId myId).

Exceptions:

If the requesting participant is not a party (i.e. they are a resource, or something else) in the session,
then an e_PartyError exception with the InvalidPartyId error code will be raised.

See e_UsageError exception description for other reasons for raising exceptions and the error
codes to use.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 148

5.5.5.5 modifyPartyTypeReq()
void modifyPartyTypeReq (

in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_PartyId partyId,
in TINAUsageCommonTypes::t_PartyType newType

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_PartyError

);

Figure 5-9. Modify Party Type event trace.

The modifyPartyTypeReq() allows a participant to request that a party’s type is modified. The
requesting participant’s t_ParticipantSecretId is sent as the myId parameter. The
t_PartyId, of the party’s type to be modified, is sent as the partyId. The newType parameter
contains the new t_PartyType to be assigned to the party.

After this request completes successfully, the party, identified by partyId, will have their party type
as newType.

The session may send modifyPartyTypeInd() to the i_PartyMultipartyInd interface of the
party domains representing all the other parties in the session, (if they support MultipartyInd feature
set), and may wait for votes to be received, (if the session supports the Voting feature set). (Precisely
who is sent endSessionInd() may be determined by ControlSR feature set, or be service
specific.)

If the requesting party is the party who’s type is to be modified, then they will not be sent a
endSessionInd(). However other parties may still receive endSessionInd(), and may be able
to vote, (as above).

If session doesn’t support VotingFS, or if the request is agreed (see Section 5.5.7 for details), then
modifyPartyTypeExe() will be sent to the i_PartyMultipartyExe interface of the party
identified by partyId. (No modifyPartyTypeExe() will be sent if the requesting party is the
identified party.)

Requesting Party Provider Domain
Other Parties

If the session supports
 MultipartyInd FS:

Modify Party Type

Modified Party

If the request to modify the party type
is accepted, then:

If the party being modified made the request
then modifyPartyTypeExe() is NOT invoked

i_ProviderBasicReq::
 modifyPartyTypeReq()

oneway i_PartyMultipartyInfo::
 modifyPartyTypeInfo()[void]

i_PartyMultipartyInd::
 modifyPartyTypeInd()

[void]

i_PartyMultipartyInd::
 modifyPartyTypeInd()

[void]

i_PartyMultipartyExe::
 modifyPartyTypeExe()

[void]

 page 149

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

If the modifyPartyTypeExe() operation returns successfully, then the session will send
modifyPartyTypeInfo() to the i_PartyMultipartyInfo interface of all the party domain
components that have registered this interface with the session.

If at this stage the request has been successful, then the modifyPartyTypeReq() will return
successfully, and the party’s type will have been changed.

Exceptions:

When an exception is raised for whatever reason, modifyPartyTypeReq() has failed and the
party’s type will NOT be modified.

If partyId is not a valid id of any party in the session, then an e_PartyError exception with the
InvalidPartyId error code will be raised.

If newType is not a valid party type, then an e_PartyError exception with the InvalidPartyType
error code will be raised.

See e_UsageError exception description for other reasons for raising exceptions and the error
codes to use.

5.5.5.6 endMyParticipationReq()
void endMyParticipationReq (

in TINACommonTypes::t_ParticipantSecretId myId
) raises (

TINAUsageCommonTypes::e_UsageError
);

Figure 5-10. End My Participation event trace.

The endMyParticipationReq() allows a participant to request that their participation in the
session end. The requesting participant’s t_ParticipantSecretId is sent as the myId
parameter.

Requesting Party
Provider Domain

Other Parties

If the session supports
 MultipartyInd FS:

End MyParticipation

i_ProviderBasicReq::
 endMyParticipationReq()

oneway i_PartyMultipartyInfo::
 endPartyInfo()

[void]

i_PartyMultipartyInd::
 endPartyInd()

[void]

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 150

After this request completes successfully, the participant’s participation in the session will have
ended. The participant will no longer be able to make invocations on any of the interfaces belonging
to this session. The session will not make any invocations on interfaces of the participant’s domain
components.

The session may send endPartyInd() to the i_PartyMultipartyInd interface of the
components representing all the other parties in the session, (if the parties support MultipartyIndFS),
and may wait for votes to be received, (if the session supports VotingFS). (Precisely who is sent
endPartyInd() may be determined by ControlSR feature set, or be service specific.)

If session doesn’t support VotingFS, or if the request is agreed (see Section 5.5.7 for details), then
endParticipationInfo() will be sent to the i_PartyMultipartyInfo interface of all the
components that have registered this interface with the session.

If at this stage the request has been successful, then the endParticipationReq() will return
successfully, and the participant’s participation in the session will have ended. This operation can
return success when the action of ending the party’s participation cannot be aborted. This effectively
means that the request can return successfully after all the endPartyInd() operations have
returned, and any voting, if necessary, is complete.

Exceptions:

When an exception is raised for whatever reason, endMyParticipationReq() has failed and the
participant’s participation in the session will not be ended.

See e_UsageError exception description for reasons for raising exceptions and the error codes to
use.

5.5.5.7 endPartyReq()
void endPartyReq (

in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_PartyId endPartyId

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_PartyError

);

The endPartyReq() allows a party to request that another party’s participation in the session is
ended. The requesting participant’s t_ParticipantSecretId is sent as the myId parameter. The
t_PartyId of the party which is to have their participation ended, is sent as the endPartyId
parameter.

After this request completes successfully, the endPartyId’s participation in the session will have
ended. The ended party will not be able to make invocations on any of the interfaces belonging to this
session. The session will not make any invocations on interfaces of the ended party domain’s usage
components.

The session may send endPartyInd() to the i_PartyMultipartyInd interface of the
components representing some or all the other parties in the session, (if the parties support the
MultipartyInd feature set), and may wait for votes to be received, (if the session supports VotingFS).
(Precisely who is sent endPartyInd() may be determined by ControlSR feature set, or be service
specific, though in general the party to be ended would receive the indication).

 page 151

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

Figure 5-11. End Party event trace.

If session doesn’t support VotingFS, or if the request is agreed (see Section 5.5.7 for details), two
things happen. Firstly, endPartyExe() is sent to the i_PartyMultipartyExe interface of the
ended party. That party’s participation in the session will end. Secondly, endPartyInfo() will be sent
to the i_PartyMultipartyInfo interface of all the components that have registered this interface
with the session, (except the requesting and ending parties).

If at this stage the request has been successful, then the endPartyReq() will return successfully,
and the ended party’s participation in the session will have ended. This operation can return success
when the action of ending the party’s participation cannot be aborted. This effectively means that the
request can only return successfully after endPartyExe() has returned successfully. It can however
return before all the endPartyInfo() operations are sent.

Exceptions:

When an exception is raised for whatever reason, endPartyReq() has failed and the ended party’s
participation in the session will not be ended.

See e_PartyError exception description for reasons associated with the endPartyId for raising
exceptions and the error codes to use.

See e_UsageError exception description for other reasons for raising exceptions and the error
codes to use.

Requesting Party Provider Domain
Other Parties

If the session supports
 MultipartyInd FS:

Ending Party

If the request to end the party
is accepted, then:

If the party to end invoked the request,
then endPartyExe() is NOT invoked

i_ProviderBasicReq::
 endPartyReq()

oneway i_PartyMultipartyInfo:: endPartyInfo()

[void]

i_PartyMultipartyInd::
 endPartyInd()

[void]

i_PartyMultipartyInd::
 endPartyInd()

[void]

 i_PartyMultipartyExe::
 endPartyExe()

[void]

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 152

5.5.5.8 suspendMyParticipationReq()
void suspendMyParticipationReq (

in TINACommonTypes::t_ParticipantSecretId myId
) raises (

TINAUsageCommonTypes::e_UsageError
);

Figure 5-12. Suspend My Participation event trace.

suspendMyParticipationReq() allows a participant to request that their participation in the
session is suspended. The requesting participant’s t_ParticipantSecretId is sent as the myId
parameter.

It follows the same scenario as endMyParticipationReq(), except that the requesting party’s
participation in the session is suspended, not ended, when the request completes successfully.

(Also, suspendPartyInd() is sent instead of endPartyInd() to the i_PartyMultipartyInd
interface, and endSessionInfo() is sent instead of endPartyInfo() to the
i_PartyMultipartyInfo interface of the other parties in the session.)

5.5.5.9 suspendPartyReq()
void suspendPartyReq (

in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_PartyId suspendPartyId

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_PartyError

);

The suspendPartyReq() allows a party to request that another party’s participation in the session
is suspended. The requesting participant’s t_ParticipantSecretId is sent as the myId
parameter. The t_PartyId of the party which is to have their participation suspended, is sent as the
suspendPartyId parameter.

Requesting Party Provider Domain Other Parties

If the session supports
MultipartyIndFS:

Suspend my participation

i_ProviderBasicReq::
suspendMyParticipationReq()

oneway i_PartyMultipartyInfo::
 suspendPartyInfo()

[void]

i_PartyMultipartyInd::
 suspendPartyInd()

[void]

 page 153

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

Figure 5-13. Suspend Party event trace.

It follows the same scenario as endPartyReq(), except that the requesting party’s participation in the
session is suspended, not ended, when the request completes successfully.

(Also, suspendPartyInd() is sent instead of endPartyInd() to the i_PartyMultipartyInd
interface; suspendPartyExe() is sent instead of endPartyExe() to the
i_PartyMultipartyExe interface and endSessionInfo() is sent instead of endPartyInfo() to
the i_PartyMultipartyInfo interface of the other parties in the session.)

5.5.5.10 inviteUserReq()
void inviteUserReq (

in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_UserDetails invitedUser,
out TINAUsageCommonTypes::t_InvitationId invitationId,
out TINACommonTypes::t_InvitationReply reply

) raises (
TINAUsageCommonTypes::e_UsageError,
TINACommonTypes::e_UserDetailsError

);
The inviteUserReq() allows a party to request that another user is invited to join the session.
It is used to invite a single specific user to join the session. More information on invitations can
be found in Section 3.3.5, "Invitations and Announcements". Information regarding the stability
of the invitation specification can also be found in Section 6.1.4, "Invitations". It should not be
used to ‘announce’ the session to many users, (see Section 5.5.5.11 for this). The requesting
participant’s t_ParticipantSecretId is sent as the myId parameter.

Requesting Party Provider Domain Other Parties

If the session supports
MultipartyInd FS:

Suspending Party

If the request to suspend the party
is accepted, then:

If the party being suspended made the request
then modifyPartyTypeExe() is NOT invoked

i_ProviderBasicReq::
 suspendPartyReq()

oneway i_PartyMultipartyInfo::
 modifyPartyTypeInfo()[void]

i_PartyMultipartyInd::
 suspendPartyInd()

[void]

i_PartyMultipartyInd::
 suspendPartyInd()

[void]

i_PartyMultipartyExe::
 modifyPartyTypeExe()

[void]

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 154

Figure 5-14. Invite User event trace.

The t_UserDetails of the user which is to be invited is sent as the invitedUser parameter. The
t_UserDetails is a structure containing the t_UserId of the user, and a list of
t_UserProperty’s. The t_UserPropertys may allow the provider domain to locate the user, e.g.
by including a reference to the retailer to contact for the user, (although the t_UserId should be
sufficient to locate the user). No t_UserProperty names or values have been defined, and so its
use is currently provider specific.

The t_InvitationId identifies the invitation request. The party may wish to cancel the request,
and can use the t_InvitationId to identify the invitation to be cancelled. It can also be used to
identify the invitation that an inviteReplyInfo() refers to. The inviteReplyInfo() is sent
when a user replies to an invitation, and the provider domain session wished to inform the parties of
the user’s intentions. (See Section 3.3.5 for more details on invitations.)

The t_InvitationReply is the user’s initial reply to the invitation. (See Section 3.3.5 for more
details.)

‘The session may send inviteUserInd() to the i_PartyMultipartyInd interface of the
components representing some or all the other parties in the session, (if the parties support the
MultipartyInd feature set), and may wait for votes to be received, (if the session supports VotingFS).
(Precisely who is sent inviteUserInd() may be determined by ControlSR feature set, or be
service specific).

If session doesn’t support VotingFS, or if the request is agreed (see Section 5.5.7 for details), then
the invitation will be sent to the user. This process is not described here, nor in this document. It is
described in [5], and the part that occurs across the access part of Ret-RP is described in Section
4.4.1.3, "i_ConsumerInvite Interface".

Requesting Party Provider Domain Other Parties

If the session supports
MultipartyIndFS:

If the request to invite the user
is accepted, then:

The session will invite the user
to join the session.

(See Invite User Scenario
in Access part of Ret RP)

i_ProviderBasicReq::
 inviteUserReq()

oneway i_PartyMultipartyInfo::
 inviteUserInfo()

[t_InvtationId, t_InvitationReply]

i_PartyMultipartyInd::
 inviteUserInd()

[void]

 page 155

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

When the invitation has been successfully delivered an inviteUserInfo() will be sent to the
i_PartyMultipartyInfo interface of all the components that have registered this interface with
the session, (except the requesting party.)

5.5.5.11 announceSessionReq()
void announceSessionReq (

in TINACommonTypes::t_ParticipantSecretId myId,
in TINACommonTypes::t_AnnouncementProperties announcement

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_AnnouncementError

);

Figure 5-15. Announce Session event trace.

The announceSessionReq() allows a party to request that the session be announced. This
announcement is intended to reach many users. The complete list of users that will be reached by the
announcement may or may not be known by the session. It can however be scoped by the
announcement properties. All users that receive the announcement will have the opportunity to
attempt to join the session (see Section 4.4.2.4.24, "joinSessionWithAnnouncement()" in the access
part of Ret-RP), but may be refused to join at that time. More information on announcements can be
found in Section 3.3.5, "Invitations and Announcements". Information regarding the stability of the
announcement specification can also be found in Section 6.1.5, "Announcements".

The requesting participant’s t_ParticipantSecretId is sent as the myId parameter.

The t_AnnouncementProperties informs the session of the type of announcement to send, and
may scope the range of users which the announcement reaches. Currently, no specific
announcement property names and values have been defined, and so its use is service and provider
specific.

Requesting Party
Provider Domain

Other Parties

If the session supports
MultipartyInd FS:

If the request to announce the session
is accepted, then:

The session will announce itself
(See Annoucement Scenario

in Access part of Ret RP)

i_ProviderBasicReq::
 announceSessionReq()

oneway i_PartyMultipartyInfo::
 announceSessionInfo()

[void]

i_PartyMultipartyInd::
 announceSessionInd()

[void]

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 156

5.5.5.12 i_PartyMultipartyExe interface

This interface is supported by the party domain for sessions that support the Multiparty feature set.
The operations on this interface are Exe operations as described in Section 5.2.2, "Types of
Operations and Interfaces.". Each operation corresponds to a Req operation described above.

// module TINAPartyMultipartyUsage

interface i_PartyMultipartyExe

{

void modifyPartyTypeExe (
in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_PartyType newType

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

void endSessionExe (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAUsageCommonTypes::e_PartyDomainError

);

void endPartyExe (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAUsageCommonTypes::e_PartyDomainError

);

void suspendSessionExe (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAUsageCommonTypes::e_PartyDomainError

);

void suspendPartyExe (
in TINACommonTypes::t_SessionId sessionId

) raises (
TINAUsageCommonTypes::e_PartyDomainError

);

};

5.5.5.13 i_PartyMultipartyInfo interface

This interface is supported by the party domain for sessions that support the Multiparty feature set.
The operations on this interface are Info operations as described in Section 5.2.2, "Types of
Operations and Interfaces.". Each operation corresponds to a Req operation described above.

 page 157

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

// module TINAPartyMultipartyUsage

interface i_PartyMultipartyInfo

oneway void modifyPartyTypeInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_PartyDetails partyDetails);

oneway void endPartyInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_PartyId partyId);

oneway void suspendPartyInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_PartyId partyId);

oneway void resumePartyInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_PartyId partyId);

oneway void joinSessionInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_PartyDetails partyDetails);

oneway void inviteUserInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_UserDetails userDetails,
in TINAUsageCommonTypes::t_InvitationId invitationId);

oneway void announceSessionInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINACommonTypes::t_AnnouncementProperties announcement);

oneway void inviteReplyInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_InvitationId invitationId,
in TINACommonTypes::t_InvitationReply reply);

The inviteReplyInfo() is different to the other Info operations defined on this interface because
it does not correspond to a Req operation. It is sent to all the parties in the session, when a reply to
an invitation is received from an invited user. The invited user can reply to an invitation using the
replyToInvitation() operation on the i_RetailerNamedAccess interface, (see Section
4.4.2.3 in the Access part of Ret-RP).

The replyToInvitation() can be invoked by the invited user multiple times before joining or
declining to join the session. So inviteReplyInfo() may be invoked several times on the party
domains. The latest invocation gives the users current reply to the invitation. t_InvitationReply
is described in Section 3.3.5).

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 158

 page 159

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.6 Multiparty Ind Feature Set

This feature set is optional. It is supported by the interface i_PartyMultipartyInd.

Pre-conditions:

This feature set can only be used if the following pre-conditions are fulfiled:

• The “Multiparty” feature set is used on the same instance of Ret-RP typed interface.

Indications are generated in response to a request operation being received by a session. See
Section 5.2.2, "Types of Operations and Interfaces." for details of request, inidcations, execution and
info operations.

In general, indications are send out to the ‘owner’ of the party that is the subject of the request. E.g.
a session receives a endPartyReq(). The operation specifies a party, and an indication would be
sent to that party. Ret-RP defines an information model called the Service Session Graph (SSG),
which defines ownership roles for the parties, and other resources in a multiparty session. The SSG
defines the conditions for sending indications upon receiving a request. In order to fully understand
the usage of this feature set the reader is advised to read the “ownership” concept used in the SSG,
see Section 5.4.1, "TINA Service Session Model related Information". However, Ret-RP does not
mandate that a session implement a model of the SSG in each of the domains. It only mandates that
domains that are conformant to this feature set implements the interfaces and behaviour as defined
in this feature set.

This feature set can be used in conjunction with the Control Session Relationships Feature Set
(ControlSRFS). ControlSRFS allows parties to get and set ownership relationships for parties, (and
for other session elements, and other relationships.) This feature set is descibed in Section 5.5.8.

However, this feature set can be used independently from ControlSRFS. Sessions can use default
‘owners’ for parties, or use service-specific interfaces to to modify ‘ownerships’. Session can
determine who to send indications to independent of the party affected. Indications merely inform a
party domain that a request has been received to perform a session control action, and that the action
has not yet been taken. They do not define what action a party domain should take in response to the
indication, (although voting, or use of some service-specific operations may be appropriate.)

5.5.6.1 Usage

This feature set is used when “third party confirmations” are required.

5.5.6.2 Components and roles

The i_PartyMultipartyInd interface is supported by the party domain and required by the
provider domain.

Table 5-14. MultipartyIndFS Interfaces

MultipartyIndFS interfaces on:

Party domain components i_PartyMultipartyInd

Provider domain components (none)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 160

5.5.6.3 IDL Definition and usage scenarios

Note:

• i_PartyMultipartyInd re-uses common definitions from Basic and Multiparty
Feature Sets

• the scenarios for all the operations on i_PartyMultipartyInd are as described in
Section 5.5.5, "Multiparty Feature Set".

// module TINAPartyMultipartyIndUsage

interface i_PartyMultipartyInd

{
};

5.5.6.4 operationCanelled()
void operationCancelled (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_IndError

);

5.5.6.5 modifyPartyTypeInd()
void modifyPartyTypeInd(

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId,
in TINAUsageCommonTypes::t_PartyDetails partyDetails

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

This operation is invoked on all the parties that are defined as Owners of the SSG Party object related
to the party whose Type modification is requested, when a modifyPartyTypeReq() has been
issued by a non-owning party who wants to modify the Type of another party in the service session.
If successful, the Type of the Party object related to the modified Party will be modified accordingly.

execution: a modifyPartyTypeExe() is invoked on the party who is to be modified.

information: a modifyPartyTypeInfo() is invoked on all parties that have at least
ReadPermission over the SSG Party object related to the party whose modification has been
performed.

5.5.6.6 endSessionInd()
void endSessionInd (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId

 page 161

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

This operation is invoked on all the parties that are defined as Owners of the SSG Session object, if
an endSessionReq() has been issued by a non-owning party who wants to end an existing service
session. If successful, the session will end.

execution: an endSessionExe() is invoked on all the parties that are participating in the service
session.

information: empty

5.5.6.7 endPartyInd()
void endPartyInd (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId,
in TINACommonTypes::t_PartyId partyId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

This operation is invoked on all the parties that are defined as Owners of the SSG Party object related
to the party whose deletion is requested, when an endPartyReq() has been issued by a non-owning
party who wants to delete another party from the service session. If successful, the Party object
related to the ended Party will be removed from the SSG.

execution: a endSessionExe() is invoked on the party who is to be deleted.

information: an endPartyInfo() is invoked on all parties that have at least ReadPermission over
the SSG Party object related to the party whose deletion has been performed.

5.5.6.8 suspendSessionInd()
void suspendSessionInd (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

This operation is invoked on all the parties that are defined as Owners of the SSG Session object, if
a suspendSessionReq has been issued by a non-owning party who wants to suspend an existing
service session. If successful, the related USM and SSM service sessions will be suspended.

execution: a suspendSessionExe() is invoked on all the parties that are involved in the service
session.

information: empty

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 162

5.5.6.9 resumeSessionInd()
void resumeSessionInd(

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

This operation is invoked on all the parties that are defined as Owners of the SSG Session object, if
a request to resume the suspended session has been issued by a non-owning party via its Access
Session. The resume request is issued via its access session and then forwarded to the SSM/GSC.
If successful, the related USM and SSM service sessions will be resumed.

execution: a resumeSessionExe() is invoked on all the parties that are involved in the service
session.

information: empty

5.5.6.10 suspendPartyInd()
void suspendPartyInd (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId,
in TINACommonTypes::t_PartyId partyId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

This operation is invoked on all the parties that are defined as Owners of the SSG Party object related
to the party whose suspension is requested, when a suspendPartyReq has been issued by a non-
owning party who wants to suspend another party in the service session.

execution: a suspendPartyExe() is invoked on the party who is to be suspended.

information: a suspendPartyInfo() is invoked on all parties that have at least ReadPermission
over the SSG Party object related to the party whose suspension has been performed.

5.5.6.11 resumePartyInd()
void resumePartyInd (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId partyId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

 page 163

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

This operation is invoked on all the parties that are defined as Owners of the SSG Party object related
to the party whose resumption is requested, when the suspended party requests a resume via its
Access Session.

execution: empty

information: a resumePartyInfo is invoked on all parties that have at least ReadPermission over the
SSG Party object related to the party whose resumption has been performed.

5.5.6.12 joinSessionInd()
void joinSessionInd (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_UserDetails userDetails

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINACommonTypes::e_UserDetailsError

);

This operation is invoked on all the parties that are defined as Owners of the SSG Session object
when a joinSessionReq() has been issued by a user who wants to join an existing service
session. If successfull, a new Party object is added to the SSG to model this user (who becomes a
party) in the service session.

execution: empty

information: a joinSessionInfo() is invoked on all parties that have at least ReadPermission over
the SSG Session object.

5.5.6.13 inviteUserInd()
void inviteUserInd (

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId,
in TINACommonTypes::t_UserDetails userDetails

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError,
TINACommonTypes::e_UserDetailsError

);

This operation is invoked on all parties that are defined as Owners of the SSG Session object when
an inviteUserReq() has been issued by a non-owning party who wants to invite another user to
join an existing service session. If successfull, a new Party object is added to the SSG to model this
new party in the service session.

information: an inviteUserInfo() is invoked on all parties that have at least ReadPermission over
the SSG Session object.

5.5.6.14 announceSessionInd()
void announceSessionInd (

in TINACommonTypes::t_SessionId sessionId,

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 164

in TINAUsageCommonTypes::t_IndId indId,
in TINACommonTypes::t_PartyId reqPartyId, // Requesting Party
in TINACommonTypes::t_AnnouncementProperties announcement

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError,
TINAUsageCommonTypes::e_AnnouncementError

);

This operation is invoked on all parties that are defined as Owners of the SSG Session object when
an announceSessionInd() has been issued by a non-owning party who wants to announce the
session, to allow users to join the session.

 page 165

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.7 Voting Feature Set

VotingFS allows the parties to vote on whether an action should occur. (The party domain finds out
that the action is going to occur by receiving an indication through the i_PartyMultipartyInd interface
of the MultipartyInd feature set, or indiction interfaces of other feature sets.

VotingFS is an optional feature set, which requires that the session also support MultipartyInd feature
set.

5.5.7.1 i_ProviderVotingReq Interface

This interface allows the party domain to register a vote, in response to an indication. It is assumed
that any party that receives an indication can send a vote, if the session supports the VotingFS. (No
other mechanism is defined in Ret-RP for asking parties to vote, or for asking them not to vote when
receiving an indication. It is supported on the provider domain components.

// module TINAProviderVotingUsage

interface i_ProviderVotingReq

{
void voteReq(

in TINACommonTypes::t_ParticipantSecretId myId,
in TINAUsageCommonTypes::t_IndId indId,
in t_Vote vote

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_IndError,
e_VoteError

);
};

voteReq() allows a participant to vote after an indication has been received. All indications carry an
indication identifier t_IndId. This allows a part to send a response to receiving the indication. The
voteReq() operation is a response to an indication that allows the party domain to vote on whether
they think the action indicated should occur.

indId identifies the indiction to which this is a response.

vote is a t_Vote structure containing response, and value. The response is an enumerated
type, with the values: NoVote (the party is not registering a vote when sending this operation), Agree
(the party agrees to allow the action to occur), Disagree (the party disagrees with the action
occuring), Abstain (the party abstains from voting). The value is a short integer which can be used
in any service-specific way desired. It is provided to allow the session to support a ‘grey-scale’ of
voting. The value may be used in addition to the response to indicate the ‘level’ of agreement or

Table 5-15. VotingFS Interfaces

VotingFS interfaces on:

Party domain components i_PartyVotingInfo

Provider domain components i_ProviderVotingReq

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 166

disagreement, or may be used with NoVote to indicate that response is to be ignored, and only
value to be used. The exact semantics for the value are service-specific, and it can be ignored if
required.

5.5.7.2 i_PartyVotingInfo Interface

This interface allows the provider domain to inform the parties that voted of the result of the voting. It
is supported on the party domain.

// module TINAPartyVotingUsage

interface i_PartyVotingInfo

{
oneway voteInfo(

in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in t_VoteResult result

);
};

voteInfo() allows the provider domain to inform the parties that send voteReq() in response to an
indication, the result of the voting. It is a oneway operation. It is sent to all the parties that received
the original indication, whether they sent a voteReq() or not.

indId identifies the indiction, and so the voteReq() response.

result is the result of the voting. It is an enumerated type, with the following values:

• UnknownVoteResult: The result of the voting is unknown. The voting has finished. This
operation does not inform the party as to the outcome of the voting. (i.e. if the action which
generated the indication will occur or not.). However the voting has finished so there’s no
point in tring to send a voteReq() to register your vote. (It may be used just to stop more
voting, and another voteInfo() could be sent subsequently, or the party may just have
to wait to receive the Info operation generate by the Req().)

• VoteAgreed: The vote has agree that the action will take place, (expect Info or Exe
operations soon.)

• VoteNotAgreed: The vote has not agreed to the action taking place. The action will no
occur, and the Req that generated the indications will raise an e_UsageError exception,
with an error code of UsageNotAccepted.

 page 167

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.8 Control Session Relationship feature set

This section will be divided in two subsections: the first one will describe the information modelling
concepts which are necessary to fully understand the Control Session Relationship, the second one
will describe the Control Session Relationship Feature Set itself.

5.5.8.1 Control Session Relationship information model

The Control Session Relationship feature set (“ControlSR”) expresses the session relationship
between a Party -the Controller- and a controlled SSG Object. The complete description of the
session relationship concept can be found in [5].

The possible controlled Session Graph objects are Session, Party and StreamBinding. The possible
levels of control are NoControl (lowest), ReadPermission, WritePermission and Ownership (highest).
These levels of control express:

• the capability of a Party to control changes to the Session Graph and potentially deny
them (i.e. Ownership)

• the capability of a Party to introduce changes to the Session Graph (i.e. WritePermission)

• the visibility of Session Graph Objects as perceived by a Party (i.e. ReadPermission).

A higher level of control always includes the capabilities implied by a lower level of control (e.g.
Ownership implicitly implies ReadPermission). Going from a lower level to a higher level is referred
to as upgrading, the reverse is referred to as downgrading.

Each object that can be controlled is attributed by a defaultControl setting. In addition, the
StreamBinding information object is also attributed by a minimumParticipantControl setting. These
attributes will be used to determine the level of control between a Party and the controlled information
object for those parties that haven’t explicitly declared a session relationship between themselves and
the information object.

This is explained in more detail below. The minimumParticipantControl setting of a StreamBinding
has to be at least as high as its defaultControl setting and must be at least ReadPermission. The
default control associated with an object has to be set at creation time by the creating party, and
cannot be changed later.

5.5.8.1.1. ControlSR expressed on the Ret-RP interfaces

It is important to distinguish between the actual realisation of the Session Graph as a graph consisting
of different information objects: as managed within the domains at each side of the Ret-RP; and the
perception at Ret-RP interface level of information objects which are identified by means of object
identifiers. In order to simplify the operations on Ret-RP, to increase the clarity and consistency of the
usage of ControlSR, and to suppress the possibility to create Session Graph objects in the session
for which no default control would be defined, no explicit Session Graph object is introduced at Ret-
RP interface level to describe a ControlSR. Instead, the t_ControlInfo and t_ControlDescription IDL
structure types have been introduced. The t_ControlInfo struct identifies both the controller Party and
controlled Object and it identifies the control level by means of a t_ControlDescription value. The
t_ControlDescription contains a boolean useDefaultControl field. If the useDefaultControl field of the
t_ControlDescription equals to FALSE, the ControlSR is assumed to exist and its control level is
expressed by the controlType field of t_ControlDescription. The controlType field equals to one of the
values: NoControl, ReadPermission, WritePermission or Ownership. If the useDefaultControl equals
to TRUE, this is equivalent to the non-existence of a session relationship between the controller and
the controlledObject (instead the default control of the controlled Object will be assumed).

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 168

The creator of a Session, Party or StreamBinding object must indicate within the same IDL invocation
which results in the creation of the Session Graph object:

• the kind of control he would like to have over that object when it is created: this value must
be at least ReadPermission

• the defaultControl of the object (+ the minimumParticipantControl in the case of the
StreamBinding)

5.5.8.1.2. How to determine the Control of a Party over a Session Graph Object

If there exists a session relationship between the controller Party and the controlled Session Graph
Object, the level of control exercised by the controller Party is expressed by that session relationship
control level. If there is no such session relationship defined, we need to distinguish between the
different types of controlled objects:

Controlled Session Graph Object = Session Object

The level of control is equal to the defaultControl setting of the Session Object.

Controlled Session Graph Object = StreamBinding Object

Again two cases need to be distinguished:

• the Party is not a Participant in the StreamBinding: If there exists a session relationship
between the controller Party and the Session Object, the level of control is expressed by
that session relationship control level. If there is no such session relationship, the level of
control is equal to the defaultControl setting of the controlled StreamBinding Object

• the Party is a Participant in the StreamBinding: the control level is equal to the maximum
of (the minimumParticipantLevel of the controlled StreamBinding, the control level
determined as if the Party would not be a Participant in the StreamBinding).

Controlled Session Graph Object = Party Object

If there exists a session relationship between the controller Party and the Session Object, the level of
control is expressed by that session relationship control level. If there is no such session relationship,
the level of control is equal to the defaultControl setting of the controlled Party Object.

In addition, one more rule needs to be observed in the case the controller and the controlled Party
are one and the same: the control level can never be any lower than ReadPermission. This means,
if the method explained above leads to a NoControl result, this is automatically upgraded to
ReadPermission.

If the level of control between a controller Party and a controlled Object is determined to be equal to
Ownership we refer to the controller Party as an Owner of the controlled Object. It is important to
determine within the Provider domain the complete list of owners of an Session Graph object when
an operation is applied to it, because these owners will be invoked to authorize the operation. To
achieve this, the Provider domain invokes the appropriate operation on the
i_PartyMultipartyInd interface of the party domain, and the party answers by invoking the
appropriate operation on the i_ProviderVotingReq interface of the Provider domain. See also
Section 5.2.2, "Types of Operations and Interfaces."; Section 5.5.6, "Multiparty Ind Feature Set", and
Section 5.5.7, "Voting Feature Set".

 page 169

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.8.1.3. The Semantics of the Different Levels of Control

This part elaborates the impact of the control settings on the processing of the different Session
Graph modification operations.

First of all, we need to distinguish between general “Add” and “Delete” type of operations.

“Add” operations include:

• addition of a Party to a Session

• addition of a StreamBinding to a Session

“Delete” operations include:

• delete a Session

• delete a Party from a Session

• delete a StreamBinding from a Session

In addition to these operations, we also need to consider the addition/deletion of Participants to a
StreamBinding (a Participant is a Party which Participates to a StreamBinding). To determine the rules
applicable to addition/deletion of Participants, the following principles are applied to the general add/
delete mechanisms:

• semantically the control level of a controller Party over a Participant is equal to the control
level of that controller Party over the StreamBinding to which the Participant belongs

• the relation of a Participant to the StreamBinding is considered to be analogous to the
relation of a Party to the Session.

The control level of a Party over an Session Graph Object can be determined at any time, using the
relevant defaultControl settings. This can be interpreted as if the session relationship always exists,
either explicitly or implicitly. Therefore, we talk about modification to a session relationship, rather than
addition or deletion. To determine the rules applicable to the modification of session relationships the
following principles are applied to the general add/delete mechanisms:

- semantically the control level of a Party over a session relationship is equal to ReadPermission,
WritePermission or Ownership if that Party has ReadPermission, WritePermission or Ownership over
both the ControlSR-controlled object and the ControlSR-controller Party

5.5.8.1.4. Ownership

The Ownerships are one of the means to determine which Parties have to acknowledge the
processing of certain operations on the SSG

The following rules apply to the processing of the general add/delete operations:

• Add Operations: If the operation is initiated by an Owner of the Session, no additional
Parties need to acknowledge the operation on the basis of session relationships.
otherwise, the operation needs to be acknowledged by each of the Parties whose control
level on the object that is to be created is determined to be equal to Ownership. This level
of control needs to be determined as if the object that is to be created has already been
added to the SSG : i.e. if there exists a session relationship between the Party and the
Session Object, the level of control is equal to that session relationship control level;
otherwise, the level of control is equal to the defaultControl setting of the Object that is to
be created, as expressed in the request operation.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 170

• Delete Operations: If the operation is initiated by an Owner of the object that is to be
deleted, no additional Parties need to acknowledge the operation. otherwise, all Owners
of the object that is to be deleted need to acknowledge the operation before its processing
can proceed.

The following rules apply to the addition/deletion of Participants to/from a StreamBinding:

If the operation is initiated by an Owner of the StreamBinding, no additional Parties need to
acknowledge the operation on the basis of session relationships otherwise, the operation needs to be
acknowledged by all Owners of the StreamBinding.

The following rules apply to the modification of session relationships:

If the operation is initiated by an Owner of the session relationship, no additional Parties need to
acknowledge the operation on the basis of session relationships. Otherwise, the operation needs to
be acknowledged by all Owners of the session relationship.

5.5.8.1.5. WritePermission

The WritePermissions determine which Parties have the possibility to request modifications on the
SSG. If the Party only has ReadPermission the request is automatically refused. If the Party has
WritePermission the request involves confirmation by the Owners of the concerned SSG object, and
is accepted or refused according to the Owners voting. If the Party is an owner then the request is
accepted and does not involve any voting by other owners.

Rules and applicability are already described in the paragraph above on Ownership.

5.5.8.1.6. ReadPermission

The ReadPermissions determine the visibility of Objects by the Parties. Visibility is defined for the
following Objects (Notice that Participant and session relationships are considered as an Object in
this context):

A Party or StreamBinding is only visible to -controller- Parties which have -at least- ReadPermission
control level on the -controlled- Party/StreamBinding.

A Participant in a StreamBinding is only visible to -controller- Parties which have -at least-
ReadPermission control level on both the StreamBinding and the Party (i.e. the Party object behind
the Participant).

A session relationship is only visible to -controller- Parties which have -at least- ReadPermission
control level on both the ControlSR controller Party and the ControlSR controlled Object.

Note: Sessions are assumed to be visible to all of its Parties. The difference between having
NoControl or ReadPermission on the Session only affects the determination of the control-level a
Party has on either a Party or a StreamBinding when there exists no explicit session relationship
between that Party and the controlled Party or StreamBinding.

Visibility is checked when:

• a party explicitly retrieves SSG information

• a party is added or deleted, (including a User/Participant, StreamBinding, Participant,
session relationship):

 page 171

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

Parties (i.e. the end-user associated with the Party) to which the object is visible are automatically
informed. To determine the visibility of the added/deleted object towards a Party, control levels have
to be determined as explained above.

Note for the add operations: the defaultControl as specified in the operation which resulted in the
addition may affect the visibility of the added object.

Note for the delete operations: of course, the visibility of the deleted object is determined as if the
object hasn’t yet been removed from the SSG (i.e. all relevant session relationships and
defaultControl settings still apply)

A Party will never receive any information about Objects which are not visible to that Party.

5.5.8.2 Control Session Relationship feature set:

This feature set is optional. .

It supports the party domain components making requests to modify the session relationship between
a Party (the Controller) and a controlled SSG Object. The complete description of the session
relationship concept can be found in Section 5.5.8.1, "Control Session Relationship information
model".

Pre-conditions:

This feature set can only be used if the following pre-conditions are fulfiled:

• The “Multiparty” feature set is used on the same instance of Ret-RP typed interface.

Usage:

This feature set is used when Session Relationships need to be modified (as described in the
previous section Session Relationships are by default always supposed to exist).

Components and roles:

The i_ProviderControlSRReq interface is supported by the provider domain and required by the
party domain.

The i_PartyControlSRInd and i_PartyControlSRInfo interfaces are supported by the party
domain and required by the provider domain.

Specific types for the Control Session Relationship Feature Set:

enum t_ControlType {
NoControl,
ReadPermission,

Table 5-16. ControlSRFS Interfaces

ControlSRFS interfaces on:

Party domain components i_PartyControlSRInd
i_PartyControlSRInfo

Provider domain components i_ProviderControlSRReq

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 172

WritePermission,
Ownership

};

struct t_ControlDescription {
boolean useDefaultControl;
t_ControlType controlType;

// only relevant if useDefaultControl==FALSE
};

struct t_ControlInfo {
t_ControlDescription controlDescription;
TINAUsageCommonTypes::t_PartyDetails controllerInfo;
TINACommonTypes::t_ElementId controlledObject;

};

typedef sequence<t_ControlInfo> t_ControlInfoList;

struct t_DefaultControlInfo {
t_ControlType controlType;
TINACommonTypes::t_ElementId controlledObject;

};

typedef sequence<t_DefaultControlInfo> t_DefaultControlInfoList;

5.5.8.2.1. IDL Definition and usage scenarios

Note: the scenarios only shows messages on the usage part of Ret-RP.

Request Phase:

The setControlReq operation is invoked by a participant who wants to modify a session
relationship between a Party -the controller- and a controlled object - SSG Session, Party or
StreamBinding object.

void setControlReq(
in TINACommonTypes::t_ParticipantSecretId reqPartySecretId,
in TINACommonTypes::t_PartyId controllerPartyId,
in TINACommonTypes::t_ElementId controlledId,
in TINAControlSRTypes::t_ControlDescription control

) raises (
TINAUsageCommonTypes::e_UsageError,
TINAUsageCommonTypes::e_PartyError

);

Indication Phase:

The setControlInd operation is invoked on:

• all parties implied by the “modify session relationship” Ownership semantics

 page 173

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• if the controllerPartyId is different from the requester, the party related to that
controllerPartyId.

void setControlInd (
in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINAControlSRTypes::t_ControlInfo controlInfo

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_PartyError

);

Execution Phase: empty.

Information Phase:

The setControlInfo operation is invoked on:

• all parties implied by the “session relationship” ReadPermission semantics

oneway void setControlInfo (
in TINACommonTypes::t_SessionId sessionId,
in TINAControlSRTypes::t_ControlInfo controlInfo

);

The scenario is as follows::

Figure 5-16. ControlFS Scenario

Requesting
Party Provider Domain Confirmation

Party
Other

Parties

setControlReq

setControlInd

setControlInfo

setControlReq
returns

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 174

 page 175

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9 Participant Oriented Stream Binding Feature Set

The Participant Oriented Stream Binding feature set (PaSBFS) is based on the high level stream
binding model presented in Section 5.4.1.3, which supports multiparty-to-multiparty (i.e. multipoint-to-
multipoint), multimedia connections. Section 5.4.2 introduced the terminology and parameters which
will be used to describe this feature set. In summary, stream bindings are described in terms of
participants, type, and associated media type descriptions. Media types map to the SFCs implicitly
defined by the stream binding description. Though media type requirements are specified for the
overall stream binding, they may be modified for particular participants.

Stream binding operation requests are specified in terms of this model, i.e. participants, stream
binding types, and media types. A session member need not know details of other session members
to request the creation of a stream binding or the addition of subsequent participants. Instead, after
a request has been made, the provider makes exe requests to the nominated session members,
which respond with the necessary binding information in terms of SFEPs. Modification, activation,
deactivation, and deletion request operations are also specified in these terms.

Any party associated with a stream binding is called a Stream Binding (SB) member. Parties which
submit SFEPs for binding are termed SB participants. A party can participate in a number of stream
bindings. Not all SB members are SB participants, they may have control relationships instead, e.g.
the party that initiates a stream binding need not be bound. Such parties are termed SB controllers.
Any SB member that makes a request to initiate, modify, or delete a stream binding (or any part of
one) is termed a requester.

The PaSB feature set is not sufficient to support stream binding alone: it only allows the initiation and
configuration of stream bindings. It needs to be supported by lower level communication functionality.
A TINA communication session, or equivalent functionality, is needed to set up a stream binding. A
stream binding needs to be mapped to the communication session (or equivalent’s) information
model. An algorithm is required for such a mapping. Section 5.4.2.2 details the basis of such an
algorithm and how it relates to the TINA communication session model.

5.5.9.1 Interfaces

The following interfaces form the Participant SB feature set.

i_ProviderPaSBReq: Allows a party to request the establishment, modification, and termination of a
stream binding. Stream bindings are specified in terms of participants, type and quality of service.
SFCs are implicit to the stream binding. Participants may always include the requester.

• Add stream binding: create a stream binding, nominating the type and initial participants.

• Add participants to a stream binding.

• Delete participants from a stream binding.

• Delete a stream binding.

Table 5-17. Participant SB Feature Set Interfaces

Participant SB interfaces on:

Party domain components i_PartyPaSBExe
i_PartyPaSBInfo

Provider domain components i_ProviderPaSBReq

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 176

• Activate participants within a stream binding or an entire stream binding.

• Deactivate participants within a stream binding or an entire stream binding.

• Modify the stream binding: change media type requirements for the entire stream binding
or for given participants.

• List stream bindings: return list of stream binding identifiers for the session.

• Get stream binding info: request detailed information on a given stream binding.

i_PartyPaSBExe: Allows a provider session to request the establishment, modification, and
termination of participation in a stream binding. The participant is given type and media type
requirements of the stream bindings, and information specific to their participation. When a join or
modify request is made, the participant needs to returns SFEPs that support the requested media
types1 and implied SFCs.

• Join a stream binding: Sent to participants either when the stream binding being setup or
after an add participant request is made.

• Leave a stream binding: Sent to participants either when a stream binding is being deleted
or to specified participants after a delete participant request is made.

• Modify participation in a stream binding: Modify the participants required media types.

i_PartyPaSBInfo: notifies a requester or participant in a stream binding of the changes in the stream
binding’s state, or failure or successful completion of stream binding requests.

• Confirm the successful completion of a stream binding request and gives the new state of
the stream binding (i.e. which participants bound for which SFEPs).

• Notify the failure of a stream binding request and give the reason for the failure in terms
of failed elements (i.e. participants or SFEPs that were not bound).

• Distribute SI and SFEP information between SB Members.

• Notify the withdrawal of stream binding elements (e.g. SIs, SFEPs, SB members).

• Notify change of status of the stream binding, results of operations, etc.

• Update or cancel notifications: indicates a change in a previous notification’s status.

5.5.9.2 Asynchronous and synchronous responses

The participant oriented stream binding feature set supports asynchronous as well as synchronous
interactions, as it may not always be possible to support communication requests in a synchronous
manner. There are two ways of initiating an asynchronous response:

• Requester driven: A requester may explicitly ask for asynchronous set up. This is done by
means of a “wait” flag in the operation’s parameter list to false.

• Provider driven: The provider initiates an asynchronous response.

However it is initiated, asynchronous requests are supported by the provider making an
e_NoSynchronousReqResp exception after it receives the request, which gives the requester a
request identifier. When the operation is successfully completed, a confirm operation is made on the
requester’s i_PartyPaSBInfo interface. If there is an error or the communications fail, a failure
notification operation is made to the requester. These operations return the new state of the stream

1. It may not always be possible to meet all requirements. In this case, the SFEPs returned should indicate which
requirements can be met. If this is not suitable, the provider logic may not proceed with binding that participant.

 page 177

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

binding. Figure 5-17 shows an example asynchronous response. Note that to complete a request,
operations on a number of other interfaces may be required. All these operations are completed
before the provider sends a confirm to the requester.

For a synchronous response, the “wait” flag must be set true. Then, if the provider supports
synchronous responses, the request will not return until it has completed successfully. Once a request
is completed, the new state of the stream binding is returned to the requester. If there is an error or
the request fails, then an exception will be thrown. Figure 5-18 shows an example successful
synchronous request event trace. As before, many operations may be required to support the
request, all of which must be completed before the original request returns.

Provider domain Party domain BParty domain A

i_ProviderPaSBReq

i_PartyPaSBInd

exception

i_PartyPaSBExe

i_PartyPaSBInfo:: confirm()
i_PartyPaSBInfo:: confirm/

Figure 5-17. Example asynchronous response event trace

e_NoSynchronousReqResp

Other operations (not shown)

notifyGSInfo()

Voting (not shown)

Provider domain
Party domain B

Party domain A

i_ProviderPaSBReq

i_PartyPaSBInd

i_PartyPaSBExe

i_ProviderPaSBReq

Figure 5-18. Example synchronous response event trace

Other operations (not shown)

return

i_PartyPaSBInfo:: confirm/
notifyGSInfo

Voting (not shown)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 178

Other participants (both SB Members and controllers) may also be returned the new state of the
stream binding using confirm or notify operations on their i_PartyPaSBInfo interfaces. Both
figures indicate these operations.

5.5.9.3 Indications and voting

If the PaSBFS is used in conjunction with the PaSBInd feature set, indications of various stream
binding requests may be issued to SB participants. Indications are issued before any exe operations,
see Figures 5-17 and 5-18. Which parties receive indications may be governed by control relations
(see the TINA ControlSRFS) or be service session specific.

If the TINA Voting feature set (or similar) is supported, parties may vote on whether an operation can
proceed. The operation will not proceed unless the vote is successful according to the agreed voting
method. The PaSBInd feature set describes indication operations for stream bindings. Also see the
MultiPartyInd feature set and the Voting feature set.

5.5.9.4 Scenario

The following sections provide event traces which describe how the PaSB operations and interfaces
relations and use. This section gives a overview of the underlying scenario, see Figure 5-19. Party A
and Party B are existing parties ina session established between their respective party domains and
Provider R. Once the stream binding is created, both A and B become SB participants. Provider R
acts as the stream binding provider. Party A initiates the stream binding requests, i.e. acts as the
requester. For multiple parties, actions on B’s interfaces would be repeated for other participants.

Each party has an associated User Application (UAP) that supports the party PaSB interfaces and
has one or more associated SIs or groups of SFEPs. These SFEPs either terminate connections to
the application (like sockets) or devices under the applications control, such as speakers,
microphones, cameras etc. These SFEPs must be known by the Terminal Communication Session
Manger (TCSM) before they can be used. The creation of SFEPs and their registration with the TCSM
is the responsibility of the terminal software and is not specified by this reference point. The provider
components are in the Provider’s domain and support the PaSB provider interfaces.

TCSM_A

SI_A

Party_A Party_BProvider

SI_B

UAP_B

CC

TCSM_B

5

UAP_A

CSM

1,9

Figure 5-19. Add stream binding scenario

6,8

Provider
Component

2,3,4,10

6,8
7

 Provider R

 Party A Party B

 page 179

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

This scenario assumes the existence of a separate communication session with underlying
connectivity components. This is shown by the TCSM and Communication Session Manager (CSM)
components which support communication functionality in the party and provider domains
respectively, and the Connection Coordinator (CC) which supports network connectivity. This is not
mandatory and the components could be subsumed into the overall UAPs and service session
components or non-TINA compliant functionality could be supported.

They are included to show the relationship between service session and communication functions.
Section 5.6.2. provides details of TINA communication session operations. Communication session
level operations are initiated as the result of service level interactions on the stream binding. The TINA
communication session functionality, or an equivalent, is needed to support the PaSB feature set.

5.5.9.5 i_ProviderPaSBReq Interface

Operations will be discussed in the context of scenarios. These scenarios may involve operations on
other interfaces (including interfaces of other feature sets). When this occurs, this section will briefly
describe why the operation is required. All request operations identify the requester by a
t_ParticipantSecretId type myId parameter, see Section 3.3.4.2. Once a stream binding is
created, it is identified by a t_SBId type sbId parameter, see Section 5.4.2, for all subsequent
operations.

// module TINAProviderPaSBUsage

interface i_ProviderPaSBReq

{
};

5.5.9.5.1. Add stream binding request

void addProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBType reqType,
in TINASBComSCommonTypes::t_MediaDescList media,
in TINAPaSBTypes::t_ParticipantDescList reqMembers,
in TINAStreamCommonTypes::t_SFEPServDescList requesterSIs,
in TINAStreamCommonTypes::t_SBSuccessCriteria criteria,
in TINAStreamCommonTypes::t_SBRecover recActions,
in boolean wait,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBSetupError,
e_NoSynchronousReqResp

);

The addProviderPaSBReq() allows a party to request the creation of a new stream binding, which
is described by the reqType parameter that indicates the overall stream binding type; a media
parameter that describes particular media type requirements; a list of stream binding participants
(including the requester); and success and recovery criteria. The requester is identified by the myId
parameter, and may optionally specify their own SFEPs for binding.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 180

The overall type may be service specific. It is interpreted with the media type by the participants’
components to determine which SFEPs should be returned for binding by the associated exe
operations.The success criteria indicate which participants and media types need to be bound to
successfully setup the stream binding and to complete subsequent operations. Recovery criteria
specify actions to be taken on the failure of the stream binding (or part of the stream binding) and
specifies how to determine if the recovery has been successful.

As explained in Section 5.5.9.2, the request may be processed synchronously or asynchronously. A
number of steps to indicate the request to parties, initiate actions by and acquire information from
stream binding participants, and to setup the underlying communications are required to complete a
request. An error at any stage will cause an exception or failure notification. Once the operation is
complete, information may be distributed to SB members and the initial state of the stream binding is
returned to the requester. Figure 5-19 gives an overview of the scenario. The steps are detailed below
and Figure 5-20 shows the event trace diagram.

Pre-conditions:

The requested stream binding members are already members of the session. Stream binding
participants have (or can create) SFEPs which are known to the TCSM and are ready to use.

Provider domain

Party domain B

Party domain A

hook for ConS
(or other conn.provider actions)

Optional voting (not shown)

i_ProviderPaSBReq:: add

i_PartyPaSBInd:: add

opt.: exception
(& async. confirm later)

i_PartyPaSBExe:: join

setupTFC

setupTFC

opt (for non ConS)
associateNFEP opt.(for non ConS)

associateNFEP

Figure 5-20. Add a stream binding request event trace

return or
i_PartyPaSBInfo:: confirm

i_PartyPaSBInfo:: confirm
(notifyGSInfo)

 (if async. except. raised)

(Party_A) (Provider)

(Party_B)

(= selectCapabilities, getRequiredNfeps
correlateTFC)

 page 181

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

Steps:

1. Party A makes an addProviderPaSBReq() operation on the provider’s
i_ProviderPaSBReq interface. The operation describes the stream binding to be setup, as
detailed above. It may be responded to asynchronously or synchronously.

2. The provider can optionally make addPartyPaSBInd() operations on the i_PartyPaSBInd
interface of the other parties to notify them of the request to create the stream binding, if the
parties support the PaSBInd FS (see Section 5.5.10).

3. The provider may wait for votes to be received, if the session supports the Voting FS. If no
voting is supported or the request is agreed, then the request proceeds.

4. A joinPartyPaSBExe(), see Section 5.5.9.6.1, will be sent to the i_PartyPaSBExe
interface of all parties identified as SB participants, unless the participant is the requesting
party. The joinPartyPaSBExe() operation returns a participantDesc parameter which
describes the SFEPS a participant wants to bind. See Section 5.2.2 and Section 5.5.9.2 for
details of Exe operations.

5. Once each participant has returned its SFEPs, the provider determines if the stream binding
can proceed (based on success criteria) and runs a stream binding algorithm to determine
which SFEPs need to be bound. This is expressed by a set of SFCs. The service session then
needs communication support to setup connections between SFEPs. In TINA, this is modelled
by the communication session which is considered a separate entity from the service session.
We use this model here2 and assume some operation requests the creation of the SFCs.

6. The communication session, see Section A-X.x.x, is responsible for matching SFEP
capabilities, mapping SFCs to NFCs, and coordinating terminal flow connections (TFCs)
between SFEPs and NFEPs. Operations to set the capability and correlation identifier of each
SFEP and acquire SFEPs that support its required capabilities are needed. Operations on the
i_TerminalFlowControl interface: selectCapabilities(), getRequiredNfeps(), and
correlateTFC() (grouped as setupTFC()); support these needs. Queries may be made to
establish terminal capabilities using the queryCapabilities() operation.

7. The communication session then needs to set up the network communications. In Figure 5-20,
this is shown as communication across the ConS to setup NFCs. However, this is not
mandatory and other options, including connectionless communications, could be used.

8. The communication session may optionally use an associateNFEP() operation to associate
the resolved NFEP that is used by the NFC (or equivalent) with the correct TFC. This behavior
is supported by the ConS/TCon reference points, but is included here to allow other options.

9. The provider must notify the SB members that stream binding they agreed to join has been
setup (using confirmPartyGSInfo() or notifyGSInfo() operations on the
i_PartyPaSBInfo interface, see Section 5.5.9.7).

10. Finally, the provider notifies the requester, either synchronously on the return or asynchronously
using a confirmPartyGSInfo() operation on the i_PartyPaSBInfo interface.

2. This separation is not mandatory for the Ret RP. However, a set of communication session support interfaces are
specified. These interfaces allow the communication session to establish common capabilities and session
protocols necessary to set up connections, correlate SFCs and TFCs, acquire SFEPs, find transport quality and
protocol requirements and hence determine NFCs needed to support the SFCs and help locate a connectivity
provider. These interfaces, or some equivalent functional support, is necessary to set up stream bindings.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 182

Post-conditions:

A new stream binding has been created for the given participants in the requested state, supporting
connections have been setup, and the success criteria have been met. A stream binding identifier is
issued which remains valid to the deletion of the stream binding. The success criteria and recovery
criteria are stored for later use.

5.5.9.5.2. Add participants to a stream binding request

void addParticipantsProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAPaSBTypes::t_ParticipantDescList reqMembers,
in TINAStreamCommonTypes::t_SFEPServDescList requesterSIs,
in boolean wait,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBSetupError,
e_NoSynchronousReqResp

);

The addParticipantsProviderPaSBReq() allows a party to request that it or other session
members be added to a stream binding identified by the sbId parameter. The prospective
participants and their requirements are given by the reqMembers parameter. If the requester wishes
to be added to the binding, they should list their own SFEPs in the requesterSIs parameter.

As before, the request may be processed synchronously or asynchronously. A number of steps to
indicate the request to parties, initiate actions by and acquire information from participants, and to
setup the underlying communications are required to complete a request. An error at any stage
causes an exception or failure notification. Once the request is complete, information may be
distributed to SB members and the new state of the stream binding is returned to the requester.

This request operation has the same pre-conditions takes the same steps outlined by Figure 5-19 and
detailed in Figure 5-20, except that the addParticipantsProviderPaSBReq and appropriate
indication operation (if any) are made.

Post-conditions: The new participants have been added to the stream binding, additional supporting
connections setup, and the success criteria (as previously set) have been fulfilled.

5.5.9.5.3. Delete participants from a stream binding request

void deleteParticipantsProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in boolean all,
in TINAPaSBTypes::t_ParticipantIdList reqMembers,
in boolean wait,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBOperationError,
e_NoSynchronousReqResp

);

 page 183

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

The deleteParticipantsProviderPaSBReq() allows a party to request the deletion of itself or
other participants from a stream binding. The reqMembers parameter lists the identities of the
participants to be deleted. All participants may be deleted by setting the all flag true. Deleting a
participant removes its SFEPs from the binding and any supporting communications. It does not
necessarily change control relationships with the stream binding.

As before, the request may be processed synchronously or asynchronously. A number of steps to
indicate the request to parties, initiate actions by participants, and to remove the underlying
communications are required to complete a request. An error at any stage will cause an exception or
failure notification. Once the request is complete, information may be distributed to SB members and
the new state of the stream binding is returned to the requester. The event trace diagram of Figure 5-
21 shows the steps, which are also explained below.

Pre-conditions:

The stream binding exists and the session members are existing participants in the stream binding.

Steps

1. Party A makes a deleteParticipantsProviderPaSBReq() request, listing the SB
participants to be removed, on the provider’s i_ProviderPaSBReq interface.

Provider domain
Party domain B

Party domain A

i_ProviderPaSBReq::
deleteParticipants()

i_PartyPaSBInd::
deleteParticipants()

opt. exception:
(& async. confirm later)

i_PartyPaSBExe::leave()

opt. removeNFEP()
opt. removeNFEP()

invalidateTFC()invalidateTFC()

Figure 5-21. Delete participants from a stream binding request event trace

hook for ConS
(or other conn.provider actions)

Optional voting (not shown)

return or
i_PartyPaSBInfo::confirm()

i_PartyPaSBInfo::confirm()
(notifyGSInfo)

 (if async. except. raised)

(Provider)(Party_A)

(Party_B)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 184

2. The provider can optionally make deleteParticipantsPartyPaSBInd() operations on the
i_PartyPaSBInd interface of the other parties to notify them of the request to delete
participants from the stream binding if the parties support the PaSBInd FS.

3. The provider may wait for votes to be received, if the session supports the Voting FS. If the vote
succeeds or the Voting FS is not supported, the requests proceeds.

4. The provider makes leavePartyPaSBExe(), see Section 5.5.9.6.2, calls on the
i_PartyPaSBExe interface of all the participants to be deleted, unless the participant is the
requesting party.

5. Once each participant has agreed to leave, the provider starts deleting SFC branches and
SFCs as appropriate. We will assume it uses a communication session to do this.

6. The CSM optionally makes removeNFEP() calls on the i_TerminalFlowControl interface
of each SFEP of each SFC branch to be deleted. This removes the NFEP from the TFC.

7. The communication session then needs to modify the network communications: for ConS RP
this would involve deleting the associated NFCs or NFC branches.

8. The communication session then uses the invalidateTFC() operation to remove the TFCs
supporting each of the SFC branches.

9. The provider confirms the request to deleted participants (using confirmPartyGSInfo() or
notifyGSInfo() operations) on the i_PartyPaSBInfo interface. Other SB members may
also be notified.

10. Finally, the provider notifies the requester either synchronously on the return or asynchronously
using a confirmPartyGSInfo() operation on the i_PartyPaSBInfo interface.

Post-conditions:

The requested stream binding participants and associated connections have been removed within the
previously set success criteria. The stream binding still exists.

5.5.9.5.4. Delete a stream binding request

void deleteProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in boolean wait,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBOperationError,
e_NoSynchronousReqResp

);

The deleteProviderPaSBReq() operation allows a party to request the deletion of a given stream
binding. This operation deletes all participants and ensures the removal of the stream binding. It has
the same preconditions and follows the same steps as the previous operation. Once the stream
binding is deleted, the request is complete. SB members are notified of its removal and the request’s
completion is confirmed to the requester.

Post-conditions: The stream binding has been removed and its identifier is no longer valid.

 page 185

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9.5.5. Activate participants in a stream binding request

void activateParticipantsProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in boolean all,
in TINAPaSBTypes::t_ParticipantIdList reqMembers,
in boolean allFlows,
in TINASBComSCommonTypes::t_MediaDescList reqFlows,
in boolean wait,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBOperationError,
e_NoSynchronousReqResp

);

The activateParticipantsProviderPaSBReq() allows a party to request the activation of itself
or other SB participants. The SB participants to be activated are listed by the reqMembers
parameter. All SB participants may be activated by setting the all flag to true. When a SB participant
is activated, each branch of each SFC terminated by its SFEPs is activated.

Activation can also be targeted at the SFCs associated with particular media types specified by the
reqFlows parameter. If a media type is activated, then all implicit SFCs associated with that media
type are activated. All media types and associated SFCs will be activated if the allFlows parameter
is set true. If a media type is activated for a particular SB participant, then each branch of the media
type’s associated SFCs terminated by the SB participant’s SFEPs is activated.

Provider domain
Party domain B

Party domain A

hook for ConS
(or other conn.provider actions)

Optional voting (not shown)

i_ProviderPaSBReq::
activateParticipants

i_PartyPaSBInd::
activateParticipants

opt.: exception
(& async. confirm later)

i_PartyPaSBExe::
changeState

activateTFC
activateTFC

Figure 5-22. Activate stream binding request event trace

return or
i_PartyPaSBInfo::confirm()

i_PartyPaSBInfo::confirm()
(notifyGSInfo)

 (if async. except. raised)

(Party_A) (Provider)
(Party_B)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 186

This request follows similar steps to the deleteParticipantsProviderPaSBReq scenario. It
includes optional indication and voting steps, exe operations on SB participants, a communication
stage, and information distribution. Once the process is complete, success is confirmed to the
requester with the new state of the stream binding. Figure 5-22 shows the steps explained below.

Pre-conditions:

The stream binding exists and the members are already participants in the stream binding.

Steps

1. Party A makes an activateParticipantsProviderPaSBReq() operation on the provider’s
i_ProviderPaSBReq interface as described above.

2. The provider can optionally make activateParticipantsPartyPaSBInd() calls on the
i_PartyPaSBInd interface of the other parties to notify them of the request to activate the
stream binding if the parties support the PaSBInd FS.

3. The provider may wait for votes to be received, if the session supports the Voting FS. Once the
operation is agreed, or if the Voting FS is not supported, the request proceeds.

4. The provider makes changeStatePartyPaSBExe()calls on the i_PartyPaSBExe interface
of all the SB participants to be activated, unless the participant is the requesting party. The
administrative state is set to unlocked (active).

5. The provider starts activating SFC branches and SFCs as appropriate. As before, we will
assume it makes use of a communication session.

6. The CSM makes an activateTFC() operation on the i_TerminalFlowControl interface of
each SFEP of each SFC branch to be activated. This may be optional.

7. The communication session then needs to activate the network communications: for ConS RP
this involves activating the associated NFCs or NFC branches.

8. Once the SFCs or SFC branches have been activated, the provider notifies the requester either
synchronously on the return or asynchronously using a confirmPartyGSInfo() operation on
the party’s i_PartyPaSBInfo interface.

9. The provider confirms the request to SB participants and other parties with
confirmPartyGSInfo() or notifyGSInfo() calls to their i_PartyPaSBInfo interfaces

10. Finally, the provider notifies the requester either synchronously on the return or asynchronously
using a confirmPartyGSInfo() operation on the i_PartyPaSBInfo interface and returns
the activated state of the stream binding.

Post-conditions: Requested SB participants and media types (and associated SFCs) are active.

 page 187

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9.5.6. Deactivate participants in a stream binding request

void deactivateParticipantsProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in boolean all,
in TINAPaSBTypes::t_ParticipantIdList reqMembers,
in boolean allFlows,
in TINASBComSCommonTypes::t_MediaDescList reqFlows,
in boolean wait,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBOperationError,
e_NoSynchronousReqResp

);

The deactivateParticipantsProviderPaSBReq() operation allows a party to request the
deactivation of itself or other SB participants. The reqMembers parameter lists SB participants to be
deactivated. All SB participants may be deactivated by setting the all flag true. Deactivation can also
be targeted at SFCs associated with media types specified by the reqFlows parameter. If the
allFlows parameter is set true, then all media types and associated SFCs will be deactivated.

This request follows the same steps and has the same preconditions as the previous activation
scenario, except that deactivate rather than activate operations are used and the administrative state
is set to locked (inactive) rather than unlocked. Once the process is complete, success is
confirmed to the requester with the new state of the stream binding.

Post-conditions: Requested SB members and media types (and associated SFCs) are inactive.
Provider domain Party domain BParty domain A

i_ProviderPaSBReq::
modifyParticipants()

I_PartyPaSBInd::
modifyParticipants()

opt.:exception
(& asynchronous confirm later)

i_PartyPaSBExe:: modify()

selectCapabilities/

Optional voting (not shown)

hook for ConS
(or other conn.provider actions)

Figure 5-23. Modify stream binding request event trace

opt. queryCapabilities()

return or
i_PartyPaSBInfo:: confirm()

i_PartyPaSBInfo:: confirm()
(notifyGSInfo)

 (if async. except. raised)

(Party_A) (Provider) (Party_B)

opt. removeNFEP()

setupTFC()

 invalidateTFC()
opt. associateNFEP()

[Removing a media type][Adding or changing a media type]

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 188

5.5.9.5.7. Modify participation in a stream binding request

void modifyParticipantsProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in boolean all,
in TINAPaSBTypes::t_ParticipantIdList reqMembers,
in TINASBComSCommonTypes::t_MediaDescList newTypes,
in TINASBComSCommonTypes::t_MediaDescList oldTypes,
in TINASBComSCommonTypes::t_MediaChangeDescList modTypes,
in TINAStreamCommonTypes::t_SFEPServDescList requesterSIs,
in boolean wait,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBSetupError,
e_NoSynchronousReqResp

);

The modifyParticipantsProviderPaSBReq() operation allows a party modify the stream
binding by changing the media types supported the by overall stream binding or the given participants
(optionally including the requester). The reqMembers parameter lists SB participants to be modified.
All SB participants may be modified by setting the all flag true. New media types (i.e those to be
added), modified media types (i.e existing media types to be changed) and old media types (those to
be removed) are specified by the newTypes, modTypes, and oldTypes parameters respectively.
The requester may specify new SFEPs or modified SFEPs of its own to bind in the requesterSIs
parameter.

This request follows similar steps to the addParticipantsProviderPaSBReq request scenario. It
includes optional indication and voting steps, exe operations on SB members, a communication
stage, and information distribution. Completion is then confirmed to the requester who receives the
new state of the stream binding. Figure 5-23 shows the supporting steps, also described below.

Pre-conditions:

The stream binding exists and the given session members are already participating in the stream
binding. SB participants can modify SFEPs or create new ones to meet modification requests.

Steps

1. Party A makes a modifyParticipantsProviderPaSBReq() operation on the provider’s
i_ProviderPaSBReq interface. The operation describes the modifications as detailed above.

2. The provider can optionally make modifyParticipantsPartyPaSBInd() operation on the
i_PartyPaSBInd interface of the other parties to notify them of the request to modify the
stream binding, if the parties support the PaSBInd FS.

3. The provider may wait for votes to be received if the session supports the Voting FS. The
request proceeds once the request is approved or if the Voting FS is not supported.

4. The provider makes modifyPartyPaSBExe() calls to the i_PartyPaSBExe interface of all
the participants to be modified. The modifyPartyPaSBExe() operation returns their new or
modified SFEPs via the participantSIs parameter.

 page 189

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5. Once each participant has returned their new SFEPs, the provider determines how to modify
the stream binding and its associated SFCs for the changed media types. As before, we will
assume it uses a communication session to add, delete, or modify SFCs.

6. The communication session’s actions depend on what is required. To add or delete a SFC it will
make setupTFC() or removeNFEP() calls respectively. To modify a SFC it may need to query
and reset the capabilities and modify the NFC, which could change the associated NFEP.

7. The communication session then needs to modify the network communications. If using the
ConS RP, it can make requests to add, delete or modify NFCs or their branches.

8. The communication session may then optionally make associateNFEP() or
invalidateTFC() calls to the associated terminals for each SFC and NFC as appropriate.

9. The provider may notify SB members that the stream binding has been modified (by
confirmPartyGSInfo() or notifyGSInfo() calls on the i_PartyPaSBInfo interface).

10. Finally, the provider notifies the requester either synchronously on the return or asynchronously
using a confirmPartyGSInfo() operation on the i_PartyPaSBInfo interface.

Post-conditions: Media types are modified for the entire stream binding or designated SB participants.

5.5.9.5.8. Modify criteria for a stream binding request

void modifyCriteriaProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SBSuccessCriteria criteria,
in TINAStreamCommonTypes::t_SBRecover recActions,
in TINAPaSBTypes::t_PCriteriaList newPCriteria)

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBSetupError

);

The modifyCriteriaProviderProviderPaSBReq() allows a party to request the modification of
success and recovery criteria of the stream binding. Overall success and recovery criteria are
described by the criteria and recActions parameters respectively. It is also possible to modify
the criteria of particular participants. The newPCriteria parameter lists participants to be changed
with their new success and recovery criteria.

Provider domain Party domain BParty domain A

i_ProviderPaSBReq::
modifyCriteria i_PartyPaSBInd::

modifyCriteria

i_PartyPaSBExe::
modifyCriteria

[return]

Optional voting (not shown)

Figure 5-24. Modify a stream binding’s success criteria request event trace

(Party_A) (Provider) (Party_B)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

see proprietary restriction on title page
 page 190

The operation returns once the criteria have been agreed, using indications and voting if appropriate,
and modified. Exe operations are required to change participant criteria. Figure 5-24 shows the
necessary steps which are detailed below.

Pre-conditions:

The stream binding exists and the given session members are existing SB participants.

Steps

1. Party A makes an modifyCriteriaProviderPaSBReq() operation on the provider’s
i_ProviderPaSBReq interface. The operation describes the modifications as detailed above.

2. The provider can optionally make modifyCriteriaPartyPaSBInd() operations on the
i_PartyPaSBInd interface of the other parties to notify them of the request to modify the stream
binding’s success and recovery criteria, if they support the PaSBInd FS.

3. The provider may wait for votes to be received, if the session supports the Voting FS. Once the
change is agreed, or if voting is not supported, the request proceeds. Otherwise an exception is
thrown.

4. If any participant’s success criteria (other than the requester’s) is modified, the provider makes
a modifyCriteriaPartyPaSBExe() on the parties’ i_PartyPaSBExe interface.

5. The operation returns: no state information is required.

Post-conditions: Success and recovery criteria of the stream binding or nominated participants has
been updated for subsequent operations on that stream binding.

5.5.9.5.9. Notification of sudden change

void notifyProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SFEPServDescList myStatus

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBQueryError

);

The notifyProviderPaSBReq() operation allows a SB member to inform the provider and other
SB members of a (sudden) change in their stream binding participation. The requester is identified by
the myId parameter. The participants’ current participation is described by the myStatus parameter.
It lists any remaining SFEPs and their currently supported quality and state. The provider may inform
other SB members by a notifyGSInfo() operation on the i_PartyPaSBInfo interface. Figure 5-
25 shows the event trace.

Provider domain
Party domain B

Party domain A

i_ProviderPaSBReq:: notify()

opt: i_PartyPaSBInfo:: notifyGSInfo

Figure 5-25. Notify change in stream binding participation request event trace

(Provider)(Party_A)
(Party_B)

 page 191

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9.5.10. Register SFEPs

void registerSFEPsProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SFEPServDescList fepList,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBSetupError,
e_NoSynchronousReqResp

);

The registerSFEPsProviderPaSBReq() operation allows a SB participant to register additional
SFEPs for use in a particular stream binding. The requester is identified by the myId parameter. The
requester passes a fepList parameter which describe the SFEPs to be registered.

The provider can optionally make registerSFEPsPartyPaSBInd() calls on other parties’
i_PartyPaSBInd interfaces to notify them of the request. If the session supports a voting feature
set, the provider may then wait for votes to be received. Once the request is approved, or if no voting
feature set is supported, the request may proceed.

The provider then registers the SFEPs and checks if the stream binding algorithm needs to be run. If
it does, then the provider needs to modify the stream binding, following steps 5 to 8 of the
addProviderPaSBReq scenario, see Section 5.5.9.5.1. Once the communication changes are
complete, the provider can distribute the registered SFEPs with the SIDistribPartyGSInfo() calls
on participants i_PartyPaSBInfo interface. It may also notify SB members of other stream binding
changes. Finally it returns to the requester or confirms the completion of the registration.

Provider domain Party domain BParty domain A

Optional voting (not shown)

Scenario continues as for the com steps of
addParticipantsProviderPaSBReq

i_ProviderPaSBReq::
withdrawSFEPs

i_PartyPaSBInd::
withdrawSFEPs

Figure 5-26. Register SFEPs from stream binding request event trace

i_PartyPaSBInfo::
SIDistributereturn or

i_PartyPaSBInfo::confirm

(Provider)(Party_A) (Party_B)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 192

5.5.9.5.11. Withdraw SFEPs

void withdrawSFEPsProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINASBComSCommonTypes::t_SFEPNameList fepList,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBSetupError,
e_NoSynchronousReqResp

);

The withdrawSFEPsProviderPaSBReq() operation allows a SB participant to request the withdrawal
of its SIs and SFEPs from a stream binding. The requester is identified by the myId parameter and
also passes a fepList parameter which identifies the SFEPs or SIs to be withdrawn.

The operation proceeds in a similar manner to the registerSFEPsPartyPaSBReq request. After
the optional indication and voting steps, the provider checks if the binding algorithm needs to be rerun.
If it does, it proceeds to the communication stage, this time repeating steps 5 to 8 of the
deleteParticipantsProviderPaSBReq scenario. It notifies participants of the withdrawn SIs
and SFEPs by notifyWithdrawnElementsPartyGSInfo() calls to their i_PartyPaSBInfo
interface. Finally it returns to the requester or sends a confirmation of the elements’ withdrawal.

5.5.9.5.12. Rebind stream binding request

void rebindProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
out TINAStreamCommonTypes::t_SBBindState status

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBSetupError,
e_NoSynchronousReqResp

);

The rebindProviderPaSBReq() operation allows a SB member to explicitly request the rebinding
of a given stream binding: i.e. the rerunning of the bind algorithm. This request is used in conjunction
with operations external to this feature set that may affect which parties may be bound to each other.

The operation then proceeds in a similar manner to the withdrawSFEPsProviderPaSBReq
request. After the optional indication and voting steps, the provider checks if the binding algorithm
needs to be rerun. If it does, it proceeds to the communication stage, repeating steps 5 to 8 of the
deleteParticipantsProviderPaSBReq scenario. It may then notify participants of the stream
binding’s new state by notifyGSInfo() or confirmPartyGSInfo() operations on their
i_PartyPaSBInfo interface. Finally, it returns to the requester or sends a confirmation.

 page 193

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9.5.13. List stream bindings request

void listProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in boolean all,
in TINACommonTypes::t_ElementIdList participants,
out TINAStreamCommonTypes::t_SBIdList sbList

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBQueryError

);

The listProviderPaSBReq() operation allows a party to request a list of stream bindings the
session currently supports. The requester is identified by the myId parameter. The party may request
information on all stream bindings by setting the all flag true or they may restrict the list by
requesting stream bindings involving particular session members listed by the participants
parameter. If successful, the operation returns a list of stream binding identifiers in the sbList
parameter. Otherwise an exception is thrown.

5.5.9.5.14. Get stream binding information request

void getInfoProviderPaSBReq(
in TINACommonTypes::t_ParticipantSecretId myId,
in TINAStreamCommonTypes::t_SBId sbId,
out TINAPaSBTypes::t_SBDesc thisSB

) raises (
TINAUsageCommonTypes::e_UsageError,
e_PaSBQueryError

);

The getInfoProviderPaSBReq() operation allows a party to request a information about a stream
binding identified by the sbId parameter. If successful, the operation returns a thisSB parameter
which describes a stream binding in terms of participants and which of their SFEPs are connected.
Otherwise, an exception is raised.

Provider domain Party domain BParty domain A

i_ProviderPaSBReq:: list

Figure 5-27. List stream bindings request event trace

(Provider)(Party_A) (Party_B)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 194

5.5.9.6 i_PartyPaSBExe Interface

The i_PartyPaSBExe interface consists of a number of exe operations that support requests made
on the i_ProviderPaSBReq interface. They allow the provider session to ask stream binding
participants for SFEPs and to modify their participation status with in the stream binding. For all exe
operations, the session is identified by a t_SessionId type sessionId parameter, and the stream
binding by a t_SBId type sbId parameter. The original request may be identified by a
t_RequestId type reqId parameter. These parameters allow participants to identify the request
and stream binding when related information is received from the i_PartyPaSBInfo interface.

// module TINAPartyPaSBUsage

interface i_PartyPaSBExe

{
};

5.5.9.6.1. Join a stream binding exe request

void joinPartyPaSBExe(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SBType reqType,
in TINASBComSCommonTypes::t_MediaDescList media,
in TINAPaSBTypes::t_ParticipantIdList others,
in TINAPaSBTypes::t_ParticipantDesc reqParticipation,
in TINAStreamCommonTypes::t_RequestId reqId,
out TINAStreamCommonTypes::t_SFEPServDescList participantSIs

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
e_PaSBPartySetupError

);

A session uses the joinPartyPaSBExe() operation to request parties to join a stream binding.This
operation is issued in response to addParticipantsProviderPaSBReq() or addProviderPaSBReq()
operations on a i_ProviderPaSBReq interface, see Sections 5.5.9.5.1 and 5.5.9.5.2. The session
making the exe request is identified by the sessionId parameter, the stream binding to be joined is
identified by the sbId parameter, and the originating request is identified by the reqId parameter.
These parameters allow participants to identify the operation and stream binding when related
information is passed later via the i_PartyPaSBInfo interface, e.g. confirming the success or
failure of an operation or changes in the stream binding status.

The stream binding is described by a stream binding type, a set of associated media types, and
information specific to the party. The party’s domain interprets the stream binding type and any media
types to determine how many and what kind of SFEPs it needs to offer. If necessary, it acts to create
SFEPs to support its requirements. If the party’s terminal can support the required SFEPs and it is
allows to join the binding, it returns the SFEP descriptions (see Section 5.4.2.5) in the
participantSIs parameter. Otherwise an exception is thrown.

 page 195

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9.6.2. Leave a stream binding exe request

void leavePartyPaSBExe(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_RequestId reqId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
e_PaSBPartyExeError

);

A session uses the leavePartyPaSBExe() operation to request SB participants leave a stream
binding. This operation is invoked in response to deleteProviderPaSBReq() or
deleteParticipantsProviderPaSBReq() operations on a i_ProviderPaSBReq interface,
see Sections 5.5.9.5.4 and 5.5.9.5.3.

When a SB participant receives a leavePartyPaSBExe operation, it should prepare to be removed
from the stream binding. No return is required but an exception may be raised if the request is
incorrect, e.g. the stream binding is unknown or the request is not properly approved and authorized.

5.5.9.6.3. Modify stream binding participation exe request

void modifyPartyPaSBExe(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINASBComSCommonTypes::t_MediaDescList newTypes,
in TINASBComSCommonTypes::t_MediaDescList oldTypes,
in TINASBComSCommonTypes::t_MediaChangeDescList modTypes,
in TINAStreamCommonTypes::t_RequestId reqId,
out TINAStreamCommonTypes::t_SFEPServDescList participantSIs

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
e_PaSBPartySetupError

);

A session uses the modifyPartyPaSBExe() operation to request SB participants to change the
media types they support in a stream binding. A modifyParticipantsProviderPaSBReq()
operation on a i_ProviderPaSBReq interface, see Section 5.5.9.5.7, triggers this operation. The
newTypes, modTypes, and oldTypes parameters describe media types to be added, modified
and deleted respectively. Media types help determine which kinds of SFEPs the SB participant should
offer. So changing the media types require a participant to change the SFEPs offered.

When a SB participant receives a modifyPartyPaSBExe() operation, it needs to create or modify
SFEPs to support new or modified media types. The TCSM must know of new SFEPs and changes
to existing ones. The SB participant returns a list of SFEP descriptions of new or modified SFEPs for
the stream binding in the participantSIs parameter. SFEPs that are no longer required may be
released once the modification request is complete (i.e. a confirmation of the request is received via
the i_PartyPaSBInfo interface) and the SFEPs have been withdrawn. To ensure the SFEPs are
withdrawn, either the provider should issue a notifyWithdrawnElementsPartyPaSBInfo()
notification or the SB participant should make a withdrawSFEPsProviderPaSBReq() request.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 196

5.5.9.6.4. Change stream binding criteria exe request

void modifyCriteriaPartyPaSBExe(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAPaSBTypes::t_ParticipantCriteria newPCriteria

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
e_PaSBPartySetupError

);

The session uses the modifyCriteriaPartyPaSBExe() operation to modify a SB participant’s
success and recovery criteria. A modifyCriteriaProviderPaSBReq() operation on a
i_ProviderPaSBReq interface (see Section 5.5.9.5.8) may trigger this operation if it modifies the
criteria of any SB participants. The newPCriteria parameter describe the new success and
recovery criteria to be used. These criteria are specific to the participant only. No information is
returned by this operation, but an exception is raised if there is an error, e.g. an unknown stream
binding or unsupported success criteria.

5.5.9.6.5. Change stream binding state exe request

void changeStatePartyPaSBExe(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINASBComSCommonTypes::t_AdministrativeState state,
in boolean allFlows,
in TINASBComSCommonTypes::t_MediaDescList reqFlows,
in TINAStreamCommonTypes::t_RequestId reqId

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
e_PaSBPartyExeError

);

The session uses the changeStatePartyPaSBExe() operation to change a SB participant’s
administrative state for a given stream binding. The state parameter may be set to unlocked
(active) or locked (inactive). By changing this state, the SB member’s participation is activated or
deactivated. This operation results from an activateParticipantsProviderPaSBReq() or a
deactivateParticipantsProviderPaSBReq operation on a i_ProviderPaSBReq interface
by another party, see Section 5.5.9.5.5. The reqFlows parameter indicates the media types and
associated SFEPs that are affected. All SFEPs are changed if the allFlows flag is set true. No
information is returned by this operation, but an exception is raised if there is an error.

 page 197

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9.7 i_PartyPaSBInfo Interface

This interface is used to support general stream binding information distribution to parties. It supports
asynchronous responses to requests, confirmation of operations to other parties, distribution of SFEP
and SI information, and general notifications. Generally, these operations identify the session by a
t_SessionId type sessionId parameter. Stream bindings are identified by a t_SBId type sbId
parameter.

// module TINAPartyPaSBUsage

interface i_PartyPaSBInfo

: i_PartyGeneralStreamInfo
{
};

All of the operations i_PartyPaSBInfo are inherited from the i_PartyGeneralStreamInfo
interface. This is a general stream information interface that allows the session to make status reports
on a synchronous operations; the distribution of Stream Interfaces (in a very simple way); on the
withdrawals of SIs (and other elements) and the notification of communication errors.
i_PartyGeneralStreamInfointerface inherits some of this operations from
i_GeneralStreamInfo.

Currently, i_PartyPaSBInfo does not provide any additional operations over those defined for
i_PartyGeneralStreamInfo.

5.5.9.7.1. Confirm request information operation

oneway void confirmPartyGSInfo(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_RequestType reqType,
in TINAStreamCommonTypes::t_SBBindState info

);

This operation confirms a previous request has succeeded and optionally give the current state of the
stream binding. The request is identified by reqId and reqType parameters. The stream binding
state is described by the info parameter in terms of participants and SFEPs bound. This operation
may result from any asynchronously handled operation on the i_ProviderPaSBReq interface. It
may also be used to pass information to SB members involved by exe or indication operations on their
i_PartyPaSBExe or i_PartyPaSBInd interfaces.

5.5.9.7.2. Request failure information operation

oneway void failurePartyGSInfo(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_RequestType reqType,
in TINAStreamCommonTypes::t_FailureCode error,
in boolean additionalInfo,
in TINAStreamCommonTypes::t_ReqProblem reqProblem

);

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 198

This operation notifies recipients of the failure of a previous request and the reasons for the failure.As
before, the request is identified by reqId and reqType parameters. The reason for the failure is
given by an appropriate error code for the request type and an optional parameter: reqProblem. For
problems caused by invalid request parameters, usually the problemEl (element associated with a
problem) or problemParam (non-element parameter causing a problem) is returned. Other problems
may result in lists of failed elements (e.g. criteria not met errors). This operation may result from any
asynchronously handled operation on the i_ProviderPaSBReq. It may also be used to pass
information to SB members involved by exe or indication operation on their i_PartyPaSBExe or
i_PartyPaSBInd interfaces.

5.5.9.7.3. SI distribution operation

oneway void SIDistribPartyGSInfo(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SIDescList newSIs

);

This operation distributes stream interface information among SB members.This operation may be
used to distribute SI and SFEP information after creating the stream binding, adding or modifying
participants, or registering SFEPs. The SFEP information is grouped into SI descriptions, which
include the owner’s identity as well as the SI identity and reference.

5.5.9.7.4. SFEP distribution operation

oneway void SFEPDistribPartyGSInfo(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINAStreamCommonTypes::t_SFEPServDescList newSFEPs

);

This operation distributes SFEP information among SB members.This operation may be used to
distribute SFEP information after creating the stream binding, adding or modifying participants, or
registering SFEPs. However, since SFEPs do not indicate their owners, this operation is best suited
to distributing additional SFEPs associated with known SIs after a stream binding modification or
SFEP registration request.

5.5.9.7.5. Notify withdrawal of elements operation

oneway void notifyWithdrawnElementsPartyGSInfo(
in TINACommonTypes::t_SessionId sessionId,
in TINAStreamCommonTypes::t_SBId sbId,
in TINACommonTypes::t_ElementIdList gone

);

This operation informs SB members of the withdrawal of certain stream binding elements, in particular
SIs and SFEPs.This operation may be used after deleting or modifying SB participants, a notification
of sudden participation change, or the withdrawal of SFEPs or SIs.

 page 199

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.9.7.6. General notification operation

oneway void notifyGSInfo(
in TINASBComSCommonTypes::t_Notification event

);

This operation notifies SB members and other parties of:

• The addition of a stream binding;

• The modification of a stream binding by adding or deleting participants; changing the state
of a stream binding or any part of it; registering or withdrawing SFEPs; and adding,
deleting or modifying media types (and hence their associated SFCs);

• The deletion of a stream binding;

• Errors during the execution of operations on a stream binding;

• An error resulting in the full, partial, or temporary loss of a stream binding.

Stream binding related notifications are defined in terms of the event type (i.e. add stream binding),
a stream binding identifier, and a description of the stream bindings state (i.e. participants and SFEPs
bound). The session identifier (if needed) may be included in the notification parameters.

5.5.9.7.7. Update on error notification operation

oneway void notifyUpdateGSInfo(
in TINASBComSCommonTypes::t_NotifyIdentifier changedEvent,
in TINASBComSCommonTypes::t_StatusInfo eventChange

);

This operation notifies SB members and other parties of changes relating to a previous notification
due to an error. It relates the most recent change of stream binding status or other information (such
as when it might be recovered).

5.5.9.7.8. Cancel error notification operation

oneway void notifyCancelGSInfo(
in TINASBComSCommonTypes::t_NotifyIdentifier changedEvent

);

This operation notifies participants and other parties of cancelation of a previous notification due to
an error. It means that the stream binding has been recovered (fully or partially) or has been
permanently lost. No further actions related to the notification can be taken.

Ret Reference Point Specifications Usage Part
 Version 1.1; 30 April 1999

 page 200

5.5.10 Participant Oriented Stream Binding Indications (PaSBInd) Feature Set

The PaSBInd feature set allows a session to indicate that an action will be taken shortly (e.g. a stream
binding is going to be added). Parties may be able to vote on whether they wish this action to be taken
if the session also supports the Voting feature set or equivalent. The PaSBInd feature set is
dependant on the session supporting the PaSB feature set.

5.5.10.1 Interfaces

The following interfaces form the Participant SB Ind feature set.

i_PartyPaSBInd: Allows the service to inform a party that actions to create a stream binding or modify
an existing one will be taken shortly. Stream bindings and operations on them are specified in terms
of participants, overall stream binding type, and media types. When a member is informed of an
action, it may be able to vote on it, if the session supports voting.

• Add stream binding: indicate the type, media and initial participants of a proposed stream
binding.

• Delete stream binding: indicate proposal to entirely delete a stream binding.

• Add participants to a stream binding: indicate the proposed participants to be added to an
existing stream binding and their particular requirements.

• Delete participants from the stream binding: indicate participants to be deleted from the
stream binding.

• Modify the stream binding: indicate proposed changes in the supported media types of
the entire stream binding or of the given participants. Media types may be added, deleted,
or modified.

• Activate participants within a stream binding or an entire stream binding: indicate the
participants and media types to be activated in the stream binding.

• Deactivate participants within a stream binding or an entire stream binding: indicate the
participants and media types to be deactivated in the stream binding.

Table 5-18. Participant SB Ind Feature Set Interfaces

ParticipantSBInd interfaces on:

Party domain components i_PartyPaSBInd

Provider domain components (none)

 page 201

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.5.10.2 i_PartyPaSBInd Interface

This interface is used to allow indications of stream binding operations. Its operations are determined
by the operations of the i_ProviderPaSBReq interface, see Section 5.5.9.5. In general, the
interface has operations in response to all requests, except the information requests
(listProviderPaSBReq and getInfoProviderPaSBReq) or status change notifications
(notifyProviderPaSBReq). These operations are to notify parties of impending changes. If they
support the voting feature set, then they may allow or disallow operations.

// module TINAPartyPaSBIndUsage

interface i_PartyPaSBInd

{
};

The indication operations take the same name as the corresponding request operations except that
“Req” has been replaced by “Ind”, and “Provider” by “Party”. The indication operations parameters
are based on the corresponding i_ProviderPaSBReq request operations with the following general
alterations:

• The myId parameter is replaced by a t_SessionId type sessionId parameter, a
t_RequestId type reqId parameter, and a t_IndId type indId parameter.

• The requester’s SI or SFEP information parameters, any asynchronous request related
parameters or output parameters are omitted.

• The following exceptions may be returned for all indications (regardless of the request
operation and its exceptions):

- TINAUsageCommonTypes::e_PartyDomainError

- TINAIndCommonTypes::e_IndError

- e_PaSBIndError

For example the corresponding indication operation to the deleteProviderPaSBReq operation is:

void deleteParticipantsPartyPaSBInd(
in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId,
in boolean all,
in TINAPaSBTypes::t_ParticipantIdList reqMembers

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_IndError,
e_PaSBIndError

);

The indId parameter is used in to identify the indication in later voting, if any is supported. The
reqId parameter is used to identify subsequent confirmations or notifications associated with
request. Other parameters and parameter types are the same as those used in the PaSB feature set.
Section 5.5.9.5.3 shows the corresponding request operation.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 202

There are some exceptions to these basic guidelines. The register and withdraw SFEP indication
operations (withdrawSFEPsPartyPaSBInd() and registerSFEPsPartyPaSBInd()) do include
the requester’s SFEP information.

As well, simplifications have been made to the parameters used in addPartyPaSBInd() and
addParticipantPartyPaSBInd() operations which send participant identifiers rather than the full
participant descriptions used in the corresponding requests. This was done to simplify the processing
required for voting. As an example, the addParticipantPartyPaSBInd() operation is shown
below. Section 5.5.9.5.2 shows the corresponding request operation.

void addParticipantsPartyPaSBInd(
in TINACommonTypes::t_SessionId sessionId,
in TINAUsageCommonTypes::t_IndId indId,
in TINAStreamCommonTypes::t_RequestId reqId,
in TINAStreamCommonTypes::t_SBId sbId, // stream binding id
in TINAPaSBTypes::t_ParticipantIdList reqMembers

) raises (
TINAUsageCommonTypes::e_PartyDomainError,
TINAUsageCommonTypes::e_IndError,
e_PaSBIndError

);

Additional operations are defined on the i_PartyPaSBInd interface

 page 203

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.6 TINA Communication Session Model

The TINA Communication Session Model describes the interfaces required to support communication
session level interactions across the Ret-RP. The communication session does not (currently) support
requests for connections from party domains: these types of requests are handled by the stream
binding feature sets of the TINA service session model. Instead, the communication session supports
lower level requests required to set up Stream Flow Connections that support stream bindings
initiated by service sessions (or their members).

The TINA communication session model is identified by the string “TINACommSessionModel”, in the
access and usage parts of Ret-RP.

The communication session interface specifications here are not mandatory. The interface described
here only supports basic functionality. Other interfaces may be used, but should at least support the
basic functionality specified here. Extra abilities and communications from the party to the provider
may be desired. A list of desirable extra functionality can be found at the end of this section.

Currently the communication session model does not define its interfaces in terms of feature sets.
This is because the functionality defined is equal to a basic feature set for the communication session.
When interfaces to support the extra functionality are defined, the session model will be structured
according to feature sets. The interfaces defined here will become the basic feature set for the TINA
communication session model.

Party Domain Provider Domain
Figure 5-28. Interfaces in TINA Communication Session Model of Ret-RP.

i_ProviderPaSBReqi_PartyPaSBExe
i_PartyPaSBInfo

Ret-RPAvailable during a Communication Session

Available during a service session supporting stream binding

i_TerminalFlowControl

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 204

5.6.1 Communication Session Model Information View

The communication session is concerned with the establishment of Stream Flow Connections (SFCs)
to support service level stream bindings. To setup an SFC, the communication session needs to
establish Terminal Flow Connections (TFCs) for each terminal between SFCs and associated
Network Flow Connections (NFCs). The Ret-RP is only concerned with the interactions between the
provider and party domains required to configure SFEPs and to establish and control TFCs. This
section will introduce the information models supporting this interface.

Figure 5-30 shows the relation between SFCs, NFCs and TFCs. The TFC provides the links between
the SFC’s SFEPs and the NFC’s NFEPs. Point-to-point, point-to-multipoint and bidirectional
topologies are allowed. These topologies result in the following options:

• NFEP (sink/bidirectional) to one or more SFEPs (sink);

• SFEP (source) to one or more NFEPs (source/bidirectional);

• SFEP (source) to multiple SFEPs (sinks - internal branches) or NFEPs (source);

• NFEP (bidirectional) to SFEP (sink) and SFEP (source). This option allows unidirectional
SFCs map to bidirectional NFCs.

The Ret-RP needs to support functionality to initiate TFCs for the above topologies, and support their
modification and deletion. To initiate a TFC, the branches of the TFC need to be defined, either in
terms of known SFEPs (known from the SFCs) and NFCs (the network connections to which the CSM
intends to map the SFCs). The NFEPs are not initially known by the communication session. Instead
it knows of ANfeps that represent either a NFEP or a group of NFEPs (or an ability to create NFEPs).
This information is used at lower layers to select a suitable NFEP for an NFC.

Figure 5-29. Simple relation between SFCs, NFCs and TFCs.l

SISI

CPE

SISI

CPE

NFEP NFEP

SFC

NFC

TFC

SFEP

Figure 5-30. SFEPs and Supporting Capabilities.l

CapabilitySet

Capability

ObjectIdentifierdependencies

Simultaneous
Capabilities

SFEP
1+

terminal support

Terminal

located

simultaneous

dependencies
alternative

1+

dependencies

 page 205

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

As well, the Ret-RP needs to support the configuration of SFEPs to support SFC type and quality
requirements. At the service level, quality is described in service related terms, e.g. FM or CD quality
audio. At the communication level, these requirements are translated into a set of supporting session
and terminal capabilities (e.g. codecs). The communication session needs to determine the
capabilities available for each SFEP and select which ones will be used

A group of SFEPs is located on a terminal. The terminal supports the SFEPs by a capability set that
consists of a list of possible capabilities and lists of simultaneously supported capabilities, see Figure
5-30. This means that using one capability may exclude using another capability for a different SFEP
if the two capabilities are not in the set of simultaneously supported capabilities. Capabilities types
include terminal, session, and transport related capabilities. A capability may be dependent on a
number of other capabilities. Dependencies are described by sets of simultaneous dependencies
which are made up of a list of capabilities that may be used as alternatives to each other.

5.6.1.1 Terminology

The following terminology is used to describe communication session functions and requirements.
This is used in conjunction with terminology previously described for stream bindings.

• ANfep: Represents a potential network termination. It is the super class of the NFEP and
NFEPpool. An ANfep description includes layer network technology, direction, and a list
of descriptive attributes. Attributes may include the transport quality and associated
connectivity provider. They are used to determine which ANfeps to include in a NFC and
which connectivity provider to use to setup a NFC.

• Capability: Describes an ability to support certain functionality, e.g., an ability to support
an audio stream with a particular type of coding from a particular type of codec.
Capabilities may be associated with terminal, session or transport requirements. TINA
capability descriptions draw on the H.245 standards.

• Capability Set: Represents terminal support for SFEPs. It includes a list of capabilities
associated with the SFEPs.1 It also lists the sets of capabilities it can support
simultaneously. Use of some capabilities may exclude the use of others.

• Correlation Identifier: Is the TFC branch identifier, unique to the terminal. It is used to
correlate a NFEP (selected by connectivity layers) with the TFC branch (and hence SFEP)
with which it is associated. This allows the completion of the TFC branch setup.

• Dependencies: Capabilities are not all independent. One capability may require a
number of other types capabilities present to be used. Other capabilities may be used as
alternatives to one another.

- Simultaneous Dependencies: A set of capabilities types that are required together to
support a capability. Each type is described by an alternative dependencies set.

- Alternative Dependencies: A set of capabilities that may be used as alternatives to
each other to support another capability.

• Initiation: The communication session may initiate a TFC or a TFC branch. However a
TFC branch is not be completely set up until the ANfeps returned by the initiation step is
resolved to a NFEP and this NFEP is associated with the TFC branch.

• Completion: The setup of a TFC branch by the association with a resolved NFEP.

• Terminal : equipment in the party domain terminating a SFC connection.

1. SFEPs of different types and service quality are associated with different capabilities - e.g. an audio SFEP is only
associated with capabilities supporting audio.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 206

• Terminal Flow Connection (TFC): A point-to-point or point-to-multipoint connection
between a SFEP and NFEPs/SFEPs or a NFEP and SFEPs. TFCs also support
bidirectional topologies between a sink and source SFEP and bidirectional NFEP. Each
TFC branches represents the terminal part of a SFC branch, usually joining it to a NFC.

5.6.1.2 Communication Session related parameters

The communication session shares a number of common parameters with stream bindings. It also
requires the following communication related parameters. Of these, ANfep descriptors and NFC
names are also shared with the ConS parameter set.

• t_AlternativeCapabilities: A list of mutually exclusive capabilities. Only one of
the set may be used at a time. Capabilities are described by their identifiers.

• t_AlternativeDependencies: Describes a set of alternative capabilities on which
another capability is dependent. This capability needs to be used in conjunction with one
of these capabilities.

• t_ANfep: Describes an ANFep. It gives the ANfep name, the layer technology,
directionality, and the type (NFEP or NFEPpool). It also includes list of descriptive
attributes that may be used to describe transport quality and other requirements. If it is an
NFEPpool type ANfep, it may include a list of NFEPs or NFEPPool within the NFEPpool.

• t_ANfepList: A sequence of ANfep descriptions.

• t_BranchUpdate: Describes the updates required to a TFC branch after a change of
SFEP capabilities. It includes the branch’s correlation identifier, the type of NFEP change
required (see t_NFEPUpdate), and describes the required NFEP changes or the new
connection requirements and ANfeps using a t_ANfep list.

• t_Capability: Describes a capability in terms of:

- Capability description scheme identifier (e.g. ASN.1);

- Local capability type and instance identifiers;

- Directionality (i.e. receive, transmit, or receive and transmit associate capability);

- Simultaneous Dependencies;

- Descriptive attributes.

• t_CapabilityDescriptor: Identifies a capability and the set of simultaneously
supported capability types. Each simultaneously supported type is described by a set of
mutually exclusive capabilities using a t_AlternativeCapabilities data type.

• t_CapabilityList: A sequence of t_Capability.

• t_CapabilitySet: This data type describes a terminal’s capability set. It lists the
capabilities the terminal potential supports and the simultaneously available capabilities.

• t_CorrelationId: A TFC branch identifier unique to the terminal.

• t_CorrelationIdList: A sequence of correlation identifiers.

• t_NFCCorrelation: A correlation identifier, a NFC, and a list of ANfeps associated with
a TFC branch.

• t_NFCCorrelationList: The correlation information returned after initiating a SFEP to
multiple NFEP TFC or new branches of such a TFC.

• t_NFCName: The name of a NFC to be associated with a TFC branch.

 page 207

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

• t_NFEPUpdate: Describes the updates required to TFC branches’ supporting NFEP
after a change of SFEP capabilities. Possible changes are: no change, modify the existing
NFEP, or select a new NFEP.

• t_SFEPCorrelation: A correlation identifier and SFEP associated with a TFC branch.

• t_SFEPCorrelationList: The correlation information returned after initiating a NFEP
to multiple SFEP TFC or new branches of such a TFC.

• t_SFEPSelect: A SFEP and it required capability lists. The capability list describes the
capabilities to be associated with the SFEP. These need to be reserved for its use.

• t_SFEPSelectList: A sequence of t_SFEPSelect.

• t_SimultaneousDependencies: Describes a set of capability types on which another
capability is dependent. This capability needs to be used in conjunction with all of these
capability types. The capability types are described by t_AlternativeDependencies.

• t_TFCName: A TFC identifier, unique in the party domain. It is set by the TCSM on the
initiation of a TFC.

5.6.2 Communication Session Model Interfaces

The communication session is separate from the service session. However, as it is part of Ret-RP
usage part, it also needs to be considered by the Ret-RP. In regards to Ret-RP, the provider part of
the communication session coordinates with terminals to establish TFCs. These TFCs form the
terminal part of a SFC and need to be associated SFCs and NFCs. This functionality is supported by
set of interfaces on the party domains’ and provider domain’s components. These components are
referred to as the Communication Session Manager (CSM) and the Terminal Communication Session
Manager (TCSM). In the TINA service architecture, these components are separate from the service
components. However, this only recommended - it is not mandatory.

The interfaces assume service level stream binding support is used to specify the SFCs it supports.
It assumes that SFEPs that it is passed are already in existence and are known to the TCSMs. It also
assumes that the TFC is not yet fully established. The provider (via the CSM) uses the TCSM to
initiate TFCs or TFC branches and associate them with SFC and NFCs. A TFC may be point to point
(i.e. SFEP to NFEP), or point to multipoint (NFEP to multiple SFEPs, SFEP to multiple NFEPs/
SFEPs). Each branch is identified by a correlation identifier.

When a NFC associated with a TFC branch is established, the correlation identifier is used by the
TCSM to complete the TFC. If the communication session is supported by the ConS and TCon
reference points (ConS implies TCon), the correlation identifier is passed over the TCon reference
point. The Terminal Layer Adapter, the party component supporting the TCon reference point, uses
this identifier plus the selected NFEP to request the TCSM to complete the TFC branch. As the
communication session needs to cope with non-ConS reference points, the functionality for
completing a TFC branch is also supported between the TCSM and CSM.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 208

5.6.2.1 Interfaces

The following interfaces are required to support the communication session over Ret-RP.

5.6.2.1.1. i_TerminalFlowControl

i_TerminalFlowControl: This interface supports the setup of the nodal (TFC) parts of a SFC and its
coordination with the physical (NFC) parts of the SFC. It supports the following functionality.

• Query Capabilities: Determine the terminal capabilities available for a given set of SFEPs.

• Select Capabilities: Set the of capabilities (e.g. codecs, session protocols) of a SFEP2.

• Initiate a TFC:

- Initiate a TFC for a number of branches described by SFEPs or NFCs. Return the corre-
lation identifier and ANFEPs that are associated with each branch. The TFC setup is not
completed until the ANfeps are resolved to a NFEP and it is returned to the TCSM.

• Resolve: Set the terminal capabilities for a SFEP and initiate the TFC for the SFEP.

• Activate: Activate a TFC or TFC branch. This allows the CSM to activate the SFC.

• Deactivate: Deactivate a TFC or TFC branch. This allows the CSM to deactivate the SFC.

• Update: Update a TFC following a change of SFEP capabilities

• Delete:

- Delete a TFC or TFC branch, invalidating the correlation identifier(s). When a SFC or
SFC branch is released, the associated TFCs must be released also.

• Associate:

- Associate TFC branches, specified by correlation identifiers, with a particular NFEP. The
TCSM can complete the TFC branches on receiving this notification. This allows the com-
munication session to complete TFCs if required (i.e no ConS/TCon like support).

• RemoveNFEP:

- Remove an NFEP from a TFC branch. This allows a SFC to migrate from one NFC to
another if required. It may also be used when releasing an SFC or SFC branch.

5.6.2.2 Components and interfaces

5.6.2.2.1. Party domain components (TCSM)

The TCSM interacts with the CSM to support requests to aid the setup, modification, and release of
SFCs. In particular it can associate SFEPs and their associated TFC branches with particular SFCs
and NFCs, modify SFEPs and associated TFC branches, and activate or deactivate TFCs.The TCSM

2. These capabilities determine the transport quality an NFC branch needs to support

Table 5-19. TINA Communication Session Model Interfaces

Interfaces on:

Usage party domain components i_TerminalFlowControl

Usage provider domain components

 page 209

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

is responsible for the completion of the TFC and may interact with the TLA or the CSM to achieve this.
The TCSM must also support SFEP registration, but this is not supported by the Ret-RP. Ret-RP
functionality is supported by the i_TerminalFlowControl interface on the TCSM.

5.6.2.2.2. Provider domain Components (CSM)

The CSM supports the establishment of SFCs. It allows its clients (service sessions) to add, activate,
deactivate or remove SFCs via the associated session control interface. It also allows clients to
manipulate individual stream flows. Each stream flow connection has an interface related sol y to it.
Similarly, each communication session control interface is dedicated to a single CSM. This
functionality is not supported by the Ret-RP.

To establish a stream flow connection, the CSM must coordinate with each associated TCSM to
correlate the nodal part of the connection with the network connection and overall stream flow
connection (SFCs are uniquely by the session, and this name may not be known to the user part of
the session during establishment). It may also interact with them to modify SFCs or support changes
in the nodal part of a connection. This functionality must be supported across the Ret-RP. To do this,
the CSM requires the i_TerminalFlowControl interface.

Finally, the CSM interacts with connectivity level components to setup, modify, and delete NFCs.This
functionality is supported by the ConS reference point. We usually assume that these components
conform to ConS, but different components could be used. To ensure that the communication session
can function independently of the underlying connectivity level, we have included operations for
completing and removing TFCs at the communication level.

5.6.2.2.3. i_TerminalFlowControl Interface

In the following operations, SFEPs are identified by t_SFEPName, NFCs by t_NFCName, TFCs by
t_TFCName, and TFC branches by t_CorrelationId.

// module TINAPartyCommSUsage

interface i_TerminalFlowControl

: i_BasicTerminalFlowControl
{
};

5.6.2.2.3.1 Query capabilities that the SFEP can support
void queryCapabilities (

in t_SFEPNameList sfeps,
out t_CapabilitySet capabilities

) raises (
e_PartyDomainError,
e_CSQueryError

);

This operation allows the communication session to query a terminal for the capabilities available to
support the specified SFEPs. If successful, this operation returns the terminal’s capability set which
a table of capability descriptions, and a list of restrictions that apply to use of these capabilities.
Otherwise, it raises an exception. This operation will be required for setting up each branch of an SFC,
unless capability information is included in the SFEP description.

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 210

5.6.2.2.3.2 Select capabilities for an SFC
void selectSFCCapabilities (

in t_SFEPName sfep,
in t_CapabilityList localCaps,
in t_SinkAttributes sfcCaps,
out t_CapabilityList commonCaps,
out t_CapabilityList transportReqs

) raises (
e_PartyDomainError,
e_CapabilityError,
e_CSQueryError

);

This operation allows a CSM to call on a TCSM to select common capabilities for an SFC, given the
preferred capabilities from its capability set and capability attributes of other SFEPs in the SFC.
Typically, this operation is called on the source SFEP before any capability selection operations are
called on the sink SFEPs, see Figure 5-31. It assumes the CSM does not have the knowledge to
make a selection. This operation reserves the requested capabilities for the local SFEP. These
capabilities are no longer available for other SFEPs and should not be returned by subsequent
capability queries.

If successful, the operation returns the common capabilities to select for other SFEPs in the SFC. It
also returns a set of transport requirements. These may include protocol and QoS requirements
needed by the TCSM’s terminal to support the given SFEP capabilities. Otherwise the operation
throws an exception.

5.6.2.2.3.3 Select capabilities for an SFEP
void selectSFEPCapabilities(

in t_SFEPName sfep,
in t_CapabilityList localCaps,
out t_CapabilityList transportReqs

) raises (
e_PartyDomainError,
e_CSQueryError,
e_CapabilityError

);

This operation allows a communication session to set the particular capabilities the SFEP requires.
These capabilities are passed by the localCaps parameter. This operation is needed to ensure that
SFEPs support compatible capabilities. If successful the operation reserves the requested
capabilities. These capabilities are no longer available for other SFEPs and should not be returned
by subsequent capability queries. It returns also a list of transport quality requirements. Otherwise,
an exception is raised. This operation is required to setup SFC branches prior to initiating TFCs. It
may be used in conjunction with the selectSFCCapabilities() operation.

 page 211

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.6.2.2.3.4 Initiate a TFC
void initiateTFC(

in t_SFEPNameList sfeps,
in t_NFCName connection,
in t_AdministrativeState state,
out t_TFCName newTFC,
out t_SFEPCorrelationList correlation,
out t_ANfepList requiredNfeps

) raises (
e_PartyDomainError,
e_TFCError

);

This operation initiates a TFC. It can be used to initiate a point-to-point, bidirectional, or point(NFEP)-
to-multipoint(SFEP) TFCs. A TFC branch is created for each SFEP named. The connection
parameter identifies the NFC to be supported. The state gives the initial administrate state of all the
branches in the TFC.

If successful, this operation returns a correlation identifier and associated SFEP for each branch. The
correlation identifier is used in later operations on this interface and also across the TCon reference
point to identify the TFC branch. The overall TFC itself is identified by the TFC name. It also returns
a list of ANfeps. These ANfeps must support the transport requirements of the associated SFEPs. If
these are not consistent the operation will fail. The ANfep descriptions give the protocol, QoS and
address requirements of the ANfep. If the operation fails, an exception will be thrown.

Figure 5-31 shows the set up sequence for a simple point-to-point SFC. Initially, the provider domain
component (the CSM) queries each TCSM associated with the SFC’s SFEPs for the SFEPs’
capabilities. If it cannot match the capability attributes, it selects the attributes it wants for the source

Provider domain

Party domain B

Party domain A

hook for ConS
(or other conn.provider actions)

queryCapabilities
queryCapabilities

initiateTFC

initiateTFC

opt (for non ConS)
associateNFEP opt.(for non ConS)

associateNFEP

Figure 5-31. Setup a point to point SFC

(TCSM_A) (CSM)

(TCSM_B)
Setup SFC Command
(from service session)

selectSFEPCapabilities
selectSFCCapabilities

(Source SFEP)
(Sink SFEP)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 212

SFEP, and lets the TCSM select the common capabilities for the sink SFEP. It selects the sink SFEP’s
capabilities using those chosen by the source SFEP’s TCSM. It then initiates a TFC for each terminal.
Next, it determines the NFC using the returned ANFeps, and may make calls on the ConS interfaces
to setup the NFC connection. If there ConS is not used, it may need to make an associate call to each
terminal once the NFEP is determined to complete the TFC setup (and hence the SFC setup).

5.6.2.2.3.5 Initiate a TFC for multiple NFEPs
void initiateMultiNFEPTFC(

in t_SFEPName sfep,
in t_NFCNameList connections,
in t_AdministrativeState state,
out t_TFCName newTFC,
out t_NFCCorrelationList correlation

) raises (
e_PartyDomainError,
e_TFCError

);

This operation initiates a TFC. It can be used to initiate a point-to-point, or point(SFEP)-to-
multipoint(NEP) TFC. The connections parameter identifies the NFCs to be supported. Each NFC
is associated with a TFC branch for which an NFEP must be selected. The state gives the initial
administrate state of all the branches in the TFC. If successful, this operation returns a correlation
identifier and associated NFC for each branch. It also returns a list of ANfeps with each NFC. If the
operation fails, an exception will be thrown.

5.6.2.2.3.6 Add a TFC SFEP branch
void addTFCBranches(

in t_TFCName aTFC,
in t_SFEPNameList sfeps,
in t_AdministrativeState state,
out t_SFEPCorrelationList correlation

) raises (
e_PartyDomainError,
e_TFCError

);

This operation allows the CSM to request the addition of a branch to an existing TFC. The TFC is
identified by the aTFC parameter. The new branches to be added are identified by the sfeps
parameter. The initial state of these branches is determined by the state parameter. If successful,
this operation returns a correlation identifier and associated SFEP for each branch. If the operation
fails, an exception will be thrown. Add branch operations can be used to add a branch to an SFC or
establish a new SFC over an existing NFC.

 page 213

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.6.2.2.3.7 Add a TFC NFEP branch
void addMultiNFEPTFCBranches(

in t_TFCName aTFC,
in t_NFCNameList connections,
in t_AdministrativeState state,
out t_NFCCorrelationList correlation

) raises (
e_PartyDomainError,
e_TFCError

);

This operation allows the CSM to request the addition of a branch to an existing TFC. The TFC is
identified by the aTFC parameter. Branches are identified by their associated NFCs. The new
branches to be added are identified by the connections parameter. The initial state of these
branches is determined by the state parameter. If successful, this operation returns a correlation
identifier and associated NFC for each branch. It also returns a list of ANfeps with each NFC. If the
operation fails, an exception will be thrown.

5.6.2.2.3.8 Delete TFC or its branches
void deleteTFCBranches(

in t_TFCName aTFC,
in boolean all,
in t_CorrelationIdList branches

) raises (
e_PartyDomainError,
e_CSQueryError

);

This operation allows the communication session to delete a TFC or some of its branches. The TFC
is identified by the aTFC parameter. The branches are identified by a list of correlation identifiers in
the branches parameter. If the all flag is set true, all branches of the TFC are removed. Otherwise,
only the identified branches are deleted. Once a TFC branch is deleted, the correlation identifier is
invalid and the associated SFEPs and NFEPS are released. If the operation is successful, it returns.
Otherwise an exception is raised. This operation is required to remove branches of an SFC, following
similar steps to those in Section 5-33. See also Section 5.6.2.2.3.18.

5.6.2.2.3.9 Activate a TFC or its branches
void activateTFCBranches(

in t_TFCName aTFC,
in boolean all,
in t_CorrelationIdList branches

) raises (
e_PartyDomainError,
e_CSQueryError

);

This operation allows the communication session to activate a TFC or some of its branches. The TFC
is identified by the aTFC parameter. The branches are identified by a list of correlation identifiers in
the branches parameter. If the all flag is set true, all branches of the TFC are activated. Otherwise,
only the identified branches are activated. If the operation is successful, it returns. Otherwise an

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 214

exception is raised. This operation is required to activate branches of a SFC. Figure 5-33 shows a
sequence of steps to activate a TFC. After receiving an activate SFC request, the CSM activates the
associated NFCs and then makes activateTFCBranches() requests to each terminal.

5.6.2.2.3.10 Deactivate a TFC or its branches
void deactivateTFCBranches(

in t_TFCName aTFC,
in boolean all,
in t_CorrelationIdList branches

) raises (
e_PartyDomainError,
e_CSQueryError

);

This operation allows the communication session to deactivate a TFC or some of its branches. The
TFC is identified by the aTFC parameter. The branches are identified by a list of correlation identifiers.
If the all flag is set true, all branches of the TFC are deactivated. Otherwise only the identified
branches are deactivated. If the operation is successful, it returns. Otherwise an exception is raised.
This operation is required to deactivate branches of an SFC. The steps required are similar to those
in Figure 5-33 except, that the deactivateTFC request should precede the deactivate NFC request.

5.6.2.2.3.11 Update TFC or its branches
void updateTFCBranches(

in t_TFCName aTFC,
in boolean all,
in t_CorrelationIdList branches,
in boolean noDisruption,
out TINACommSCommonTypes::t_NFEPUpdate reqChange,
out t_ANfepList mods

) raises (
e_PartyDomainError,
e_TFCError

);

Provider domain

Party domain B

Party domain A

hook for ConS
(or other conn.provider actions)

Figure 5-32. Activate a SFC.

(TCSM_A) (CSM)

(TCSM_B)
Activate SFC Command
(from service session)

activateTFCBranches

activateTFCBranches

 page 215

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

This operation allows the communication session to update a TFC or TFC branches after a change
of SFEP capabilities, where the branches must all be associated with the same NFEP. If all branches
are affected, the all flag is set true. Otherwise, the branches parameter lists affected branches by
their correlation identifier.The noDisruption flag tells the TCSM if the TFC can be disrupted or not.
If it is not possible to comply with this condition, an exception is thrown.

If the operation is successful, it returns the type of change required to the NFEP (none, modify current
NFEP, or new NFEP required). It also returns a ANfep list that describes modifications to the existing
NFEP or suggests possible new ANfeps. If there is an error, an exception is raised.

This operation supports the modification of SFC branches’ quality requirements. Figure 5-33 shows
an example of modifying SFC quality. After receiving the modify command, the CSM queries each
terminal to determine currently available capabilities. (These change as capabilities are released or
reserved for the SFEPs.) It then selects the new capabilities for the source and sink respectively. Next
it calls an updateTFC() operation for each terminal. The terminals respond with update required to
the supporting NFEPs. These may be modified or require the selection of new NFEPs. If the former,
the supporting NFC can be modified. If the latter, the existing NFC may need to be replaced (in whole
or part), and new NFEPs associated with the TFCs.

Provider domain

Party domain B

Party domain A

hook for ConS
(or other conn.provider actions)

queryCapabilities
queryCapabilities

updateTFC

UpdateTFC

opt (for non ConS) associateNFEP opt.(for non ConS)
associateNFEP

Figure 5-33. Modify an SFC’s quality requirements.

(TCSM_A) (CSM)

(TCSM_B)
Modify SFC Command
(from service session)

selectSFEPCapabilities
selectSFCCapabilities

(Source SFEP)
(Sink SFEP)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 216

5.6.2.2.3.12 Update TFC or its branches
void updateMultiNFEPTFCBranches(

in t_TFCName aTFC,
in boolean all,
in t_CorrelationIdList branches,
in boolean noDisruption,
out TINACommSCommonTypes::t_BranchUpdateList mods

) raises (
e_PartyDomainError,
e_TFCError

);

This operation allows the communication session to update a TFC or TFC branch after a change of
SFEP capabilities, where the branches are terminated with different NFEPs. If all branches are
affected, the all flag is set true. Otherwise, the branches parameter lists affected branches by
correlation identifiers. The noDisruption flag tells the TCSM if the TFC can be disrupted or not. If
it is not possible to comply with this condition, an exception is thrown.

If the operation is successful, it returns the a list of updates for each branch in the mods parameter.
This parameter includes type of change required to the NFEP and an ANfep list that describes
modifications to the existing NFEP or suggests possible new ANfeps. If there is an error, an exception
is raised. This operation supports the modification of SFC branches.

5.6.2.2.3.13 Resolve SFEP capabilities to initiate TFC
void resolveSFEPforTFC(

in t_SFEPSelectList sfeps,
in t_NFCName connection,
in t_AdministrativeState state,
out t_TFCName newTFC,
out t_SFEPCorrelationList correlation,
out t_ANfepList requiredNfeps

) raises (
e_PartyDomainError,
e_TFCError,
e_CapabilityError

);

This operation allows the communication session to set capabilities for one or more SFEPs and
initiate the associated TFC. It assumes that the common SFEP capabilities are already known. The
sfeps parameter lists SFEPs with their desired capabilities. These are used to select capabilities for
each SFEP before initiating the TFC. In all other respects, this operation acts like a initiateTFC()
operation. Desired transport requirements, such as protocols and QoS requirements should be
returned in the ANfep descriptions. This operation is provided to improve the efficiency of TFC setup
by combining two sequential operations. Further efficiency savings can be made if the SFEPs passed
to the communication session already contain capability information. In this case, only a single
operation for each terminal is required at the communication level to setup an SFC.

 page 217

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.6.2.2.3.14 Resolve SFEP capabilities to initiate multiple NFEP TFC
void resolveSFEPforMultiNFEPTFC(

in t_SFEPSelect sfep,
in t_NFCNameList connections,
in t_AdministrativeState state,
in t_SinkAttributes sfcCaps,
out t_TFCName newTFC,
out t_CapabilityList commonCaps,
out t_NFCCorrelationList correlation

) raises (
e_PartyDomainError,
e_TFCError,
e_CapabilityError

);

This operation allows the communication session to set capabilities for an SFEP and initiate the
associated TFC for one or more associated NFCs. It assumes that the common SFEP capabilities are
not known and can be determined by the TCSM. The capabilities of the local SFEP as well as other
SFEPs associated with the SFC are passed. The local capabilities indicate those capabilities
preferred by the CSM. The TCSM ensures a common set of capabilities exist and that it can setup
the requested local capabilities.

Once the capabilities are selected, it initiates the local TFC. This may be over multiple NFEPs as
indicated by the NFCs. From this point it proceeds as for a initiateMultiNFEPTFC() operation,
except that, as well as returning the branch correlation and ANFEP information, it also returns the
common capabilities. Desired transport requirements for the local SFEP, such as protocols and QoS
requirements, should be returned in the ANfep descriptions. As before, this operation is provided to
improve the efficiency of TFC setup by combining two sequential operations.

5.6.2.2.3.15 Resolve SFEP capabilities to initiate bidirectional TFC
void resolveSFEPforBiTFC(

in t_SFEPSelectList sfeps,
in t_NFCName connection,
in t_AdministrativeState state,
in t_SinkAttributes sfcInCaps,
in t_SinkAttributes sfcOutCaps,
out t_TFCName newTFC,
out t_CapabilityList commonInCaps,
out t_CapabilityList commonOutCaps,
out t_SFEPCorrelationList correlation,
out t_ANfepList requiredNfeps

) raises (
e_PartyDomainError,
e_TFCError,
e_CapabilityError

);

This operation allows the communication session to set capabilities for two SFEPs associated with a
bidirectional TFC. It assumes that the common SFEP capabilities are not known in either direction
and can be determined by the TCSM. The capabilities of the local SFEPs as well as other SFEPs
associated with the two SFCs (one in each direction as SFCs are not bidirectional) are passed. The

Ret Reference Point Specifications Usage Part
 Version 1.1; 30 April 1999

 page 218

local capabilities indicate those capabilities preferred by the CSM for the input and output SFEP
respectively. The TCSM ensures a common set of capabilities exist in both direction and that it can
setup the requested local capabilities for both SFEPs.

Once the capabilities are selected, it initiates the local TFC for the two TFC branches. From this point
it proceeds as for a initiateTFC() operation, except that as well as returning the branch
correlation and ANFEP information it also returns the two sets of common capabilities. Desired
transport requirements for the local SFEPs, such as protocols and QoS requirements, should be
returned in the ANfep descriptions. As before, this operation is provided to improve the efficiency of
TFC setup by combining two sequential operations.

5.6.2.2.3.16 Resolve SFEP capabilities and add TFC branches
void resolveSFEPforTFCBranches(

in t_TFCName aTFC,
in t_SFEPSelectList sfeps,
in t_AdministrativeState state,
out t_SFEPCorrelationList correlation

) raises (
e_PartyDomainError,
e_TFCError

);

This operation allows the CSM to request the selection of SFEP capabilities and the initiation of
additional TFC branches for each SFEP. If successful, this operation returns a correlation identifier
for each branch with the associated SFEP. If the operation fails, an exception will be thrown.

5.6.2.2.3.17 Associate NFEP with TFC branches operation
void associateNFEP(

in t_CorrelationIdList branches,
in t_TinaName aNFEP

) raises (
e_PartyDomainError,
e_CSNFEPError

);

This operation allows the communication session to associate a NFEP with TFC branches identified
by the correlation identifiers, completing the TFC branch set up. Branches may be completed at the
TCon level, assuming a similar operation between the TLA and TCSM. This operation is included to
allow use of non ConS/TCon providers. The aNFEP parameter identifies the NFEP that has been
selected by the connectivity layer. If the operation is successful it returns and completes the TFC.
Otherwise, it raises an exception. This operation is optionally used to setup SFC branches. It may be
used in conjunction with the addTFCBranches() operation to setup a SFC over an existing NFC.

 page 219

Usage Part Ret Reference Point Specifications
 Version 1.1; 30 April 1999

5.6.2.2.3.18 Remove NFEP from TFC branches operation
void removeNFEP(

in t_TinaName aNFEP,
in boolean all,
in t_CorrelationId branches

) raises (
e_PartyDomainError,
e_CSNFEPError

);

This operation allows the communication session to remove a NFEP from TFC branches. The
branches from which it is to be removed are identified by correlation identifiers. This automatically
deactivates the TFC branch. This can be used to start deleting an SFC or SFC branch. It could also
be used to swap an NFEP from connection with one SFEP to connection with another. This operation
does not remove the entire TFC branch (though it is no longer operational). Rather it prepares the
branch for a setup change. If the operation is successful it returns. Otherwise, it raises an exception.

This operation is optionally used to delete SFC branches or change the NFEP with which TFC
branches are associated (and hence change the SFC to NFC mapping). Figure 5-33 shows the steps
needed to remove a SFC. After receiving the command, the CSM may optionally remove the NFEPs
from the TFCs, deactivating the TFCs. It then call the appropriate NFC deletion operations over the
ConS reference point. Finally it deletes the TFCs. To change SFC to NFC mapping, the TCSM would
call the removeNFEP() operation followed by the associateNFEP() operation.

5.6.2.2.4. Unsupported functionality

There is still work on going for the communication session. This may result in some additions or
modifications to the functionality of this interface or the addition of further interfaces.

• Possible modifications: There may be some modifications in the QoS parameter
definitions and this may affect capability selection and query operations.

• Additional functions on the i_TerminalFlowControl interface (or derived interface):

- Additional query functionality:

• Query bidirectional support;

Provider domain

Party domain B

Party domain A

hook for ConS
(or other conn.provider actions)

deleteTFCBranches
deleteTFCBranches

opt (for non ConS)
removeNFEP opt.(for non ConS)

removeNFEP

Figure 5-34. Deleting a SFC.

(TCSM_A) (CSM)

(TCSM_B)
Modify SFC Command
(from service session)

Ret Reference Point Specifications Usage Part
Version 1.1; 30 April 1999

 page 220

• Query multiplexing support (SFEP to multiple NFCs);

• Query multiplexing support (NFC to multiple SFEPs;

• Query demultiplexing support for an SFEP. (i.e. combining flows from multiple
NFCs - this would also mean supporting multipoint-to-point TFC topologies.)

- Additional capability selection functionality: Currently capabilities can be modified by per-
forming new selection operations. It may be possible to modify an existing capability set
by adding, removing or modifying capabilities within the set. Extensions include:

• Add capability;

• Modify capability;

• Delete capability.

- Add more TFC initiation and branch addition operations: e.g. point SFEP to multipoint
SFEPs or point SFEP to multipoint NFEPs/SFEPs.

- Add more combined operations: A wider range of combined operations could be useful
for TFC initiation. Also, operations that could handle multiple TFC setups could be useful.

• Additional interfaces:

Additional interfaces, particularly to support TCSM to CSM interactions are desirable.

- Notification interface for CSM (base on i_GeneralStreamInfo interface)

- Notification control interface: to allow a CSM (or other provider domain components) to
direct notifications to itself or some other component.

 page 221

Introduction Ret Reference Point Specifications
Document Stability Version 1.1; 30 April 1999

6. Document Stability

The stability of this document is really measured in terms of the stability of the specifications it defines.
This section indicates the relative stability of the parts that comprise Ret-RP.

The stability of the access and usage parts of Ret-RP are discussed separately in the following
sections. However, there a number of issues which are common to both parts, and are discussed
below.

This section of the document was last updated on 22 December 1997. Obviously, the projects detailed
below are continuing to implement prototypes based upon Ret-RP, and will make more comments on
aspects currently not implemented. Also the IDL specifications will be compiled using different
platforms and language mappings. The purpose of highlighting the date here is that the document
may have new versions, with a new date for the whole document.However this section has only been
updated according to the date above, and so the implementation projects may have made significant
progress over that detailed below. Hopefully as problems with the specification are updated in the rest
of the document, they will be updates here also.

It is hoped that readers that find problems with the specification send comments to the Editors to help
in updating the specification.

IDL specifications:

The Ret-RP specifications are defined in the OMG Interface Definition Language (IDL). These
specifications have been compiled using IDL compilers to check their syntax, and ensure that they
can be used with current commercial IDL compilers, to build industry-strength consumer and retailer
components.

Table 6-1 defines the IDL compilers that have been used to compile the Ret-RP IDL.

The IDL specifications have been compiled in order to check their syntax. A number of syntax
problems, such as name clashes and unusable types, have been identified and removed from the
specifications. The current specifications pass the syntax checking of these compilers, and generate
stub code to be included in components implementing the interface.

Table 6-1. CORBA Platforms used to test syntax of IDL specifications

Product Version Supplier Access Part
Usage Part

TINA Service Session Model
Usage Part

TINA Comm Session Model

Orbix
multi-threaded

v2.1 IONA
Technologies

Compiled IDL
and stubs

Compiled IDL and stubs Compiled IDL
Stubs not compiled.

OrbixWeb v2.0.1 patch level 5
v3.2 beta release 2

IONA
Technologies

Compiled IDL
and stubs

Compiled IDL and stubs Compiled IDL and stubs

Visibroker for
Java

v2.5
v3.0

Visigenics Compiled IDL
and stubs

Not Compiled Not Compiled

NEO 2.0 Sun
Microsystems

Compiled IDL
and stubs

Compiled IDL
Stubs not compiled.

Compiled IDL
Stubs not compiled.

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999 Document Stability

 page 222

For some parts of Ret-RP, the stubs have also been compiled using C++ and Java language
mappings for the platforms indicated. This gives a good indication that the specification will compile
on other platforms, and using other language mappings. However, they have only been tested on the
platforms specified.(Please report any problems, or error found when compiling or implementing the
Ret-RP specification to the editors of this document.)

Implementations:

The following is the status of implementation projects, which include parts of the Ret-RP. The
information below is correct as of 1st December 97. Many of the projects are continuing development,
and will, by the time you read this, have implemented more of Ret-RP, and may have insightful
comments on the specifications.

6.1 Stability of Access Part Specifications

The Access Part is the most stable and longest lived part of the Ret-RP. In general, the access part
is stable. Where comments have been received on a particular operation, they are summarised
below. Some operations are labelled as draft, and so updates to their definitions are possible.

Table 6-2. Implementation Projects and their progress.

Project Participants Implementations

Eurescom P715
contact: P715@research.kpn.com

British Telecommunications plc (BT)
Deutsche Telecom AG (DT)
France Télécom (FT)
FINNET Group
Royal PTT Nederland NV (KPN)
Telecom Éireann

A service platform based at each partner
site, interconnected by ISDN.
Addresses Ret, ConS, TCon RPs
implementing selected parts of each RP.
Also addresses RtR and 3PTY RPs.

ACTS VITAL Implementations followed roughly early
versions of Ret-RP, but with some
significant approach in isolated areas.
Implementation for 1998 will follow Ret-RP.

Global One TINA Technical Trial Global One partners, (Sprint, France
Télécom, Deutsche Telecom AG)

ORBs: PowerBroker, VisiBroker, HP-
Distributed Smalltalk and Orbix.
Implemented: selected operations of access
part. No implementation of usage part.

Table 6-3. Stability of Access Part interfaces

Interface Operation Updates

i_ConsumerInitial requestAccess() Draft Definition: comments outstanding:
Section 6.1.1, "i_ConsumerInitial"

inviteUserOutsideAccessSession()
cancelInviteUserOutsideAccessSession()

Draft Definition: comments outstanding:
see Section 6.1.4, "Invitations".

i_ConsumerAccess getInterfaceTypes()
getInterface()
getInterfaces()

Stable.

cancelAccessSession() Draft Definition: no comments, but no
implementations at present, see
Section 6.1.2, "i_ConsumerAccess"

 page 223

Introduction Ret Reference Point Specifications
Document Stability Version 1.1; 30 April 1999

6.1.1 i_ConsumerInitial

The purpose of the i_ConsumerInitial interface is to provide an initial contact point for the retailer
wishing to contact the consumer. All of the operations defined on this interface are draft at present,
and therefore subject to change. (The requestAccess() operation is discussed below. Other
operations are discussed in Section 6.1.4, "Invitations"

The requestAccess() operation allows the retailer to request that an access session is established
between the consumer and the retailer. Comments from VITAL have suggested allowing some sort
of invitation to be passed to the consumer as part of this request. This ‘invitation’ could describe why

i_ConsumerInvite inviteUser()
cancelInviteUser()

Comments outstanding: see Section
6.1.4, "Invitations".

i_ConsumerTerminal getTerminalInfo() Draft Definition: comments for
operations allowing more flexibility in
querying the consumer domain, and
the sort of information that should be
passed using this interface.

i_Consumer
AccessSessionInfo

All operations. Comment on use of oneway, see
Section 6.1.6, "Info operations".

i_Consumer
SessionInfo

All operations. Comment on use of oneway, see
Section 6.1.6, "Info operations".

i_RetailerInitial requestNamedAccess() Stable. Implemented.

requestAnonymousAccess() Stable, but no implementations at
present.

i_RetailerAuthenticate getAuthenticationMethods()
authenticate()
continueAuthentication()

Stable, but no complete
implementations at present.

i_RetailerAccess Operations inherited from
i_ProviderAccessInterfaces,
i_ProviderAccessGetInterfaces and
i_ProviderAccessRegisterInterfaces.

Stable.

i_RetailerNamedAccess All operations, except below: Stable

listSubscribedServices() Comments outstanding: see Section
6.1.8, "Subscribed Services".

listSessionAnnouncements()
joinSessionWithAnnouncement()

Comments outstanding: see Section
6.1.5, "Announcements".

replyToInvitation() Comments outstanding: see Section
6.1.4, "Invitations".

i_RetailerAnonAccess All operations inherited from
i_RetailerAccess

Draft Definition: see Section 6.1.7,
"Anonymous Users".

i_DiscoverServicesIterator All operations. Stable: no comments, but no
implementations at present

Table 6-3. Stability of Access Part interfaces

Interface Operation Updates

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999 Document Stability

 page 224

the access session was being requested, and include an invitee identifier to indicate the user with
which the access session is requested. Additional reply codes would also be required, e.g.
UNKNOWN for an unknown user.

This sort of invitation would be different to a session invitation, as a session invitation can already be
delivered to this interface.

The Global One TT have not made specific comments on this interface. However they have made a
suggestion with regard to invitations that is applicable to both invitations sent outside access sessions
and retailers requesting consumers to establish an access session. They suggest that an interface
reference is included with the invitation (either to join a session, or establish an access session.) The
interface is used by the consumer domain to reply to the invitation, join a session, or request the
access session. See Section 6.1.4, "Invitations" for more details.

6.1.2 i_ConsumerAccess

Operations which provide the retailer domain with access to the consumer domain interfaces are
stable, with no changes expected.

The cancelAccessSession() operation is draft only. It allows the retailer to end an access session
with the consumer. The retailer can use this operation to terminate an access session without the
consumer’s permission. Comments are invited on this operation. No specific problems have been
identified as yet though, but updates are possible.

6.1.3 i_ConsumerTerminal

This interface is used by the retailer domain to retrieve information about the capabilities of the
terminal in the consumer domain. Currently, it defines only a a single operation
(getTerminalInfo()) which is used to retrieve all the information abut the consumer domain. This
is not really practical. It is envisaged that a ‘query’ based set of operations will be defined for retrieving
this information, allowing the retailer to retrieve only the information that is necessary. Comments or
suggestions on this approach will be gratefully received.

6.1.4 Invitations

Invitations are sent from the retailer to the consumer to invite a specific user to join a service session.

The specification for invitations (t_SessionInvitation and t_InvitationReply parameters)
are defined according to the Internet Engineering Task Force working group MMUSIC, (Multimedia
Multiparty Session Control) proposal for draft standard ‘Session Initiation Protocol’ (SIP). The TINA
specification allow invitations to ‘internet’ sessions to be delivered using the Ret-RP, and potentially
allow TINA invitations to be delivered using SIP. However, SIP is still an evolving standard, and
changes to the TINA specification for invitations may need to be updated to allow interoperability
between the specifications. Also, an emerging internet standard for video conferencing (H.323) also
defines an invitation specification, and may supercede SIP. TINA may need to choose between these
protocols if it wishes to retain interoperability of invitations.

Global One TTT have suggested that the invitation include a reference to an interface on which to
reply to the invitation and/or join the session. This interface could be separate from the
i_RetailerAccess interface that is currently used to reply to invitations, and join sessions. This
suggestion comes from a specific implementation problem encountered due to the Global One TTT.
The suggestion is not entirely in keeping with the TINA Service Architecture, however it is not an
unacceptable suggestion, but does require further discussion.

 page 225

Introduction Ret Reference Point Specifications
Document Stability Version 1.1; 30 April 1999

6.1.5 Announcements

Announcements are made by sessions to ‘publicise’ the session. They are broadcast to ‘groups’ of
users, which can use Ret-RP to retrieve a list of announcements which match specific properties.

The specification for announcements are draft at present. It contains a list of announcement
properties, but no specifications for announcement properties have been defined. This means that
announcements are currently retailer specific.

TINA will need to define a structure for announcements which allows interoperability between
retailers. Also, TINA may wish to allow interoperability with other session announcement
mechanisms, such as the Internet Engineering Task Force working group MMUSIC, (Multimedia
Multiparty Session Control) proposal for draft standard ‘Session Announcement Protocol’ (SAP)

6.1.6 Info operations

Info operations are sent to party domains, when the service session has taken an action. They are
sent to inform the party domain of the action, (which may need to update some internal state, or inform
the user). The operations never allow the party domain to return a result.

All Info operations are specified as oneway. This is because the operations are for information only,
they never allow the party domain to return a result, and so it is not necessary for the service session
to block waiting for the party domain to return.

However, oneways may have an unfortunate side effect: the ORB does not have to deliver the
oneway. There is still some debate as to whether the ORB must deliver the oneway with guaranteed
delivery, or not1. A system exception can be caught if the oneway is not delivered.

The purpose of specifying Info’s as oneway is to ensure that the party domain does not ‘block’ the
service session, by waiting instead of returning from the Info operation immediately. However, it is not
clear that using oneways is the best way to specify this in the IDL. There are other mechanisms that
the session can use to avoid being blocked when it invokes an Info operation.

6.1.7 Anonymous Users

Anonymous users are users that do not wish to reveal their identity to the retailer, and establish a ‘log-
term’ relationship with the retailer. Anonymous users may wish only make use of free retailer services;
or pay for charged services on a use-by use basis.

Currently anonymous users are not fully supported by Ret-RP. Ret-RP does define an operation
(requestAnonymousAccess() on i_RetailerInitial) to an establish an access session as an
anonymous user, and it provides an interface (i_RetailerAnonAccess) to be used during the
access session. However, i_RetailerAnonAccess currently does not include any operations.

No operations have been defined on i_RetailerAnonAccess, because it was unclear as to which
operations would be usable by anonymous users. An inheritance hierarchy has been defined that will
allow operations to be shared between i_RetailerAnonAccess and i_RetailerAnonAccess
for named users. Operations for anonymous users should be defined for the next version of Ret-RP.

1. The Generic Interoperation Protocol (GIOP) prescribed for interactions between ORBs forces them to use a reliable
network protocol that would ensure delivery of oneways. However ORBs do not have to use a GIOP-compliant
protocol for intra-ORB messages. All current ORBs do

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999 Document Stability

 page 226

6.1.8 Subscribed Services

The consumer requests from the retailer a list of their subscribed services, in order to determine which
services can be started, and what applications in the consumer domain may be used with the service.
Currently, there is only a single operation (listSubscribedServices() on the
i_RetailerNamedAccess interface) to access this information. This operation can return a lot of
information on each service (t_ServiceInfo), with the consumer potentially subscribed to many
services.

The Global One TTT have suggested added another operation to i_RetailerNamedAccess
interface which provides supplementary information on each service.
listSubscribedServices() would indicate if there is supplementary information available for
each service. It is likely that an operation (getServiceInfo()) will be added to the next version of
Ret-RP.

6.1.9 Synchronous versus Asynchronous interactions

The TINA Service Session Model was designed with a simple model of synchronous interactions. A
Request (Req operations) is invoked by a party, on the provider domain session. The request does
not return immediately. The party domain must wait for the session to do some processing before the
request will return. The session may make Indications (Ind), Execution (Exe) and possibly Information
(Info) operations before the Req returns to the party.

This synchronous model for interactions is very simple to understand, and capture in event trace
diagrams. It is also simple to program components to follow this model. However, this model does
imply that the party domain components must block when making a request. This is not necessarily
true, as it is upto the programmer to decide if they wish the party components to block, or to program
using threads, or the CORBA Dynamic Invocation Interface. However, the simpliest way to program
this is for the party domain components to block.

Other models have been suggested that follow an asynchronous model for interactions. There are
two ways to model this: as pseudo-asynchronous, and true asynchronous.

In the former, the party domain would make a normal synchronous request, but the provider domain
session would return immediately, before processing the request. The session would then process
the request and then invoke an operation on a party domain interface to return the result of the
request. This is a pseudo-asynchronous mode, as the asynchronous model is comprised of many
synchronous requests, which the receiving component ‘promises’ to reply both immediately, with no
result, and later with a real result. The problem with this approach is ensuring that the receiving
components don’t force the requester to block, by not returning immediately.

In the latter, true asynchronous uses asnychronous calls to send the requests and replies. This means
that the receiver cannot block the requester by not replying immediately.

It is likely that a new Session Model, using pseudo-asynchronous interactions, will be defined as part
of the continuing definitions for Ret-RP. Some discussion of the advantages of this is given in Section
5.5.9.2, "Asynchronous and synchronous responses".

 page 227

Introduction Ret Reference Point Specifications
Document Stability Version 1.1; 30 April 1999

6.1.10 Implementation Problems

6.1.10.1 Problems with ‘Any’

A number of projects and individuals have complained about the use of the IDL type ‘any’. Type any
is used to indicate that a value of an arbitrary type can be passed as a parameter, or return value.
Type any is generally used in the type t_Property, as part of a name and value pair, (the value
being of type any). This is used to allow Ret-RP to be extended by retailer-specific properties, or to
be extended as part of another version of Ret-RP. The purpose of using any is to allow this extension
without changing the IDL of existing operations. As part of t_Property, new value types can be
defined, and a name assigned to each new type. Each new name-value pair can now be carried by
any operation that can carry a t_Property. Operations receiving a t_Property can use the name
to determine the type of the value, or even use a typecode carried in the any, and look this up in the
interface repository to find the value type. This was the method chosen for extension of the reference
point.

However, there are some problems associated with any.

Firstly, programmers tend to dislike them, as it is sometimes necessary to use the interface repository
to discover the type of the any. In general, this should not be necessary for the value in t_Property,
as the type of the value is defined by the t_Property name.

Secondly, Global One TTT found problems in passing any values across multiple ORBs. The any
was correctly passed between clients and servers on the same ORB, but was unreadable when they
were on different ORBs. It is not clear if this is a problem between 2 specific ORBs, or whether any’s
generally cannot be passed across multiple ORBs. More information of this problem would be
gratefully received by the Editors of Ret-RP.

6.2 Stability of Usage Part Specifications

The usage part of Ret-RP can be split into: the TINA Service Session Model, and TINA
Communication Session Model; and further divided into the feature sets of each model.

In general, the usage part of Ret-RP has been the subject of fewer implementations than the access
part, and consequently, is more likely to require minor alterations, or contain minor errors that would
be discovered through prototyping. In any case, the IDL and stubs have been compiled according to
Table 6-1.

6.2.1 TINA Service Session Model

For the usage part, the TINA Service Session Model has been the subject of most implementation,
and external interest. The Multiparty related feature sets (MultipartyFS, MultipartyIndFS,
ControlSRFS), in particular, have been studied by the TINA Auxiliary project VITAL, who have
implemented a prototype that closely corresponds to the definition for Ret-RP.

Other feature sets have been studied as well: the control and voting feature sets (ControlSRFS,
VotingFS), and the Participant-oriented Stream Binding feature sets (ParticipantSBFS,
ParticipantSBIndFS). Less VITAL partners were involved in these more sophisticated testings, but
exhaustive tests were successfully performed. It must be noted that VITAL actually implemented a
simplified variant of the Participant-oriented Stream Binding feature sets, essentially based on the
previous Ret version, but using the new data types. The simplified version supports similar
functionality but is easier to implement, and less prone to interpretation misunderstandings.

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999 Document Stability

 page 228

6.2.2 TINA Communication Session Model

The TINA Communication Session Model is much newer than the rest of Ret-RP. Consequently, the
specifications have undergone a shorter period of review, and no implementation at present. As such
this session model may require significant modification in light of implementations.

However, the basic features defined by the TINA Communication Session Model are relatively small
in comparison to the other session model, and so it is more likely to be self-consistent than the TINA
Service Session Model was initially.

6.2.2.1 TINA Communication Session Model additional functionality

There is still work on going for the TINA communication session model. This may result in some
additions or modifications to the functionality of current interfaces or the addition of further interfaces
and feature sets.

• Possible modifications: There may be some modifications in the QoS parameter
definitions and this may affect capability selection and query operations.

• Additional functions on the i_TerminalFlowControl interface (or derived interface):

- Additional query functionality:

• Query bidirectional support;

• Query multiplexing support (SFEP to multiple NFCs);

• Query multiplexing support (NFC to multiple SFEPs;

Table 6-4. Stability of TINA Session Model feature sets.

Feature Set Interfaces Updates

BasicFS i_ProviderBasicReq Stable, but suspendSessionReq() often not implemented.

BasicExtFS i_PartyBasicExtReq Stable, but no implementations at present.

MultipartyFS i_PartyMultipartyExe
i_PartyMultipartyInfo
i_ProviderMultipartyReq

Stable, but suspendPartyReq(), and
suspendMyParticipationReq() often not implemented

MultipartyIndFS i_PartyMultipartyInd Stable.

VotingFS i_PartyVotingInfo
i_ProviderVotingReq

Stable.

ControlSRFS i_PartyControlSRInd
i_PartyControlSRInfo
i_ProviderControlSRReq

Stable, but the WritePermission often not implemented.

ParticipantSBFS i_PartyPaSBExe
i_PartyPaSBInfo (i_ConnInfo)
i_ProviderPaSBReq

Two types of implementations at present: one implementation
of this version, and an implementation of a simplified variant,
used in VITAL.

ParticipantSBIndFS i_PartyPaSBInd Same as for ParticipantSBFS.

 page 229

Introduction Ret Reference Point Specifications
Document Stability Version 1.1; 30 April 1999

• Query demultiplexing support for an SFEP. (i.e. combining flows from multiple
NFCs - this would also mean supporting multipoint-to-point TFC topologies.)

- Additional capability selection functionality: Currently capabilities can be modified by per-
forming new selection operations. It may be possible to modify an existing capability set
by adding, removing or modifying capabilities within the set. Extensions include:

• Add capability;

• Modify capability;

• Delete capability.

- Add more TFC initiation and branch addition operations: e.g. point SFEP to multipoint
SFEPs or point SFEP to multipoint NFEPs/SFEPs.

- Add more combined operations: A wider range of combined operations could be useful
for TFC initiation. Also, operations that could handle multiple TFC setups could be useful.

• Additional interfaces:

Additional interfaces, particularly to support TCSM to CSM interactions are desirable.

- Notification interface for CSM (base on i_GeneralStreamInfo interface)

- Notification control interface: to allow a CSM (or other provider domain components) to
direct notifications to itself or some other component.

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999 Document Stability

 page 230

 page 231

Ret Reference Point Specifications
References Version1.1;30April1999

7. References

7.1 TINA Baselines
[1] TINA reference points, Document No EN_TCJ.030_3.1_96, version 3.1, June 1996.

[2] TINA Glossary of Terms, Version 2.1, TINA-C, Jan. 1997; public.
File: /u/tinac/97/integration/docs/glossary/v2.1/GLOSSARY.ps

[3] Information Modeling Concepts, TINA-C, April 1995; public.
File:/u/tinac/94p2/viewable/info.ps

[4] Computational Modelling Concepts, Version 3.2, TINA-C, May1996; TINA-C internal.
File:/u/tinac/96/dpe/docs/computational_model/v3.2/cmc.ps

[5] Service Architecture, Definition of Service Architecture, TINA-C: Version 5.0, 16 June 1997.
File:/u/tinac/97/services/docs/sa/sa5.0/final/main.ps

[6] Service Architecture, Annex, TINA-C, 1997: Version 5.0, 16 June 1997.
File:/u/tinac/97/services/docs/sa/sa5.0/final/annex.ps

[7] TINA Business Model and Reference Points, Version 4.0 , TINA-C, May1997; public.
File:/u/tinac/97/integration/viewable/bm_rp.ps

[8] Request for Refinements and Solutions, The Ret Reference Point, Version 2.0, 9 August 1996.
File: /u/tinac/96/integration/rfrs/RFR-96-01/rfrs_ret.ps

[9] TINA Network Resource Architecture, Version 3.0, TINA-C, Febr. 1997; public.
File: /u/tinac/resources/viewable/nra_v3.0.ps.

7.2 Responses to RFR/S for Ret-RP
[10] TINA-C Core Team, Response to a request for Refinements and Solutions, The Ret Reference

Point, Version 1.1, Contact person: Martin Yates. Email: mjyates@tinac.com

[11] Alcatel response to RFR/S for Ret-RP, Authors: VITAL project, Contribution to the TINA Ret-RP,
Report Code: AC003/SES/WP2/DR/R/RET/X1, Date:28.10.96, Contact person: Hans
Vanderstraeten. Email: hvds@rc.bel.alcatel.be, (alt. Marcel Mampey, mmam@rc.bel.alcatel.be)

[12] BT, Response to a request for Refinements and Solutions, The Ret Reference Point, Version 1.0,
Contact person: Martin Ellis. Email: mart@drake.bt.co.uk

[13] Ericsson, Response to a request for Refinements and Solutions, The Ret Reference Point,
Version 1.0, Contact person: Jim Holehouse. Email: etjuse@etlxdmx.ericsson.se

[14] France Télécom CNET, Response to a request for Refinements and Solutions, The Ret
Reference Point, Version 1.0, Contact person: Fabrice Dupuy. Email: dupuy@lannion.cnet.fr

[15] Telia Research AB, Sweden, Response to a request for Refinements and Solutions, The Ret
Reference Point, Version 1.0, Contact person: Lennart Hedenström. Email:
Lennart.R.Hedenstrom@telia.se

7.3 Other documents
[16] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen,

Object-Oriented Modeling and Design, Prentice Hall: Englewood Cliffs, N.J.:, 1991.

Ret Reference Point Specifications
Version 1.1; 30 April 1999 References

 page 232

[17] Object Management Group (OMG), The Common Object Request Broker Architecture and
Specification, Ver2.0, July 1995.

[18] M. Handley, H. Schulzrinne, E. Schooler, SIP: Session Initiation Protocol, Internet Engineering
Task Force, INTERNET-DRAFT, 26 March 97. draft-ieft-mmusic-sip-02.ps.

[19] Service Component Specification, Computational Model and Dynamics. Version 1.0b (draft 0.1),
september 8th 1997. (Final version in Oct 97). TINA-C Core Team.
Available at: /u/tinac/97/services/docs/scs/compmod/draft0.1/final/comp.ps

[20] Network Resource Component Specification. Version 2.1, august 18th 1997. (Final version in
Oct 97). TINA-C Core Team.
Available at: /u/tinac/97/resources/network/docs/ncs/v2.1/ncs.ps

 page 233

Ret Reference Point Specifications
Acronyms Version 1.1; 30 April 1999

8. Acronyms

RFR/SRequest for Refinement/Solution

RPReference Point

Ret Reference Point Specifications
Version 1.1; 30 April 1999 Acronyms

 page 234

 page 235

Introduction Ret Reference Point Specifications
 Version 1.1; 30 April 1999

Annex A: Conventions for Reference Points

This annex describes the module naming conventions for IDL modules, and implicitly the module structure. Also,
the complete list with defined modules and contained interfaces is presented for reference. Last, some recorded
problems with IDL compilation are listed.

A.1 Module Naming Conventions

This part described the naming and structuring conventions used in the definition of the IDL for Ret RP. These
conventions do not only apply to Ret, but can also be a guideline for specifications for other reference points.

The naming for the modules, reflecting the separation described in this document, is as follows:

<modulename> := TINA<common> |
TINA<sessionrole><part> |
TINA<reference point><domain><part>

The first set of <modulename> applies to the common parts. The second and third set apply to business role parts.
Essentially the third set inherits from the second set and refers to reference point specific business roles.

<common> := CommonTypes |
AccessCommonTypes |
UsageCommonTypes |
StreamCommonTypes
<feature set>Types

<reference point> := Ret |
<other acronyms, e.g. Tcon, Cons, RtR>

<sessionrole> := User | (for access part)
Party | (for usage part)
Provider

<domain> := Consumer |
Retailer

<part> := Initial |
Access |
<usage part>

<usage part>:= <feature set>Usage

<feature set> := Basic
BasicExt
Multiparty
MultipartyInd
Voting
ControlSR
PaSB
PaSBInd
CommS

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 236

A.2 Defined Modules and Interfaces

Table 8-1 lists the modules currently defined for Ret, together with the interfaces they contain:

Table 8-1. Modules, Interfaces and dependencies

Module Contained interfaces Dependencies

TINACommonTypes none none

TINAAccessCommonTypes none TINACommonTypes

TINAStreamTypes none TINACommonTypes

TINAUserInitial i_UserInitial TINAAccessCommonTypes

TINAUserAccess i_UserAccessGetInterfaces
i_UserAccess
i_UserInvite
i_UserTerminal
i_UserAccessSessionInfo
i_UserSessionInfo

TINAAccessCommonTypes

TINAProviderInitial i_ProviderInitial
i_ProviderAuthenticate

TINAAccessCommonTypes

TINAProviderAccess i_ProviderAccessGetInterfaces
i_ProviderAccessRegisterInterfaces
i_ProviderAccessInterfaces
i_ProviderAccess
i_ProviderNamedAccess
i_ProviderAnonAccess

TINAAccessCommonTypes
TINAStreamTypes

TINARetConsumerInitial i_ConsumerInitial TINAUserInitial

TINARetConsumerAccess i_ConsumerAccess
i_ConsumerInvite
i_ConsumerTerminal
i_ConsumerAccessSessionInfo
i_ConsumerSessionInfo

TINAUserAccess

TINARetRetailerInitial i_RetailerInitial
i_RetailerAuthenticate

TINAProviderInitial

TINARetRetailerAccess i_RetailerAccess
i_RetailerNamedAccess
i_RetailerAnonAccess
i_DiscoverServicesIterator

TINAProviderAccess

TINAUsageCommonTypes none TINACommonTypes

TINAProviderBasicUsage i_ProviderBasicReq TINAUsageCommonTypes
TINASessionModel

TINAPartyBasicExtUsage i_PartyBasicExtReq TINAUsageCommonTypes
TINASessionModel

TINAPartyMultipartyUsage i_PartyMultipartyExe
i_PartyMultipartyInfo (optional)

TINAUsageCommonTypes

TINAProviderMultipartyUsage i_ProviderMultipartyReq TINAUsageCommonTypes

 page 237

Introduction Ret Reference Point Specifications
 Version 1.1; 30 April 1999

A.3 Recorded problems with IDL

In the process of defining, writing and compiling the IDLs, some problems have been recorded that have had their
impact on how some of the IDL is defined:

1. In order to work with OrbixWeb (current mapping) all IDL interfaces or types should be scoped within a
MODULE.

2. In order to work with NEO, all IDL files should NOT start with a comment on the first line

3. In order to work with all ORBs, any types or interfaces can only be forward declared with the file in which
they are later defined. i.e.forward declaration of an interface which is properly defined in a different file is not
acceptable.

4. Typedefs of Object (i.e. CORBA::Object) should not be used.

5. Preprocessor commands (e.g. #define #ifndef etc) should not be terminated with comments. e.g.

 #define i_retailerInitial_idl // Retailer Initial

TINAPartyMultipartyIndUsage i_PartyMultipartyInd TINAUsageCommonTypes

TINAPartyVotingUsage i_PartyVotingInfo TINAUsageCommonTypes

TINAProviderVotingUsage i_ProviderVotingReq TINAUsageCommonTypes

TINAControlSRTypes none TINAUsageCommonTypes

TINAPartyControlSRUsage i_PartyControlSRInd
i_PartyControlSRInfo

TINAUsageCommonTypes
TINAControlSRTypes

TINAProviderControlSRUsage i_ProviderControlSRReq TINAUsageCommonTypes
TINAControlSRTypes

TINASBCommSCommonTypes none none

TINAStreamCommonTypes none TINACommonTypes
TINASBCommSCommonTypes

TINAPaSBTypes none TINAUsageCommonTypes
TINAStreamCommonTypes

TINAPartyPaSBUsage i_PartyPaSBExe
i_GeneralStreamInfo
i_PartyGeneralStreamInfo
i_PartyPaSBInfo

TINAPaSBTypes

TINAProviderPaSBUsage i_ProviderPaSBReq TINAPaSBTypes

TINAPartyPaSBIndUsage i_PartyPaSBInd TINAPaSBTypes

TINACommSCommonTypes none TINASBCommSCommonTypes
TINAConSCommSCommonTypes

TINAConSCommSCommonTypes none TINASBCommSCommonTypes

TINAPartyCommSUsage i_BasicTerminalFlowControl
i_TerminalFlowControl

TINASBCommSCommonTypes
TINAConSCommSCommonTypes
TINACommSCommonTypes

Table 8-1. Modules, Interfaces and dependencies

Module Contained interfaces Dependencies

Ret Reference Point Specifications Introduction
Version 1.1; 30 April 1999

 page 238

6. Structures or exceptions should not contain submembers called type. e.g

 struct aStruct {
short type;
boolean another;

 };

7. All IDL files should end with an endline. i.e. after the last comment or preprocessor command, there should
be an empty line.

8. The code for arrays of octets is not properly generated using Orbix. It’s a known bug in Orbix. workaround:
sequences

9. The typedefs of atomic types are not generated using the java mapping. This explains why in the application
code some TINA types cannot be used.

10. A sequence definition using a scoped element compiles without problems with the Orbix IDL compiler.
However, the generated C++ code is not compilable. Work-around: Always define sequences in the same
module where the element type is defined. Example:

// Generated C++ does not compile:

// File A.idl
module A {

typedef string t_string;
};

// File B.idl
#include “A.idl”

module B {
typedef sequence<A::t_st r ing> t_stringList;

};

11. In order to work with idldoc (an IDL to HTML document processor), unions must have a tag associated with
each case body. Two or more tags cannot be associated with a single body. (All other IDL compilers, and the
CORBA specification allow this. However Orbix doesn’t allow the discriminator (switch tag) to be set. It can
only be ‘inferred’ by setting the case body variable, and so Orbix doesn’t work with multiple tags either.)

// Does not compile with idldoc:
union t_union switch (t_discriminator) {

case okayTag: short okayCase;
case firstCase:
case secondCase: octet bodyForBoth;

};

// Does compile with idldoc:
union t_union switch (t_discriminator) {

case okayTag: short okayCase;
case firstCase: octet bodyForFirstCase;
case secondCase: octet bodyForSecondCase;

};

